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Abstract: The accessibility to Electroencephalogram (EEG) recording systems has enabled the healthcare 

providers to record the brain activity of patients under treatment, during multiple sessions. Thus brain 

changes can be observed and evaluated. It has been shown in many studies that the EEG data are never 

exactly the same when recordings are done in different sessions inducing a shift between the data of 

multiple sessions. This shift is induced due to the changes in parameters such as: the physical /mental state 

of the patient, the ambient environment, location of the electrodes, and impedance of the electrodes. The 

shift can be modelled as a covariate shift between multiple sessions. However, the algorithms that have 

been developed to tackle this shift assume the presence of training as well as testing data apriori to 

calculate the importance weights which are then used in the learning algorithm to reduce the mismatch. 

This major problem makes them impractical. In this paper, we tackle this, using marginalized stacked 

denoising autoencoder (mSDAs) while using the data from seven healthy subjects recorded over 

eightsessions distributed over four weeks. We compare our results with kernel mean matching, a popular 

approach for covariate shift adaption. Using support vector machines for classification and reduced 

complexity of mSDA, we get promising accuracy. 

 
Key words: Electroencephalogram, transfer learning, marginalized stacked denoising autoencoders, 
covariate shift adaptation. 

 
 

1. Introduction 

Electroencephalography (EEG) is used for recording electrical activity of the brain through a number of 

electrodes placed on the scalp. The electrodes measure voltage fluxes that are produced in the neurons of 

the brain by ionic stream. The EEG has traditionally been used for diagnostics of various diseases such as 

epilepsy and monitoring of the brain during various states such as sleep. The EEG can also be used for 

control applications, since various components and brain potentials such as the movement-related cortical 

potential (MRCP) and sensorimotor rhythms, can be voluntarily controlled. Using the EEG to control an 

external device is known as a Brain-Computer Interface (BCI). The BCI consists of different main 

components; a signal acquisition block (EEG is recorded), pre-processing (the signal-to-noise ratio is 

enhanced), feature extraction and classification (the intent of the user is determined), and then the output 

of the classifier is transformed into a device command. This command could be left/right or up/down 

movements of a cursor on a screen or initiating electrical stimulation of paralyzed muscles to produce a 
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movement in e.g. stroke patients or spinal cord injured patients. To detect or decode the BCI user’s 

intention, the BCI system must be calibrated, i.e. training the classifier. This is a tedious task that requires 

much time and can be exhausting for the user, since this is time that has to be spent before the BCI system 

can be used. This has to be done at the very moment often, because the brain is constantly changing 

especially as a result of mental and physical fatigue, which happens during a single session where the BCI 

system is being used. Moreover, the EEG changes also occur, over different sessions or days due to factors 

such as ambience changes in the recording environment, the non-stationary nature of the signals, slight 

changes in electrode placement, and environmental artifacts from external distractions. These situations 

are often encountered and lead to discrepancies between training and testing data which casts negative 

effect on the BCI system performance (the classification accuracies decrease). Due to these differences in 

the conditions between and within EEG recording sessions, data shifts in training and test distributions 

occur. This is one of the basic reasons why BCI applications do not provide the expected outcome in the real 

world. To address this problem datasets can be regularized using transfer learning, which uses prior 

knowledge to address the issue of how to use labeled data in a source domain to solve relevant but different 

problems in a target domain, even when the training and testing distributions are different. 

Transfer learning is an approach that inherits knowledge from one task or domain and transfers it to 

another related task or domain for attaining a high performance. Domain adaptation can be divided into 

two types based on whether the testing data in the target distribution is unlabeled or semi labeled, 

resulting in unsupervised and semi supervised learning respectively. In the latter, labeled target data’s 

correspondences are used for transformation between different domains [1] whereas the former uses the 

techniques in which transformation between domains follows a known class of methods including 

discriminative and distinguishing features, minimal difference in training and testing distributions [2] and a 

path for mapping of one domain on another [3]. 

Covariate shift is the condition in which the density distribution alters between train and test phase due 

to mismatch of environmental circumstances or variation of devices used to obtain training and testing 

samples. A. Gretton et al. [4] have proposed distribution matching for covariate shift adaptation. They 

suggested Gaussian kernel based mapping to reduce the mismatch in the transformed domain. Kai Zhang et 

al. [5] suggested distribution matching in the Hilbert Space using mapping of one domain onto another 

employing the surrogate kernel concept. Based on Mercer’s theorem a surrogate kernel is developed using 

different aligned kernels. S. Pan provided surveys on transfer learning in [6] and [7] in which he 

emphasized on reviewing the transfer learning situations for supervised and unsupervised problems. The 

authors focused on the relation between transfer learning and other methods for domain adaptation such 

as covariate shift. 

Difference in source and target data distributions is a major hindrance in getting predictive models. A lot 

of techniques have been developed for addressing training and testing mismatch. One approach to cope 

with the situation is that the training samples which are similar to testing ones are provided more weights 

and those training samples which are different are assigned less weights. This technique of providing 

weights to training data, so that training data may realize a better representation of testing data is known as 

importance weighting which is a very famous approach for unsupervised domain adaptation. Hassan et 

al.[8] has recently used this approach in acoustic emotion recognition which has provided important 

improvements in emotion analysis. They have employed three algorithms as transfer learning techniques 

(Kernel Mean Matching (KMM) [9], KullbackLeibler Importance Estimation Procedure [10] and 

Unconstrained Least Squares Importance Fitting [11]. J. Deng et al. [1] proposed an unsupervised domain 

adaption procedure based on auto-encoders. They have used an adaptive autoencoder approach to learn 

common feature representations between training and test distributions for speech emotion recognition. 
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Denoising auto encoders learn representations of data by reconstructing features in the data which are 

corrupted by noise artificially. P. Vincent et al. [12] used them to extract robust features. Stacked denoising 

auto encoders are stacking of denoisers in a deep learning architecture. Glorot et al. [2] used stacked 

denoising autoencoders (SDAs) for domain adaptation for learning good feature representations. On 

sentiment analysis, a promising accuracy has been recorded using SDAs. H. Lee, et al. [13] used neural 

networks for audio classification. They used support vector machines (SVMs) for classification using the 

output of intermediate layers as features.Despite the promising and captivating results SDAs have certain 

limitations. Since they rely on iterative optimization for learning model parameters, they have high 

computational cost and require large training time. The challenge is to cater for the computationally 

intensive model selection. 

In this paper, we used marginalized stacked Denoising Autoencoders (mSDAs) to address covariate shift 

adaptation in the EEG signals. MSDAs rely on an unsupervised domain adaptation procedure where 

previous information obtained from a target set is utilized to regularize the learning on source data. They 

constitute layer by layer training of SDAs and have denoisers as basic building blocks. MSDAs aim to 

marginalize the noise to eliminate the need of an optimization algorithm such as gradient descent which is 

required in conventional SDAs.  

2. Literature Review on Importance Weighting 

2.1. Verifying a Distribution Shift 

To verify the presence of covariate shift in the data, we have used the Kolmogorov-Smirnov (K-S) test. 

This non parametric method checks whether the drawn samples are from same distribution or not. The K-S 

value counts a distance between the empirical density occupation of the training and testing samples. If the 

samples belong to the same distributions, we get the null hypothesis H0 whereas Hais obtained in the case of 

a covariate shift when we have different distributions. The K-S test is distribution free so it is very 

interesting to use it for verifying the presence of a shift in distributions. It can give authentic results when 

we have single dimensional data. For multi-dimensional data, we consider each jthfeature as independent of 

the remaining. Gretton et al. [14] has proposed a test for covariate shift identification of multi-dimensional 

data which can be used if we do not want to make the above mentioned assumption. In this, test data is 

mapped into a space of higher dimensions and then the difference in means of both distributions is 

obtained. We have used the K-S test because of the complexity of the test proposed by Gretton. The Ktest2 

function is used for applying K-S test on each feature. This function is available in a Matlab Toolbox. When 

the test is passed, 0 is returned and it indicates that the data do not contain any shift. 

2.2. Importance Weighting 

Importance weighting employed for covariate shift adaptation assigns more weights to those training 

samples which provide closer representation to the test data. Consider we have a given domain X and n 

training samples {𝑥𝑖
𝑡𝑟}𝑖=1

𝑛𝑡𝑟  are independently drawn from a particular distribution )(xptr and n testing 

samples{𝑥𝑗
𝑡𝑒}𝑗=1

𝑛𝑡𝑒 are independently drawn from a distribution having density ).(xpte  
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For minimizing the discrepancy between the training and test distributions, the objective is to obtain 
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importance weights β which can be defined as a ratio of testing data density to that of training data; it is 

non negative as per definition “𝛽 =
𝑝𝑡𝑒(𝑥)

𝑝𝑡𝑟(𝑥)
". Actually we are driving our learning scheme towards significant 

regions in the available data. Dense portions in testing distributions will provide more weights hence the 

algorithm is pushed to important regions. So the issue is to obtain the importance weights to address 

covariate shift. 

2.3. Kernel Mean Matching  

KMM is independent of density calculation, hence huge amounts of data are not required. It reduces the 

difference in the means of test and training data distributions on which importance weighting has been 

applied in a high dimensional space. A kernel is used to induce this high dimensional space. KMM is based 

on maximum mean discrepancy method (MMD) given by Gretton et al. [14]. Let prepresent density of one 

distribution and q represent the other distribution. ],,[MMD qp  is zero if p is equal to q where 

shows mapping kernel which induces a high dimensional space. The objective function is defined by (1). 

 

  


tr ten

i

n

i

te

i

te

tr

ii

tr

x
n

x
n

J
1 1

)(
1

)(
1

min)(    

     

n

n
andtosubject tr

i i

tr

i 1
1

1
,0  

 
 
 (1)

 

 

where β and ε are the parameters for optimizing the objective function. β and ε are greater than zero. The 

above function can be expanded as given in (2). 
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These weights are used for weighting the training samples, so that they can realize a better 

representation of testing data. Appropriate tuning of the following three parameters is necessary for the 

algorithm to work efficiently: ,  which is the upper limit of importance weights, the width   of the 

Gaussian kernel and .  Suggested values for the parameters as proposed by Gretton et al. [9] are: 

,1000 ,1.0 .)1(
tr

tr
n

n  To obtain the importance weights from KMM by solving the 

quadratic function, we have used the Matlab toolbox for optimization. The generic form of quadratic 

function is given in (4). 
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3. Proposed Methodology 

We used mSDA for covariate shift adaptation in the EEG data. 

3.1. Autoencoders 

An autoencoder maps an input x  to ),(xh so that the input can be reconstructed from )(xh hence the 

target is the input itself. When training is done using theMSE criterion and number of linear hidden layers is 

one, having k units, then data are being represented as the first k  components. When a nonlinear hidden 

layer is used, it does not behave like principal component analysis. An issue with this approach is that if 

there is an autoencoder with n  input units and n  or greater units in the hidden layer, then the learning 

function will constitute an identical mapping of input units to hidden layer, yielding no useful 

representation of input data. There are many ways in which autoencoders with more hidden units can be 

prevented from just copying the inputs into hidden units. One approach is to use a denoising autoencoder 

(DA) which reduces the error by reconstructing the input from its corrupted version.  

3.2. Denoising Autoencoders 

A simple autoencoder has two elements; one is the encoder and the other is the decoder. An input x  is 

mapped to some hidden layer ),(xh  using the encoder (.).h  The mapping of a hidden layer unit )(xh  

to an output which reconstructed as x , is done by the decoder (.).g  The reconstruction error or loss is 

minimized by learning some parameters. A DA is a neural network constituting one layer and has a 

modification such that before the input data is mapped to some hidden representation, it is corrupted with 

certain noise. Then from this corrupted version ,~x  input x  is reconstructed by minimizing the loss. 

Corruptions may have different versions including additive Gaussian noise or masking noise. Vincent et al. 

[12] used binary masking noise in which a few input features are set to zero. This is typical in text 

representations where due to a difference in training and test domains or due to the author’s writing style, 

words can be missing. 

In SDA, DAs are stacked in multiple layers to develop a higher level data representation. It involves 

feeding the hidden representations of thl DA as input to thl )1(   DA. Learning is done layer by layer using 

a greedy algorithm. In many scenarios, the features learned from stacked denoising autoencoders provide 

high performance accuracy. In sentiment analysis, Glorot et al. [2] used SDAs along with linear SVMs to 

learn features which provide remarkable accuracy. The SDAs have few limitations: a) It is computationally 

very intensive and uses long training time as it uses a stochastic gradient descent, b) Hectic cross validation 

is required for tuning parameters such as learning rate, noise level, structure of whole network, and batch 

size etc. This is computationally expensive in terms of cost and time constraints as a single run may require 

a long time, c) A unique solution of the optimization is not guaranteed as it depends on initialization. To 

solve these issues, M. Chen et al. [15] proposed marginalized SDA, that marginalizes the noise to calculate to 

the closed form solution. 

3.3. Marginalized Stacked Denoising Autoencoders 

We used a modified version of SDA, which is compatible with SDA in feature learning but with higher 
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speedups, optimum computation and lowering the number of parameters which are required to be tuned. 

In marginalized stacked DAs the complexity is reduced and model selection also gets faster. The 

fundamental building unit of our approach is single layer DA. We take n inputs from a union of source and 

target domains and induce corruption in them by removing randomly selected features. Actually, each 

feature is set to zero with some probability which is greater than zero. If x  is an input, its corrupted 

version is x~ .  

In contrast to SDA, which usesencoder and decoder approach, reconstruction is done in single mapping, 

hence the reconstruction loss 



n

i

ii xWx
n 1

2~

2

1
 is minimized. We solve for Wto minimize the overall loss. 
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For simplification, it is assumed that a feature is added to input which is constant over all samples,

],1;[ ii xx   and during mapping, the bias vector is introduced in mapping .b][W,W   Multiple runs are 

done on the training dataset each with different corruption level to reduce the variance in loss. To lower the 

variance, we perform several runs on the training data, each time with different corruption. 

Consider the input framework dxn

n RxxX  ],[ 1   and its m-times repetition as ],,[ XXX 

where X
~

 is the corrupted form of .X  Now the loss equation can be written as given in (6). 
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The closed form of the solution is 
1 PQW  with TXXQ

~~
  and 

TXXP
~

 . The solution to (6) is 

dependent on corrupted features and input samples.Ideally it is recommended that for all input samples, all 

possible corruptions should be considered so we would like m . According to the weak law of large 

numbers, when m becomes very large and more copies of corrupted data are formed, convergence of P  

and Q  to their expected values ][],[ QP  occurs. The closed form mapping of W can be expressed as 

1][][  QPW . We will compute both ][P  and ].[Q  First we focus on ].~~[][
1

T
n

i

xxQ 


  If the 

two features i  and j  survived the corruption process, only then entry ]~~[ Txx  is considered 

uncorrupted. This can only happen when probability is .)1( 2p  

 Consider a vector 
1]1,1,1[  dT Rppq   where the probability of feature i  is represented by

.iq  We define 
TXXS   as the scatter matrix of uncorrupted input data X . Now we can express

 jiifqS

jiifpqS
iij

jiij
Q



 ][  and 
iijqSP  ][  in its closed form. 

3.3.1. Stacking and induction of nonlinearity in feature generation  

Now without using reconstruction of ix~ , we can compute W  in closed form. We refer to this closed 

form as Marginalized Denoising Autoencoder (MDA). The success of SDA is based on two important factors: 

nonlinearity and stacking of multiple DAs. Our approach is also capable of both where several MDA layers 
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are stacked in a multiple layer architecture by feeding the hidden representations of thl  layer as input to

thl )1(   layer. Closed form learning of each transformation map 
lW  is done to reconstruct the output of 

previous mDA lh  from its corrupted version. In SDAs the nonlinearity factor is added using a nonlinear 

encoder (.).h  Training becomes highly nonconvex when the encoder is learned with a reconstruction 

matrix W Parameters are to be tuned by running an iterative algorithm making this approach 

computationally extensive. We inject nonlinearity after computation of W  by applying a nonlinear 

function on output of each mDA. Each layer is obtained by a nonlinear mapping )tanh( 1 l

l

l hWh  of the 

preceding layer, with xh 0  showing input. 

4. Dataset and Experimental Setup 

To examine the performance of the proposed method we used MRCPs recorded from seven healthy 

subjects. Each subject was seated in a chair in a shielded room for recording EEG during dorsiflexion of the 

ankle. Two types of dorsiflexions were performed; fast and slow. The fast movement was 0.5s to reach a 

target force of 20% of maximum voluntary contraction (MVC), whereas the slow movement were 3s to 

reach the same target force of 20% MVC. Each of the movement types were repeated 30 times with a 10 s 

rest period in between. Using a Nuamp amplifier, 10 channels (C3, C4, F3, F4, P3, P4, Cz, Fz, Pz and FP1) of 

monopolar EEG were recorded by placing electrodes on scalp. The sampling frequency was 500 Hz, and the 

signals were digitized with 32 bits accuracy. The recordings were performed in different sessions with a 

separation of at least two days but less than a week between two consecutive sessions. Therefore, for every 

week, we have EEG recordings for two days as shown in Table 1. Each subject followed this procedure. 

 
Table 1. Overview of Recording Setup 

 Week 1 Week 2 Week 3 Week 4 
Days 1 2 1 2 1 2 1 2 

 
Each session’s data have recordings for two classes: fast and slow. The EEG signals were processed by 

applying a band pass filter between 0.05 & 5 Hz with 2nd order Butterworth filter. A Surrogate channel was 

obtained by applying a large Laplacian spatial filter on the 9 EEG channels with Cz as the center electrode 

(FP1 was used to register electrooculography). 

5. Evaluation Setup and Results  

 

 
Fig. 1. Average classification accuracy for the seven subjects using test setup I. 
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Fig. 2. Average classification accuracy for the seven subjects using test setup II. 

 

We evaluate the performance of our system using a binary classification accuracy under two test setups; 

Test Setup I: For all subjects we use all previous data for training and current day data for testing 

(accumulative training), Test Setup II: For all subjects we worked on each week and used data of day 1 for 

training and day 2 for testing. Linear SVMs with fixed parameters are used for classification. Fig. 1 and Fig. 2 

show the average classification accuracy along with the standard deviation for Test Setup I and Test Setup II 

respectively. 

6. Discussion 

The results in Fig. 1 and Fig. 2 show that the EEG recorded in multiple sessions does have a shift in the 

data. This shift can be removed by explicitly addressing this issue using importance weighting techniques. 

The standard statistical methods (KMM) developed for minimizing this shift in the data clearly outperforms 

the standard SVMs supporting our argument that this shift in the data needs to be addressed. However, with 

the advent of a new breed of algorithms like SDAs under the umbrella of deep learning are showing far 

better performance than the typical algorithms. In this paper, we have also shown that the EEG data that are 

recorded in different sessions, is a perfect problem to be tackled under the transfer learning domain. 
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