
  

Systems Genetics of Complex Diseases Using 
RNA-Sequencing Methods 

Gianluca Mazzoni, Lisette J. A. Kogelman, Prashanth Suravajhala, Haja N. Kadarmideen* 

Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University 
of Copenhagen, 1870 Frederiksberg C, Denmark. 
 
* Corresponding author. Tel: +45 35333577; email: hajak@sund.ku.dk 
Manuscript submitted: February 25, 2015; accepted April 19, 2015. 
doi: 10.17706/ijbbb.2015.5.4.264-279 
 

Abstract: Next generation sequencing technologies have enabled the generation of huge quantities of 

biological data, and nowadays extensive datasets at different ‘omics levels have been generated. Systems 

genetics is a powerful approach that allows to integrate different ‘omics level and understand the biological 

mechanisms behind complex diseases or traits. In the recent, transcriptomic studies with microarrays have 

been replaced with the new powerful RNA-seq technologies. This has led to detection of novel gene 

transcripts, novel regulatory mechanisms, allele specific gene expression and numerous non-coding RNAs 

(ncRNAs). The integration of transcriptomics data with genomic data in a systems genetics context 

represents a valuable possibility to go deep into the causal and regulatory mechanisms that generate 

complex traits and diseases. However RNA-Seq data have to be treated carefully and the choice of the right 

methodology could have a great impact on the final results. Furthermore the integration of different level is 

not trivial. Here we give a comprehensive systems genetics overview of the methods and tools for analysis 

and the integration of RNA-Seq data including ncRNAs. We focused principally on merits and demerits of 

tools for post mapping quality control, normalization, differential expression analysis, gene network 

analysis, and integration of different omics data in order to generate a comprehensive guideline to systems 

genetics analysis using RNA-Seq data. 
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1. Introduction 

The term “Systems Genetics”, a branch of systems biology was originally proposed by Kadarmideen et al., 

which integrate ‘omics scale measurements from genome to metabolome to functome through 

transcriptome and proteome [1]. It assimilates a holistic analysis model to find important causal and 

regulatory genes and their variants in predicting biomarkers. In recent times, based on high leverage of 

bioinformatics data that are produced, systems genetics have provided systems level understanding the 

biological phenomena [2]. This systems genetics approaches have been applied in livestock [3], [4], humans 

[5] and thoroughly reviewed [6]-[8]. However, most of these previous studies are based on chip-based or 

array based high throughput ‘omics data. With next generation sequencing (NGS) data providing an 

unprecedented means to construct comprehensive maps of genetic/gene expression variation, there is 

more to understanding the ‘omics approach. This includes several dozens of million “reads” to map single 

nucleotide variants (SNVs), hundreds of thousands of small insertions or deletions, structural variants and 

transcripts, epigenetic analysis using ChIP-seq technologies [6], [9]. 

International Journal of Bioscience, Biochemistry and Bioinformatics

264 Volume 5, Number 4, July 2015



  

As more and more technologies enabling huge datasets are available, there is a need for significant 

understanding and improvement of standard resources and sequencing tools to analyse complex diseases. 

As a most recent improvement, several non-codingRNA (ncRNA) sequences, viz. micro-RNAs (miRNA), long 

non coding RNA (lncRNA) and recently discovered long intergenic ncRNAs (lincRNAs), competing 

endogenous RNAs (ceRNA) and enhancer RNAs (eRNA) etc. form a part of regulatory networks and 

pathways. While it is known that the regulatory networks utilize protein-protein interaction (PPI) data, they 

are known to affect the expression of protein-coding genes [10]. The ncRNAs have different modes of action 

and so are classified based on their size and modulation. The smaller among the ncRNAs, miRNAs serve as 

important modulators of development wherein they regulate transcription by interacting with promoter 

regions or change protein levels during post-transcriptional stage [11]. This has enabled researchers to 

focus on diverse transcribed genes between small RNAs and their longer transcripts. However, the 

association between the latter two categories is beginning to be understood thus allowing researchers to 

focus more on lncRNAs. Subsequently, a few “meta-analysis” based approaches integrating omics data at the 

systems genetics level have come up [12]. The approaches integrate several types of ‘omics data that 

include gene expression data, ChIP-seq and miRNA expression data. When these approaches when 

cross-validated with each other, it will help find the distinct datasets further allowing researchers to 

comprehensively use these data at the systems genetics level. 

Given the paradigm shift of omics data that is processed based on NGS technologies, the challenges of 

guiding systems genetics/biology research are two-fold, viz. analyzing array-based omics datasets and 

comprehensive understanding of non-coding sequences centered on RNA-Seq data, for example, in the form 

of long noncoding RNA (lncRNAs). One of the main objectives of this perspective article is to provide an 

overview of existing tools for analyses based on NGS based RNA-Seq transcriptomics and genome variation 

datasets and for building up gene networks underlying complex diseases and traits. We focus on the merits 

and demerits of different RNAseq data analyses approaches. This includes post-mapping quality control and 

normalization methods and subsequent use of both normalized RNA-Seq data (as normalized reads or 

counts), differential expression (DE) and network analyses (Fig. 1). We also reason how ncRNA data could 

be used to integrate ‘omics datasets in finding genetic variation and intermediate molecular phenotypes. 

 

 
Fig. 1. Overview of systems genetics analysis using RNA-sequencing data. 
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2. Processing of RNA-Sequencing Data 

2.1. Post-mapping Quality Control 

After generating RNA-Seq data and alignment (to the reference genome or de novo assembly), it is 

essential to perform a quality control of the aligned reads before proceeding with subsequent analysis of 

the transcriptome [13]. The quality control allows us to find out any potential bias in the data introduced 

during previous phases of the workflow: sample extraction, library preparation, sequencing technology, 

and/or mapping algorithms. Nowadays, there are a lot of freely available tools for the post-mapping quality 

control. Obviously, these tools do not have a direct impact on the final outcome of the analysis and therefore, 

there is not a tool that in general performs better than others. Each tool computes different statistics and 

presents different output types, so the choice of the user is strictly dependent on the type of information 

and the output format that the user requires. We present here six freely available tools that are widely used: 

FastQC, Picard Tools, Qualimap, RNASeqQC, RSeQC and SAMStat. In particular, we report the characteristics 

that are in our opinion most significant for the RNA-Seq data analysis and useful for the users (Table 1). Due 

to the heterogeneity of the statistics that these tools compute, we grouped them into: BAM/SAM general 

statistics (e.g. number of reads mapped, mismatches, nucleotide composition, GC-percentage, k-mer bias), 

RNA specific statistics (e.g. distribution of the reads, genome coverage, intron/exons coverage, intron/exons 

junctions analysis), mapping quality statistics, insert size statistics (only for paired-end reads), 

multi-sample comparisons.  

 

Table 1. Overview of Six Widely Used Post-mapping Quality Control Tools, on Alphabetical Order 
Tool Name Enviromen

t 

Input type* Output BAM file 

QC 

RNA-seq 

specific 

Mapping 

quality 

Insert 

Size 

Multi- 

sample 

FastQC [14] Java CL & GI Html page      

Picard Tools 
[15] 

Java CL Text file      

Qualimap [16] Java and R CL & GI Html page      

RNASeqQC [17] Java CL Html page      

RSeQC[18] Python CL Shell 

output 

Text files 

     

SAMStat [19] C (Unix) CL Html page      

*GI= Graphical Interface; CL = Command Line. 

 

Picard tools and SAMStat focus mostly on biases related to the library preparation and sequencing 

process. In particular, SAMStat focuses on the number of mismatches, nucleotide composition and 

percentage of mapped reads. SAMStat is able to compute the statistics based on the mapping quality to 

contrast properties of unmapped, poorly mapped and accurately mapped reads to find out whether any 

properties of the reads influence the mapping accuracy. Picard tools provides a lot of information related to 

the BAM statistics with a module that is specific for RNA-Seq experiments (CollectRnaSeqMetrics); however, 

the results are not directly interpretable as output is given as numeric information in a text file. Another 

important parameter to evaluate is the insert size to detect potential problems during the library 

preparation or the alignment. While computation of the insert size is implemented in Picard tool, Qualimap, 

RNASeqQC and RSeQC, the first three extract it directly from SAM file and on the other hand, RSeQC 

performs a more complex computation. RSeQC takes the eventual presence of introns between two paired 

reads into consideration, because two paired-end reads that fall in two different exons will potentially have 

a higher insert size than expected. Among the six evaluated tools, Qualimap and RNASeqQC seem to be the 
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most comprehensive tools. Both compute statistics for the sample comparison and in particular, 

RNASeqQCs performs a very useful multisample comparison providing output tables with correlations 

among samples and GC content. Qualimap is a very user-friendly tool that can be run using both command 

and graphical line interfaces. With a single command, it automatically gives a html output with easily 

interpretable tables and graphs. Furthermore, it allows to test the adequacy of the sequencing depth. On the 

contrary, even though RSeQC computes very usefully and accurately described statistics, the user has to run 

different modules as some of them do not render the output graphs, but executing the R-scripts separately 

would solve the purpose. In conclusion, each tool has its own characteristics and featured qualities and the 

best way is to ascertain the quality of the data using more than one tool. Recently Kroll et al. [20] 

implemented a new tool called Quality Control for RNA-Seq (QuaCRS), which runs a proportion of three 

different QC tools (FastQC, RNASeQC and RSeQC) and merges the results in a coherent way. In addition, it 

generates a database that stores and displays the quality control results in an easily accessible way. 

2.2. Normalization of RNA-Seq Expression Levels 

Normalizing RNA-Seq data is a vital step before analyzing the expression data as it can have a serious 

impact on the outcome of subsequent analyses. The estimated expression levels of each biological entity 

need to be normalized in order to compute an accurate comparison between and within samples. There are 

different types of normalization to account for biases of different nature that could be within or between 

samples. The within-sample bias includes, e.g., transcript length bias [21], whereas between-sample bias 

includes the differences in the sequencing depth (library size) and GC-content [22]. This ensures that an 

accurate type of normalization is dependent on the objective of the study. If the research objective is to 

detect DE genes, the between-sample bias should be considered. On the contrary, if the research objective is 

to rank or compare genes within a sample, more complex normalization methods are needed to consider 

potential bias within samples.  

To detect DE genes, the most influencing bias is in general the library size. There are different 

methodologies that remove this sequencing depth bias. The basic methods consider simply the total count 

of reads in a sample, but they do not take in consideration the differences in the distribution of the data and 

the possible incidence of few very highly expressed genes that represent the utmost part of the total reads 

count. To overcome this issue, researchers have developed methods using scaling factors that match 

distributions of the samples [22].  

 

Table 2. Overview of Different RNA-Seq Normalization Methods, on Alphabetical Order 
Method Description of the method 
DESeq Scaling 
Factor[23] 

The scaling factor for each sample is computed as the median of the ratio between the count of each 
gene and their respective geometric mean computed across samples 

Median Gene counts are divided by the median of the gene counts 
Quantile[24], [25] Normalize the distribution of counts across lanes 
RPKM [26] Gene counts are divided by the transcripts length times number of millions mapped reads 
SAMseq method [27] Computes the mean read count over the features that result to be null in the dataset. 
TC Gene counts are divided by sequencing depth and multiplied by the average of the total counts 
TMM[28] Genes that are most expressed and with the highest log ratios are removed, and using the remaining 

genes a scaling factor is computed as the weighted mean of log ratios between the sample and the 
reference  

Upper quartile [29] Gene counts are divided by the upper quartile of the gene counts 

 

Dillies et al. [30] compared a number of normalization methods (Table 2) using a real and a simulated 

dataset. The best performances were obtained from the Upper Quantile, Median, DESeq, and TMM 

normalizion, but only DESeq and TMM showed a good precision and sensibility in terms of false positive 

rate and power of detection. RPKM and TC indicated to be ineffective and so not suggested for DE analysis, 
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while the Quantile normalization only gave positive results when the samples had equal distributions. On 

the contrary, in a study from Seyednasrollah et al. [31] different DE-tools were tested (baySeq, Cuffdiff 2, 

DESeq, EBSeq, edgeR, limma, NOIseq, and SAMseq), but they did not find any significant differences 

between default normalization methods applied by those tools and the TMM normalization. This could 

because of the probable performance of the normalization phase which is strictly dependent on the 

characteristics of the dataset. 

 

Table 3. Overview of Methods for Differential Expression Analysis, on Alphabetical Order 

Tool Normalization Distribution 

assumptions 

Model based 

statistic 

Multifactor Absence of 

replicates 

Isoforms 

detection 

baySeq [32] Quantile (TMM, 

total) 

NB Empirical Bayes    

Cuffdiff2[33] DESeq like  
(quartile, fpkm) 

Beta NB t-test    

DESeq [23] DESeq Scaling Factor NB* Exact test    

DESeq2[34] DESeq Scaling Factor NB GLM    

edgeR[35] TMM (upper 

quantile, DESeq like) 

NB Exact test    

Limma [36] TMM Voom 

transformation 
Empirical Bayes    

NOISeq[37] RPKM 

(TMM,Upperquartile) 
Non 

parametric 
Null condition 

computed as 

contrast of fold 

changes and 

absolute difference 

within condition 

   

SAMSeq [38] SamSeq Method Non 

parametric 

Wilcoxon Rank + 

resempling 

   

*NB = Negative Binomial, GLM= General Linear Model 

 

2.3. Tools for Differential Expression Analysis 

With the increase of popularity of RNA-Seq studies, a lot of statistic tools for the detection of differential 

expression of genes and transcripts have been developed. The tools that are shown in Table 3 differ in 

normalization method, the statistic assumptions of the count distribution, and the statistic test to detect the 

DE genes. The details of each method can be found in the publications of the presented methods.  

Numerous papers tried to compare the DE tools using both real and simulated data sets. However, the 

results are not completely in agreement with the performance of the tools associated with the properties of 

the dataset (e.g. number of samples, replicates, and heterogeneity of the dataset). There is no particular 

method that performs better when compared with each other, as some methods have certain strengths 

when used with definite datasets [39], [40]. On the other hand, the non-parametric methods NOISeq and 

SAMSeq showed opposite performance. NOISeq performs well when the two conditions in the dataset have 

different dispersion [39]. While it has a good control of the false discovery rate, it becomes too conservative 

with higher number of replicates [31]. On the contrary, SAMSeq performs well in terms of precision even as 

it needs more replicates to achieve a good power of detection [31], [39]. Above all, it is strictly dependent on 

the data in terms of performances [31]. In almost all the studies, the performances of DESeq, edgeR and 

BaySeq resulted to be similar in terms of accuracy, control of the number of false positives and the 

sensitivity [40]-[42]. Limma and DESeq showed to work well even with small sample sizes, whereby they 
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showed a low rate of false positives and decent power of detection. DESeq is found to be the most 

conservative while Limma performs well under different conditions maintaining consistency of the results 

and EdgeR is less conservative with a higher power of detection, but performs less consistent under 

different conditions [31], [39]. BaySeq showed good performances in different cases but is strongly 

dependent on the dataset structure [31], [39]. Cuffdiff2 was found to have a high precision with a 

significantly low number of false positives; however, it has a lower power of detection at gene level 

especially with a higher number of replicates [31], [40]. However, one of the main advantages of Cuffdiff2 is 

the possibility to compute expression changes at gene and at transcripts level, addressing both the 

estimation of expression values at gene and isoform level and considering the variability across replicates in 

the same pipeline. DESeq2 resulted to be more powerful but less precise (higher number of false positive) 

when compared to DESeq [31]. 

In our opinion, there are couples of parameters when considering the choice of appropriate tool. Firstly, 

perform multifactor analysis in case of a complex experimental design. Secondly, perform a DE analysis with 

no replicates. Even though the presence of at least three biological replicates (in dataset with minimal 

genetic end environmental variation) is of vital importance for a DE experiment using RNA-Seq data [13], 

this is not always possible due to the experimental limit. In such cases edgeR, DESeq, Noiseq and Cuffdiff2 

allow overcoming this issue. Thirdly, some of the tools (e.g. edgeR , cuffdiff2, NOISeq, and baySeq) allow to 

choose different normalization methods. In our opinion, the possibility to choose between different 

methods in a fast and easy way (i.e. same tool/pipeline) is an essential plus. Fourthly, the presence of a well 

documented manual with clear description of the statistical assumption, filter, and data manipulation is also 

a very important entity in considering an ideal tool [31]. This can be seen in the manuals of DESeq, edgeR 

and Limma with practical examples provided for end-user. Finally, the possibility to check for normalization 

problems and other confounding factors could support good statistics analysis. NOISeq performs a quality 

control of the data to test the normalization outcome which could affect the statistical analysis with an easy 

interpretable and visual output. 

3. Systems Genetics 

Unraveling the genetic background of complex traits and diseases is a complicated task because of its 

multifactorial nature. To date, a huge number of Genome-Wide Association studies (GWAS) have been 

performed to detect associations between genetic variants and diseases, but their main limitation is a 

failure to explain a large proportion of the total genetic variation present in complex traits and diseases. 

Besides, several micro-array gene expression studies have investigated the transcriptome and explained 

more of the biological background by pointing towards associated pathways and the inclusion of genetic 

interactions. During the last few years, technologies to study the different omics scales (e.g. genomics and 

transcriptomics) have improved dramatically, resulting in the generation of huge amounts of NGS data. As 

introduced, “systems genetics” integrates omics scale measurements in a holistic analyses model to unravel 

the genetic and corresponding biological background of complex traits and diseases [6]. This means that all 

the different biological levels are to be integrated including the phenome, genome, epi-genome, 

transcriptome, proteome and metabolome to fully understand the disease or trait. Current technologies 

provide us the opportunity to get a highly accurate measurement of each layer. As a result, a more complete 

picture of the biological and genetic pathways leading to understanding particular complex diseases is 

obtained.  

3.1. Pathway Analyses  

Pathway analyses are originating from the micro-array gene expression analysis [43], whereby prior 

biological knowledge is used to identify the functional annotation of groups of genes and corresponding 
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pathways with the goal to gain more biological insight into the disease/trait under the study. There are 

some differences between micro-array expression data and RNA-Seq expression data (e.g. normal 

distribution vs. NB distribution)with specific RNA-Seq tools for pathway analysis.  

One of the biases in RNA-Seq data is the gene length bias, which means that longer genes have a higher 

chance of being sequenced more often thereby lead to higher counts. Consequently, those genes have also a 

higher change of being detected as “differentially expressed” due to a higher statistical power [44]. GO-Seq 

is an R-Bioconductor package that performs gene ontology analysis on differentially expressed genes 

including a correction for the gene length bias [45]. GO-Seq inputs a list of DE genes and the complete set of 

genes (background), incorporates the transcript length of the DE genes into the statistical tests and gives 

the significance level of KEGG pathways or GO terms present as output. Another recently published method 

for pathway analysis using RNA-Seq data is GSAASeqSP/GSAASeqGP [46], which implements both 

sample/phenotype permutation and gene permutation (recommended with sample sizes above seven per 

phenotype) and GSAASeqGP only gene permutation. GSAASeq is a part of the GSAA software suit that is 

freely available for non-commercial use and can be downloaded upon registration. Whereas GSAASeq 

requires RNA-Seq data from two distinct phenotypic groups (e.g. case-control), it detects differentially 

expressed genes using Signal2Noise_log2Ratio and further calculates gene set statistics using 

WeightedSigRatio or SigRatio. Other options within the GSAA software suit have not been evaluated yet for 

RNA-Seq datasets. Besides those RNA-Seq specific pathway analysis tools, there are many other publically 

available tools available like DAVID [47], GOEAST [48] and GSEA [49]. In addition, several commercial 

software suits offer pathway analysis based on RNA-Seq specificity. 

3.2. Network Analyses 

It is well known that genetic interactions play a major role in biology and it is expected that by 

investigating them, we may reveal important knowledge about the genetic and biological architecture of 

diseases. One of the ways to study such interactions is using a network analysis approach. Network 

approaches focus on the clustering of genes instead of the individual genetic variant, with the main 

credence that genes in those clusters are someway functionally related to each other [50]. Consequently, 

gene networks might provide a better understanding of the pathways where genes are ranked, for example, 

based on their regulating function in a cellular event. Gene networks are often graphically represented with 

genes presented as nodes and their association as edges, with edges directed or undirected. The degree 

(also called “connectivity”) of a particular node is the sum of connections or connection strengths with 

other nodes and the distribution of this degree represents the probability that a particular node has a 

certain number of connected nodes. In biology, networks are mostly scale-free, meaning that the degree 

distribution follows a power-law [51]. Further a scale-free biological network consists of a very few genes 

with a high degree (also called hubgenes) and a very large number of genes with a low degree. Hub genes 

are biologically very essential and even important as it has been shown that a problem in a hub gene causes 

breakdown of the network [52]. 

There are several approaches available to build gene networks and study the interactions between genes, 

viz. Co-expression/regulatory patterns [53], Bayesian networks [54] or Random Forest Tree approaches [55] 

or Artificial Neural Networks (ANN) [56]. Those different network methods might lead to different results, 

however, it has been shown that there is no specific method better than others and the integration of 

different network methods could provide a more complete picture of the interactions present in the dataset 

[57]. 

3.2.1. Co-expression network approaches 

Gene co-expression networks calculate the interaction between pairs of genes based on the correlation 
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between the expression patterns of those pairs of genes. One of the well-known methods is Weighted Gene 

Co-expression Network Analysis (WGCNA) which calculates the Pearson’s correlation between all genes 

based on the sum of correlations of a particular gene with all other genes [53], [58]. The clusters of genes 

are detected based on the Topological Overlap Measure (TOM), which represents the number of shared 

neighbors between a pair of genes as a value between 0 and 1, representing no shared neighbors and same 

neighbors between the two genes respectively. Based on the TOM, a gene dendrogram is created and 

clusters of genes (modules) are detected by cutting the branches of the dendrogram. The key drivers of the 

modules are based on the phenotype(s) of interest and intra-modular characteristics. Previously, we have 

applied this method successfully on RNA-Seq data in a pig model for human obesity [3]. 

3.2.2. Regulatory network approaches 

There are a wide range of biological processes effectively used as regulatory molecules. Right from the 

PPI models used as regulatory models to the existing class of ncRNAs, there has been a great attention and 

focus on how regulatory networks modulate their role through interactions. Characterizing transcript 

structures and understanding expression profiles mediating regulatory roles have relatively come up with 

the ENCODE project [59]. However, very little on how the lncRNAs regulate interactions between noncoding 

RNA classes is known. Recent reports hypothesized how lncRNAs contribute towards regulatory 

interactions with its other non-coding peers like miRNAs [60]. This analysis advocates the use of such 

regulatory interactions between classes of ncRNAs classes and their functional implication. 

3.2.3. Bayesian network approaches 

Bayesian network (BN) approach is another way to model RNA-Seq expression data to find relationships 

among genes without previous biological assumptions. From a mathematical point of view, a BN is used to 

represent a joint probability distribution of random variables. Additionally, BN uses directed acyclic graph 

where the vertices are a set of random variables and their edges being conditional dependencies. Different 

methods are used during the learning, evaluation and inference phase such as Gibbs sampler that allows 

approximating from a specified multivariate probability distribution. One of the major advantages of the BN 

is that it allows distinguishing direct and undirected associations. This together can be used to integrate 

genetic data with gene expression data further allowing us to identify causality [5], [61]. In conclusion, the 

BN provides a deep insight into the biological mechanism of a biological process. Between BN and Lemon 

Tree, a Gibbs sample based algorithm is often used to find clusters of genes based on their co-expression 

values and the genes that play a regulatory role in each module [62]. The tool is a platform independent 

command line in Java and is a structured modular program that runs singularly where the output of the 

previous task is the input of the following one. Concisely, the first task in Lemon Tree runs instances of a 

model as Gibbs sampler infers co-expression modules and condition clusters within module. Further the 

different module structures obtained with different runs of the first task are used to build a consensus set of 

modules considering the frequency of each pair of nodes in the same cluster. Finally, a set of regulatory 

programs for a set of modules are computed with the computation of decision trees, the score is then 

assigned considering the number of trees in which the regulator is allocated, a significance level is then 

computed using an empirical distribution of scores. 

3.2.4. Random forest tree approaches 

Large-scale genomic data heralds a great challenge for statisticians and bioinformaticians owing to the 

high aspects of genomic features the data is compounded with. The approaches discussed above may have a 

highly correlated structured genomic data and less order of gene or protein interactions. Although a good 

number of learning methods could be used to understand how networks fit to understand the variables in 
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the interactions, they fall short of accurate data mining. Brieman L in 2001 proposed one such collective 

learning method called Random Forest Tree, which can be widely applied to predict the nearest neighbors 

[55]. Random Forest Tree algorithm ranks genes, which can be further used for unsupervised learning 

(/clustering), using large data sets which the data need not follow any specific distribution [63]. By this way, 

another approach is offered to gain knowledge in understanding expression data. 

3.2.5. Artificial neural networks 

Artificial Neural Networks (ANN) is a method of artificial intelligence based on human brain functionality 

[56]. ANNs are nonlinear pattern recognition techniques that can be used as a tool in medical decision 

making. An ANN basic design consists of three cycles, learning, testing and decision making. A learning 

strategy is applied to change the weights in order to optimize the error. ANNs recognizes patterns in the 

data from a known dataset called the training data and the main goal of the network is to make predictions 

on novel inputs called the test data. During learning cycle, a function is optimized to maximize the capture 

of positives and rejection the negative data points. In the iterations over a number of cycles called “epochs”, 

every data point in training data is fed to the ANN one after the other. The error in prediction is calculated 

and weights are updated [64]. A particular type of ANN called Recurrent Neural Network (RNN) has been 

developed to find out gene regulatory networks in time series RNA expression data [65], [66], wherein 

positive and negative feedback loops are considered on the internal states. The RNNs have significant 

characteristics to make it computationally feasible (e.g. resistance to noise and non-linearity [67]) in 

analyzing RNA-Seq data in combination with other clustering approaches [68]. 

3.3. Data Integration 

As mentioned, systems genetics approaches are based on the integration of different ‘omics data levels. 

One such way is the integration of genomics and transcriptomics by detecting expression QTLs (eQTLs). An 

eQTL is a genomic region associated with transcript levels, which subsequently affects the phenotype. It has 

been shown that eQTLs are highly heritable [69] and they might provide more information on the biological 

control of gene expression [70], but also provide more knowledge about the function of a genetic variant for 

example detected using a GWAS. The eQTLs can be cis or trans-acting, in the case of a cis-eQTL, the eQTL is 

near the location of the gene encoding the transcript, i.e. closed to the transcription start site (TSS) while in 

case of a trans-eQTL the eQTL is on a larger distance or even on another chromosome of the gene encoding 

the transcript. Cis-eQTLs have generally large effect sizes, but their effect size generally increases when the 

distance between the eSNP and the TSS increases. The exact working mechanism behind the trans-eQTL is 

not known, but often effect sizes are small. However, studies have shown that trans-eQTLs provide valuable 

insight into disease pathogenesis. Using the same approach as with eQTL mapping, we can also integrate 

the metabolome with the genome: metabolomic QTL (mQTL) mapping [71]. The metabolome includes all 

measurable metabolites in a cell, such as lipids, carbohydrates and amino acids. It has been shown that 

genetic variants (detected by e.g. GWAS) have a major effect on the metabolome [72] and therefore mQTL 

mapping might help identify genetic variants affecting the phenome on the metabolome. 

Another way of integrating different omics data levels is using public available datasets. Here, we can 

think of the well-known pathway analysis using databases of gene ontology and pathways to indicate the 

biological background of findings while including a different ‘omics data levels such as PPI in predicting the 

function of associated genes. While STRING, a database with known and predicted protein associations and 

interactions is used to automatically mine and find association of genes [73], GeneMANIA, a cytoscape 

web-based tool is used to interpret the network weights based on size of input gene list [74]. This in-turn is 

based on Gene-Ontology (GO) based weighting, which assumes the set of genes have a biological processes 

as defined by GO. 
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In the recent, long noncoding RNAs (lncRNAs) constituting transcriptomic data have been employed to 

ascertain their functional relationship. Studies on functional characterization of lncRNAs have resulted in 

interaction data with their RNA peers, DNA or proteins [75]. There have been no significant pipelines to 

address the coexpression networks regulating the coding-noncoding genes. However, by and large, 

annotated lncRNA data could be used to construct a co-expression network based on existing gene 

expression profiles specific to various diseases, viz. cancers, diabetes and autoimmune disorders. Zhao et al. 

have recently established such functional annotation pipeline allowing the researchers to predict the 

function of lncRNAs [76]. Although the methods employ hub-based and model-based networks as discussed 

above, it would be interesting to see how the data could be used to predict the better association of lncRNAs 

with existing coding genes. Whether or not other models such as BN could appropriately be used remains to 

be understood. Keeping in view of the larger diversity of function of lncRNAs, explosive growth in functional 

relationships of lncRNAs specific to diseases can be categorically approached. From the aforementioned 

network approaches, it would be interesting to see a comparative functional genomics approach to 

distinguish non-coding regions from protein coding regions. Finding potential archetypes for lncRNAs that 

are involved in disease genotypes modulating genotype-phenotype data could be interesting as a part of 

RNA-seq studies. It would be remarkable to see if RNA-Seq data has some questions answered on 

evolutionary existence of ncRNAs. If the data has lncRNAs, we can explore the possible role or lncRNAs in 

diseases thus enabling lncRNAs serve as a metaphor to RNA-Seq data. 

4. Applications of Systems Genetics in Animals 

As RNA-Sequencing is getting more and more popular with decreased costs and time, the number of 

animal-based studies using RNA-Seq data are increasing. We recently published our first study using 

RNA-Seq data in a porcine model for human obesity using a network approach [77]. The porcine model 

used was an F2-population, created by crossing the Gӧttingen Minipig (prone to obesity) with Duroc and 

Yorkshire sows (bred for centuries for lean meat content). The resulting ~500 F2-pigs were all deeply 

phenotyped and genotyped using the Illumina 60K Porcine SNP-chip. The degree of obesity of each 

individual pig was represented by the Obesity Index (OI), an aggregate genotypic value, and used for 

selection of 36 animals from the resource population for RNA-Sequencing of subcutaneous adipose tissue. A 

gene co-expression network was constructed using the WGCNA approach, whereby we detected in total 20 

modules of highly interconnected genes. Based on their association with obesity-related phenotypes, we 

selected five modules for functional annotation using GO-Seq to correct for gene length bias. The 

biologically most interesting module was the Blue Module, consisting of 69 genes, showing an 

over-expression in the obese individuals. Functional annotation showed a strong association for 

immune-related pathways (e.g. Natural Killer Cell Mediated Cytotoxity and B cell receptor signaling pathway), 

but interestingly, the strongest association was found for “Osteoclast differentiation” (P-value = 1.4E-7). To 

find potential causal genes in this module, we used a Bayesian approach using the Lemon-Tree software suit. 

Lemon-Tree detected three regulator genes: CCR1, MSR1 and SPI1. Interestingly, those three genes have all 

been individually associated already with bone remodeling, e.g. in mice studies. Based on our results, we 

suggest a potential causal role for those genes in the association between obesity and osteoporosis possibly 

via the immune system. We inferred systems genetics approaches in detecting novel genes and pathways 

better insight in understanding complex traits and diseases. 

5. Conclusions 

In this review, we have shown the potential of using RNA-Seq data in systems genetics approaches to 

study complex traits and diseases. The possibility to obtain a huge amount of transcriptomics and genomic 
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data became faster and cheaper, thanks to the expansion of NGS techniques. This huge amount of data has a 

great potential in studying the causal genetic and other biological processes through the integration of 

‘omics data coming from multiple biological levels. 

Several studies have shown that RNA-Seq data from high throughput techniques needs a prerequisite 

quality control of the aligned data, and the choice of the analytical methods could have a great impact on the 

reliability of the final results. We have presented several post-mapping QC tools, which result in different 

type of statistics. In order to generate a complete report of the quality of the reads, we propose that the 

output of multiple tools should be merged together before proceeding to the analysis. For instance, we have 

discussed how QUACRS allows to do such tasks in an easy interpretable way for users with less informatics 

skills.The normalization can also have a strong impact on the final outcome, influencing the results of both 

the DE analysis and any other systems genetics approach. The choice, however, could be based on the final 

objective, as some of the normalization methods are necessary when aimed to rank the genes “within 

samples”, while others are more effective when a “between samples” comparison is performed. In the last 

case, the TMM and DESeq scaling factor was found to have best performances allowing accurate sequencing 

depth when considering the highly expressed genes in the dataset. 

Continuing with the analysis of RNA-Seq data, we further reviewed several tools for DE analysis and 

systems genetics analyses, e.g. network methods. In particular the outcomes and the performances of the 

DE tools seemed to be dependent on the dataset structure and characteristics. Some of the tools showed a 

consistency in the precision of the results across different datasets (Limma and DESeq), but the possibility 

to test and compare different tools with the real dataset under question still seems to be the best option. In 

general, system genetics approaches give the opportunity to get a deeper insight into the biological and 

genetic architecture of complex traits and diseases. Using network methods and pathway analysis, we gain 

insight in biological processes, but also due to data integration, we get a better overview of the biological 

systems leading to diseases. In principle, we expect to have a paradigm shift of RNA-Seq data with the 

impending list of ncRNAs (in specific, lncRNAs) integrating genomics and transcriptomics. 
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