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Abstract: A model-driven approach suitable for classifying microbiome-related morbidities such as 

ulcerative colitis on smart mobile devices is investigated in this manuscript. A novel scheme is proposed, 

which consists of a pre-trained image classifier on ImageNet and is deployed into the presented Android 

mobile application for this purpose. Endoscopic images of mouse colitis were used as input datasets for our 

experiments. The proposed approach offers an efficient classifier, based on the average of all its performance 

metrics: confusion matrix, accuracy, recall, precision, cross entropy, f1-score. The results are compared with 

these of the most representative image classifiers for the kind of classification we target, in terms of 

performance, as well as the size of the retrained frozen graph on our dataset. Such a classification could serve 

as a valuable tool in clinical medicine offering an automated, diagnostic tool for microbiome-related 

morbidities, thus allowing accurate early diagnosis and the design of personalized and targeted therapeutic 

approaches. 
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1. Introduction

Machine Learning (ML) and Convolutional Neural Networks (CNN) perform automatic feature extraction

and pattern recognition, based on existing prior knowledge. These methods provide a simple and efficient 

approach, compared to the traditional image classification methods [1]. In the method of Transfer Learning 

(TL) [2], the CNNs, pre-trained on different data types, preserve the learned features in network structures 

and weights by freezing a tensorflow graph (protocol buffer .pb) [3]. The last layer is trained on the new 

dataset, building an accurate classifier, using much less data, without High Performance Computing (HPC), 

requirements. 

TL is widely used for CNNs to classify images with high accuracy and achieve high pattern recognition, also 

in medicine. Such examples include the pre-trained architecture InceptionV3 on the ImageNet dataset [2], 

which achieves 70.1% accuracy on the CIFAR dataset. Skin cancer detection and classification of images with 
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skin cells is done with 99.77% accuracy in [4]. Liver cancer trait classification on smart mobile devices is 

done with accuracy of ~82% [5]. In [6], the classification of gastric infections achieves 90% prediction 

accuracy. Classification of colorectal diseases is achieved in [7] with a F1-score of 0.93 for the colorectal 

dataset and 0.88 for KVASIR dataset. Classification of ulcerative colitis severity is elaborated in [8] using 

endoscopic videos as input dataset.   

Ulcerative colitis (UC) is an Inflammatory bowel disease (IBD), which causes irritation, inflammation and 

ulceration in the lining of the large intestine (colon). These disease notes are increasing worldwide [9]. 

White blood cells attack the lining of the colon and cause the inflammation and ulcers. The risk for suffering from 

ulcerative colitis and other morbidities is affected by age, genetics, environmental factors and changes in normal 

gut bacteria [10], [11]. Importantly, changes in the microbiome have been associated with the manifestation of UC, 

as well as other morbidities [12], [13]. Specifically, the host microbiome may be influenced by diet and medication, 

and may even be subject to diurnal oscillation, all leading to changes that may in turn interfere with cytokine 

expression patterns [14]-[17]. Cytokine expression has been shown to be dysregulated by specific factors 

attributed to the microbiome and associated by-products. Under these circumstances, these factors may 

contribute to the development of chronic inflammation, autoimmunity and disease severity by enhancing the 

expression of specific cytokines [18]. Targeting the microbiome represents a therapeutic approach for these 

inflammatory diseases [19].  

In this work, our goal is to develop an efficient and accurate personalized diagnostic tool for microbiome-

related morbidities such as ulcerative colitis. An image classification of colitis, according to the detected type 

of microbiome (J or Y) and the grade of colitis (severity) is developed. The input dataset consists of colon 

endoscopy images of mice. The proposed classifier is targeted to smart mobile devices that report the 

predicted label and confidence value for each predicted colitis microbiome category. In this paper, the TL 

approach and the open source image classifier models MobileNetV1 and InceptionV3 from Google [19], pre-

trained on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset [20] in high computing 

machines, are used. The performance of the MV1-LCCP scheme, proposed in [5], is compared with both 

MobileNetV1 and InceptionV3 on our dataset of mouse colitis images. The structure of this paper is as follows. 

The material and the proposed model-driven approach are presented in Section 2. Results and comparisons 

are given in Section 3 and conclusions are discussed in Section 4. 

2. Materials and Proposed Scheme 

2.1. Dataset—Data Collection 

The following mouse experiments were performed to obtain the dataset, used in this study. Firstly, fecal 

transplantation was performed to engraft the mice with different microbiome (J and Y microbiome). 

Specifically, a fresh fecal microbiota transplant (FMT) was prepared by harvesting the cecal and colon 

contents from normal healthy mice with different microbiome (J and Y). The contents were then resuspended 

in sterile buffer and the mice received 200 μl FMT orally using gavage needle.  

After 3-4 weeks, the colitis score was evaluated by endoscopy. The mice were bred and housed under 

specific pathogen-free conditions in the animal facility of the University Medical Center Hamburg-Eppendorf. 

Age- and sex-matched littermates from 8 to 16 weeks of age were used. Animal experiments were performed  

in accordance with the Institutional Review Board “Behörde für Soziales, Familie, Gesundheit und 

Verbraucherschutz” (Hamburg, Germany). 

2.2. Classification and Prediction Score 

All protocol buffers (python), trained models, which were generated in this work, were deployed on our 

android application “Colitis Classification” (java). The steps of the proposed scheme are in Fig. 1.  
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Fig. 1. Data processing, feature extraction, classification and prediction phases in the proposed model-

driven approach. 

 

Input: The dataset, described in Section 2.1, was used as input in our model-driven approach and was split 

into 3 subsets: training (80%), validation (10%) and testing (10%). Cropping, padding, horizontal flipping 

and rescaling were applied to fit the pre-trained model architecture. Training results were evaluated on 50 

images (batch size) at a time.   

Convolutional Base (Feature Extraction): Feature values were extracted from the input dataset using 

the MV1-LCCP architecture [5]. Google’s TL approach and open-source lightweight image classifier 

MobilenetV1 (size 0.5 at 224 pixels input image size), pre-trained on the ImageNet dataset in very fast 

machines, was used along with two additional fully connected dense layers before the softmax layer, to 

achieve better performance and accuracy in prediction (dashed blue area in Fig. 2), while providing a 

reasonable size of the generated retrained graph for smart mobile devices. More specifically, MobileNetV1 

converted the standard convolution to a deep convolution in depth (detailed in Fig. 1). At each of these layers, 

batch normalization and dropout were applied. Then, the final layer was trained on our colitis dataset and 

the newly trained graph, frozen as a protobuff (.pb) was generated.  

 

 
Fig. 2. The proposed Convolutional Base Network Structure. Conv: convolutional layer, DWConv: Depthwise 

Convolution, PConv: Pointwise Convolution, f_3x3: number of filters for 3x3 conv, f_1x1: number of filters 

for 1x1 conv, R:ReLU, B: Batch normalization, D: Dropout. 

 

Prediction: The proposed architecture is able to predict the type of the mouse microbiome (Y or J), as well 

as the grade of colitis (low: when the total score is <=3.5, high: when the total score is >3.5, on a scale from 0 

to 10). In particular, the prediction of the type of microbiome is of great importance, since this feature allows 

an early diagnosis of microbiome-related morbidities and thus a potentially timely selection of 
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corresponding targeted therapeutic approaches. Classes of prediction: [A] predict whether the grade of 

colitis is low or high if the mice have the microbiome Y, [B] predict whether the grade of colitis is low or high 

if the mice have the microbiome J, [C] predict whether the grade of colitis is low or high and whether the 

microbiome is Y or J (combination of cases A and B).  

Deployment of the newly trained model on smart mobile devices: The generated newly trained model 

of the classifier was deployed on our “Colitis Classification” application (Fig. 3). A physician can use scanned 

endoscopic images of colitis on a mobile device and then, the predicted microbiome and colitis grade 

designation, as well as the confidence score for each predicted category are displayed on the screen. 

 

 
Fig. 3. The GUI of our mobile application for predicting the microbiome of the scanned image, as well as the 

grade of colitis. 

 

3. Evaluation and Experiment Results  

3.1. Metrics 

In this manuscript, the proposed model-driven approach, using the MV1-LCCP, is evaluated and 

particularly, if both the type of microbiome and the grade of colitis are detected, by calculating a variety of 

metrics: confusion matrix, accuracy, cross-entropy, precision, recall, f1-score [21].  

3.2. Experiment Steps and Methods 

• Endoscopic images of mice with two different types of microbiome (J and Y) were used and the grade of 

colitis was recorded. 

• 129 images of mice with Microbiome-J and 120 images with Microbiome-Y were fed as input in our model-

driven approach (Section 2.2).  

3.3. Results 

The most representative pre-trained open-source architectures of Inceptionv3 [20] and MobileNetv1 [20], 

which are suitable for mobile applications, were compared with MV1-LCCP [5] on our dataset, consisting of 

mouse colitis images with different types of microbiome. Their performance in predicting [A] the grade of 

colitis in the case that the mice have the microbiome Y in Fig. 4, [B] the grade of colitis in the case that the 

mice have the microbiome J in Fig. 5, [C] the grade of colitis (low or high) and the type of microbiome (Y or J) 

in Fig. 6, was evaluated, using a variety of metrics (Section 3.1) and is depicted below in Tables 1, 2 and 3. 
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Table 1. Performance Case [A] 

Architecture Image 

Size 

Accuracy 

% 

Cross 

Entropy 
Precision Recall F1-score .pb Size 

(ΜΒ) 

Inception V3 299 77.8 0.45 0.87 0.82 0.84 72.5 

MobileNetV1 224_0.50 66.7 9.47 0.76 0.57 0.65 17.0 

MV1-LCCP 224_0.50 88.9 6.07 0.85 0.75 0.78 7.7 

 

Table 2. Performance Case [B] 

Architecture  Image 

Size 

Accuracy 

% 

Cross 

Entropy 
Precision Recall F1-score .pb Size 

(ΜΒ) 

Inception V3 299 62.5 0.55 0.62 0.56 0.59 72.1  

MobileNetV1 224_0.50 37.5 12.83 0.51 0.49 0.50 16.9  

MV1-LCCP 224_0.50 75 5.81 0.73 0.52 0.61 7.7  

 
Table 3. Performance Case [C] 

Architecture Image 

Size 

Accuracy 

% 

Cross 

Entropy 
Precision Recall F1-score .pb Size 

(ΜΒ) 

Inception V3 299 63.2 0.46 0.61 0.37 0.46 77.7 

MobileNetV1 224_0.50 52.6 2.96 0.57 0.29 0.38 21.0 

MV1-LCCP 224_0.50 73.7 1.47 0.58 0.40 0.47 10.7 

 
According to the recorded values, the performance in predicting the grade of colitis is better in the case of 

the mice with microbiome Y. This is explained by the fact that the colitis is more intense in this case, so that 

each model can predict in a higher performance on average of all the values of the metrics. The model-driven 

scheme MV1-LCCP is deemed a more efficient classifier in both cases [A] and [B] in total, taking into account 

that the goal is to acquire a small-in-size trained model, which is suitable for deployment on mobile devices, 

and simultaneously, capable of predicting the type of microbiome as well as the grade of the associated 

morbidity (colitis, in this work).  

 

 
Fig. 4. Case [A]: Performance evaluation on our dataset of mice with the microbiome Y (129 images). 

Accuracy (row 1), cross-entropy (row 2) over the period in steps. Training period in orange, validation 

period in blue. The values are smoothened by the margin of 0.4, real values are shadowed in fainter color. X-

axis: steps in steps; Y-axis: accuracy (row 1), cross-entropy (row 2). Confusion matrix for each architecture 

(row 3). Colitis grade: high (> 3.5) or low (<=3.5). Training steps=100, learning rate=0.01, evaluation 

step=2. 
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This means that our proposal can detect and recognize the grade of colitis with a higher accuracy and 

precision, even compared with InceptionV3. This is also proved by looking at the confusion matrices (dark 

green signifies higher probability of the predicted label to be identical with the actual one). The scale of 

probability in which the predicted label is identical with the actual one is from 1 to 0 (dark green=1, blue= <1 

and >0, white/grey=0). At this stage, it is of great interest to evaluate the performance when attempting to 

predict the type of microbiome together with the corresponding grade of colitis. Prediction of the type of 

microbiome facilitates an early diagnosis of disease manifestation. 

 
Fig. 5. Case [B]: Performance evaluation on our dataset with mice with the microbiome J (120 images). 

Accuracy (row 1), cross-entropy (row 2) over the period in steps. Training period in orange, validation 

period in blue. The values are smoothened by the margin of 0.4, real values are shadowed in fainter color. X-

axis: steps in steps; Y-axis: accuracy (row 1), cross-entropy (row 2). Confusion matrix for each architecture 

(row 3). Colitis grade: high (> 3.5) or low (<=3.5). Training steps=100, learning rate=0.01, evaluation 

step=2. 

 
Fig. 6. Case [C]: Performance evaluation on our dataset with mice with the microbiome Y (129 images) or 

the microbiome J (120 images). Accuracy (row 1), cross-entropy (row 2) over the period in steps. Training 

period in orange, validation period in blue. The values are smoothened by the margin of 0.72, real values 

are shadowed in fainter color. X-axis: steps in steps; Y-axis: accuracy (row 1), cross-entropy (row 2). 

Confusion matrix for each architecture (row 3). Colitis grade: high (> 3.5) or low (<=3.5). Training 

steps=1000, learning rate=0.01, evaluation step=10. 
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The results in the case [C] clearly show that, when the dissimilarities in the grade of colitis, as in the case 

of mice with the microbiome J are not remarkable, it is more difficult for all models of classifiers to correctly 

predict the grade of colitis, especially using the models InceptionV3 and MV1-LCCP. Additionally, it is difficult 

to distinguish the type of microbiome (J or Y) when the grade of colitis is high.   

4. Conclusions 

We show here that the proposed model-driven approach serves as an efficient classifier on our new dataset, 

consisting of images of colitis in mice. The following types of prediction are feasible: [A] prediction of the 

grade of colitis of mice with the microbiome Y, [B] prediction of the grade of colitis of mice with the 

microbiome J, and [C] the prediction of the grade of colitis in both cases [A] and [B]. The performance of all 

CNN models was evaluated in a variety of metrics that allow us to have a complete overview of all sites.  

It is worth mentioning that the compact MV1-LCCP is able to achieve quite high accuracy, precision and 

good f-score, as well as to generate a trained final protocol buffer (.pb) with a suitable size for smart mobile 

applications compared to other models. Therefore, with the proposed model-driven approach, a scientist can 

obtain the grade of colitis of a mouse by scanning an image through a smart mobile device, which directly 

reports the corresponding type of microbiome. Future work should focus on collecting many more cases of 

microbiome-related morbidities in mice and humans in order to optimize MV1-LCCP or alternatives to more 

accurately predict disease severity (low, medium, high) and microbiome alteration with the goal of 

implementing such an approach in the clinical, diagnostic and research practice. 
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