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Abstract: Trajectory inference has been used to model cellular dynamic processes by using single-cell RNA 

sequence data. The inference often computes pseudotime representing the progression through the process 

along the trajectory. Several methods to infer gene regulatory networks have been proposed using the gene 

expression profiles of the cells ordered with the pseudotime to elucidate the regulatory relationships 

between genes in a dynamic process. In this paper, we propose a novel method for the inference of such gene 

regulatory networks. To predict highly accurate gene regulatory relationships in the network, we introduce 

an edge-scoring scheme with bootstrap sampling. We demonstrate the accuracy of the proposed methods by 

comparing the results with those of existing methods using synthetic and real single-cell RNA-seq data. 

 
Key words: Gene regulatory network, information criterion, pseudotime analysis, single cell RNA 
transcriptome.  

 
 

1. Introduction 

Because single-cell RNA sequencing can measure gene expression in individual cells, it has been used to 

elucidate the mechanisms of cellular dynamic processes such as cell differentiation, cell cycle, and stimulus 

response[1], [2]. In some cases, such dynamic processes can be modeled as cellular trajectories when cells 

are classified based on their gene expression profiles. Trajectory inference is often used as a method to 

represent this dynamic process. In this method, the progression of a dynamic process can be represented as 

a continuous path, on which cells are placed. The pseudotime is defined as the degree of progression of the 

process. In this paper, we focus on a cell differentiation process. 

Several methods have been proposed for modeling cellular dynamic processes as trajectory inference 

methods such as Monocle [3], Slingshot [4], and Scanpy [5]. These methods often express the cell states in a 

process as clusters of cells and explore the trajectory that has the highest score from possible alternatives. 

Among those methods, Scanpy computes the confidence of each edge between clusters in the trajectory as 

connectivity. The connectivity score is useful to evaluate the inferred trajectory. However, Scanpy does not 

compute the pseudotime of cells along the lineages in the trajectory but only calculates it at the edges 

between clusters. On the other hand, Slingshot computes the pseudotime of all the cells along each lineage in 

the trajectory. Since we need to obtain time-series gene-expression profiles for inferring gene regulatory 

networks along each lineage, we propose a method that combines Scanpy and Slingshot. 

Pratapa et al. present a systematic evaluation of 12 existing methods for inferring gene regulatory networks 

from well-defined benchmark datasets [6]. Among the methods, SINCERITIES shows the best AUPRC (area 

under the precision-recall curve) but the accuracy scores significantly vary depending on the topologies of 
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the gene regulatory networks and also depending on the numbers of the cells [6]. To improve the network 

inference accuracy, we introduce a bootstrap-sampling method to obtain a confidence score for each edge of 

the network by computing the concordance rate among the sampled replicates of gene expression data. 

Using the gene expression data of the cells ordered by their pseudotime, we set the time-point of each cell 

by dividing the pseudotime of the cell by a pre-defined constant and converting it into an integer. The 

expression data having the same time points are regarded as replicates. Then we perform bootstrap sampling 

by extracting one of the replicates from each time-point, infer individual gene regulatory networks from the 

sampled datasets, and compute the confidence score of each regulatory relationship (i.e., each edge of the 

network) from the inferred networks. For the confidence score, we propose a scoring scheme, called edge 

gain, which was originally implemented in SiGN-BN [7] but has been used first time for the edge score in the 

network inference from single-cell RNA-seq data. By using the score, we can assess the reliability of each edge 

of the resulting network. The accuracy of the method is evaluated by comparing the results with an existing 

method, SINCERITIES, using synthetic data and real cell-differentiation data. 

2. Method 

2.1. Outline of the Proposed Method 

This method is divided into three main steps, which are outlined in Fig. 1. As input data, we use the 

expression data of cells sorted by pseudotime. In Step 1, bootstrap sampling is performed N times on this 

data to obtain N datasets. Step 2 is to infer the network, using the dynamic Bayesian network (DBN) model 

with nonparametric analysis by SiGN-BN and the greedy hill-climbing method as a search algorithm. In this 

step, the Bayesian network and nonparametric regression criterion (BNRC) are calculated for each network 

[8]. The better gene-regulatory network that well reflects given gene expression data exhibits a smaller BNRC 

value. 

 

  
Fig. 1. Outline of the proposed method. 
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The bootstrap probability that is the concordance rate of each edge among a set of the inferred networks 

according to the bootstrap-sampled datasets has been used as a confidence score of the edge. However, we 

introduce another scoring scheme, called edge gain. The edge gain is calculated as follows. Let G and S(G) be 

a graph representing a gene-regulatory network and the BNRC score of the graph, respectively. We define the 

contribution of edge e to the network score S(G) as in (1). Since the BNRC score of a network is minimum 

when the network optimally reflects the given gene-expression profile, the gain of an edge becomes maximum 

if the edge maximally contributes to the network score. Our method computes the average value in the 

bootstrap samples as the score for each edge in Step 3. 

 

edge gain(𝑒) = 𝑆(𝐺 − {𝑒}) − 𝑆(𝐺).                           (1) 

 

2.2. Calculation of Pseudotime 

The data of hematopoietic stem cells used in the Scanpy tutorial was imported into a Seurat object, and the 

differentiation lineage of each blood cell was inferred from the graph structure obtained by PAGA (partition-

based graph abstraction), starting from pluripotent progenitor cells [5], [9]. A PAGA graph is obtained by 

connecting each cell cluster with weighted edges to represent the connectivity between the clusters in the 

kNN graph by choosing a suitable low-dimensional representation, e.g., PCA-based representations with 

Euclidean distance [5], [9]. Pseudotime was calculated by Slingshot based on the obtained differentiation 

lineage [4]. Expression plots of neutrophil/monocyte markers were drawn by the plotSmoothers function in 

the tradeSeq package [10].  

2.3. Network Inference 

The synthetic data was generated using BoolODE for three types of network topologies: bifurcating (BF), 

which is the process by which a cell diverges and changes from one initial state to its final two states through 

the mutual repression of two genes; bifurcating converging (BFC), means that a state in which one initial state 

branches into two and then converges to the same state again; and linear long (LL), which is a type in which 

the regulatory relationships of genes are connected in a long straight line [6]. Each network was generated 

with five different patterns of cell numbers: 100, 200, 500, 2000, and 5000. In each condition, 10 networks 

were generated and evaluated as described in [6]. For the actual data, we extracted the expression data of 10 

genes from the network of transcription factors experimentally confirmed in the report of [11] from the 

expression data of cells in the differentiation lineage from pluripotent progenitor cells to monocytes as 

described above. 315 cells in which at least 3 of the 10 genes were expressed. The same time point was 

defined as the number truncated after the decimal point of the pseudotime. Using these data as input, 

network inference was performed using the DBN approach of SiGN-BN, and edge gain was calculated using 

the approach described above. We performed 100 bootstrap sampling for the synthetic data and 1000 

bootstrap sampling for the real data. For each edge of the obtained network, the bootstrap probability, which 

means the probability that a regulated edge appears in the network inferred from multiple data sets 

generated by the bootstrap method, was calculated separately from the proposed method. The results 

obtained by the bootstrap probabilities and SINCERITIES were compared with the proposed method. The 

AUROC (area under the receiver operating characteristic curve) and AUPRC for each method were computed 

with the PRROC package [12], and all graphs were plotted in R. For the network visualization, Cytoscape was 

used. 
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3. Result 

3.1. Accuracy Evaluation Using the Synthetic Networks 

The accuracy evaluation of the proposed method, based on the edge gain, compared with the same network 

inference method based on the bootstrap probability as the edge score using the synthetic network datasets 

is shown in Fig. 2. Fig. 2 shows their accuracy scores according to the evaluation in [6].  

 

 
       (a) LL AUROC                           (b) LL AUPRC 

 
   (c) BF AUROC                              (d) BF AUPRC 

 
     (e) BFC AUROC                             (f) BFC AUPRC 

Fig. 2. Performance of the proposed method and bootstrap-probability scoring method. LL, BF, BFC, AUROC, 

and AUPRC denote linear long, bifurcating, bifurcating converging, the area under the receiver operating 

characteristic curve, and the area under the precision-recall curve, respectively. 

 

In Fig. 2, the AUROC of bootstrap probability ranged from 0.7 to 0.9 for all network topologies, indicating 

that they do not change according to the number of cells. By contrast, the AUPRC of the bootstrap probability 

tends to decrease when the number of cells exceeds 500. On the other hand, the results of our edge-gain-

based method (the proposed method) show that they do not change according to the number of cells in BF 

and BFC, while they tend to decrease when the number of cells exceeded 500 in LL. Overall, the proposed 

method mostly achieves better accuracy than the bootstrap probability results where the number of cells 

increases, typically 5000 and more. 
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Compared with the results of SINCERITIES described in the benchmarking paper [6], although 

SINCERITIES exhibits better accuracy in a part of the cases (the proposed method ranges from 0.6 to 0.7 and 

SINCERITIES is around 0.8 in BF AUROC), the proposed method mostly achieves better or similar accuracy 

than SINCERITIES, especially the proposed method ranges from 0.6 to 0.7 in AUPRC regardless of the network 

topologies and the number of cells as shown in Fig. 2 whereas the AUPRC of SINCERITIES significantly varies 

ranging from 0.1 to 0.7 in LL and from 0.2 to 0.6 in BF and BFC depending on the number of the cells.   

3.2. Gene Regulatory Network Inference Using Real Dataset 

To infer a network from a real single-cell RNA-seq dataset using the proposed method, pseudotime analysis 

was conducted against hematopoietic stem cells data [13]. In the paper [13], to characterize the state of 

myeloid progenitor cells, the mRNA of bone marrow cells were sequenced and separated by flowcytometry 

into the common myeloid progenitors, megakaryocyte/erythrocyte progenitors (MEP), and 

granulocyte/macrophage progenitors (GMP). GMP and MEP differentiate into neutrophils/monocytes and 

erythrocytes, respectively. The gene expression data of the myeloid progenitors were obtained according to 

the Scanpy tutorial. The data were projected into UMAP space and conducted graph abstraction by PAGA as 

described in Section 2.2. The result is shown in Fig. 3(a). Colors mean clusters classified by Louvain in the 

Scanpy tutorial. Due to the character of PAGA as a graph partitioning method, some unnecessary paths were 

shown here. As a result of narrowing down the differentiation lineage to a single path using PAGA connectivity 

as an indicator, we found two major types of paths: one is from the cluster of multipotent progenitors to 

erythrocytes, and the other is to monocytes and neutrophils as shown in Fig. 3(a). 

 

 
   (a) Graph paths in PAGA            (b) Lineages by Slingshot 

Fig. 3. Differentiation lineage of hematopoietic stem cells using PAGA and slingshot. These plots show 

dimensional reduction by UMAP. Each color means cluster by Louvain in Scanpy. 

 

Furthermore, we were able to obtain a clear divergence in the paths to monocytes and neutrophils. This 

path can be represented as a cluster, and by specifying this path, we performed a pseudotime series analysis 

using Slingshot (Fig. 3(b)). We were able to determine the position of the cells in the lineage.  

To demonstrate the validity of this lineage as a monocyte or neutrophil lineage, we examined the 

expression of markers (Fig. 4). Plot color means each lineage. Yellow is monocyte lineage and dark blue is 

neutrophil lineage. Other colors indicate other lineages. The X-axis is pseudotime and Y-axis is the logarithm 

of the expression value. The monocyte markers Irf8 (Fig. 4(a)) and Csf1r (Fig. 4(b)) were upregulated as the 

pseudotime progressed in the monocyte lineage. On the other hand, Cebpe (Fig. 4(c)) and Gfi1 (Fig. 4(d)), 
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pseudotime 

which are important transcription factors in the neutrophil lineage, were also upregulated in the neutrophil 

lineage detected in this study. The pseudotime data obtained using real biological samples for the proposed 

method showed biological validity.  

 

 
Fig. 4. Expression of monocyte and neutrophil markers along with their lineages. These plots were shown 

by plotsmoother function in tradeSeq package. X-axis and Y-axis are pseudotime and expression value, 

respectively. The color of lines indicates the expression of the markers in each lineage (yellow, monocyte; 

navy, neutrophil and green, erythrocyte). 

 

We evaluated the accuracy of the proposed method by using the pseudotime series of cell differentiation 

from pluripotent progenitor cells to monocytes as time-series data for gene regulatory network analysis. 

Reference/Inferred network visualized from Cytoscape is shown in Fig. 5. In Fig.5(b), red edges indicate the 

edges existing in the reference network and their edge widths correspond to the edge gain scores. According 

to the ROC and precision-recall curves (Fig. 6(a) and (b)), the proposed method was highly accurate than 

bootstrap probability or SINCERITIES. The AUC of the ROC curve was 0.593, and the AUC of the PR curve was 

0.563 as shown in Table 1. 
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      (a) Reference network referred to [10].         (b) Inferred network by the proposed method. 

Fig. 5. Reference and Inferred networks of cell differentiation in hematopoietic stem cells. The color of 

edges denotes true positive (red) and false positive (grey). Edge width indicates edge gain scores.  

 

 
    (a) ROC curve                  (b) Precision-recall curve 

Fig. 6. Accuracy of the proposed method, SINCERITIES, and bootstrap probability. 

 

Table 1. Accuracy for Inferring Networks from a Real Dataset 

 
Proposed 

Method 

Bootstrap 

Probability 
SINCERITIES 

AUROC 0.593 0.463 0.469 

AUPR 0.563 0.488 0.405 

 

4. Discussion 

The systematic evaluation of 12 existing methods in the benchmarking paper [6] indicates that the 

accuracy rates of the methods often widely vary from low to high depending on the network topologies, e.g., 

linear long (LL), bifurcating (BF), and bifurcating converging (BFC), and also the number of cells in their 

synthetic datasets. Actually, in SINCERITIES, a highly accurate existing method, the AUPRC rates significantly 

vary from 0.1 to 0.7 in LL and from 0.2 to 0.6 in BF and BFC depending on the number of the cells. By contrast, 

the accurate evaluation of the proposed method showed its AUPRC rates ranged only between 0.6 and 0.7 

regardless of the network topologies and the number of cells. Also in the real dataset for cell differentiation, 

the proposed method achieved higher accurate results than SINCERITIES both in AUROC and AUPRC.  
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However, as shown in Fig. 5(b), the result of the proposed method cannot detect several edges in the 

reference network. Also in Fig. 6(b), the precision rate of the proposed method rapidly decreases according 

to the increase of the recall rate. This suggests that the inferred results of the proposed method may include 

several false positives, i.e., spurious or indirect regulatory relationships. Thus although the accuracy of the 

inference in the proposed method is better than that of the current existing method, the proposed method is 

still required to improve the accuracy of the inference.    

5. Conclusion 

In this study, we have proposed a novel method for inferring gene-regulatory networks from single-cell 

RNA-seq data. The method infers the networks by using time-series gene expression profiles from 

pseudotime-ordered cells generated by a trajectory-inference method. In the method, we have introduced a 

new scoring scheme called edge gain, which is the gain to the inference score if an edge is added to the 

resulting network. We compute the average of the gains from the bootstrap-sampled replicates in the gene 

expression data, and we use the average gain as a confidence score for each edge in the inferred network. 

By the performance evaluation using both synthetic and real single-cell datasets, the proposed method 

achieved higher accurate performance than an existing method, SINCERITIES, which is reported as one of the 

best-performing methods in a benchmarking paper [6]. The result suggests that our scoring scheme is useful 

to evaluate the confidence of each edge in the inferred gene-regulatory network. However, the evaluation 

results of the proposed method indicate that the accuracy of the inference is still required to be improved in 

the proposed method. It remains our future works.    
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