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Abstract—Recent advances in microarray technology offer 

the ability to study the expression of thousands of genes 

simultaneously. The DNA data stored on these microarray chips 

can provide crucial information for early clinical cancer 

diagnosis. The Principal Orthogonal Decomposition (POD) 

method has been widely used as an effective feature detection 

method. In this paper, we present an enhancement to the 

standard approach of using the POD technique as a disease 

detection tool. In the standard method, cancer diagnosis of an 

arbitrary sample is based on its correlation value with the 

cancerous or normal signature extracted using the POD method 

from DNA microarray data. In this paper, we extend the POD 

method by feeding the extracted principal features into Machine 

Learning algorithms to detect cancer. Particularly, Linear 

Support Vector Machine, Feed Forward Back Propagation 

Networks, and Self-Organizing Maps are used on liver cancer, 

colon cancer, and leukemia data. Sensitivity, specificity, and 

accuracy are discussed to evaluate predictive abilities of the 

proposed extended POD methods. Our results indicate overall 

the proposed methods provide improvements over the standard 

POD method. 

 
Index Terms—DNA Microarray, principal orthogonal 

decomposition, machine learning, artificial neural networks, 

support vector machine, self-organizing map, cancer detection 

I. INTRODUCTION 

Expressions of thousands of individual genes can be stored 

in a DNA microarray, which allows one to see genes that are 

induced or repressed in an experiment. Signatures of a cancer 

may be encrypted in DNA microarrays, and once found, can 

be used for diagnoses. The standard Principal Orthogonal 

Decomposition (POD) method had been used to effectively 

detect liver and bladder cancers [1]-[2]. In this paper, we 

propose to extend the standard Principal Orthogonal 

Decomposition (POD) method to include Machine Learning 

(ML) algorithms for cancer detection. Namely, we use the 

POD technique to extract the principal features, both 

cancerous and normal. We then feed them to ML algorithms 

such as the Support Vector Machine (SVM), Feed Forward 

Back Propagation Networks (FFBPN) and Self-Organizing 

Map (SOM) to train the classifiers for detection of different 

types of cancers. Results vary depending on a priori 

information. We include results from varying the number of 

training data and genes included in the feature selection. 

Additionally we compare results from classifiers trained when 
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two, four, and six modes are extracted from cancer and 

normal projections. 

 
Fig. 1. The cancer screening prediction process. 

 

II. METHODOLOGY 

A. Dataset 

For liver cancer detection, we examined the DNA 

microarray data from reference [3]. The data, containing both 

normal and cancerous tissues, are obtained from the Stanford 

Microarray Database at genome-www5.stanford.edu. Only 

genes with expressions in over 80% of the samples are 

included. Missing data for a particular gene are imputed with 

the average of the values for that gene from the other samples. 

The liver cancer data set contained data from 76 normal tissue 

samples and 105 primary liver cancer samples, where data for 

5520 genes are extracted. 

For colon cancer detection, we examined DNA microarray 

data from reference [4]. Colon cancer data consisted of 40 

cancerous samples and 22 normal samples. Samples are taken 

from epithelial cells of colon cancer patients. The original 

data contained 6000 gene expression levels. Only 2000 gene 

expression levels are used based on the confidence in the 

measured expression levels.  

For leukemia detection, we examined DNA microarray 

data from reference [5]. Leukemia data consisted of 48 

samples of Acute Myeloid Leukemia (AML) and 25 samples 

of Acute Lymphoblastic Leukemia (ALL). The measurements 

are taken from 63 bone marrow samples and 10 peripheral 

blood samples. Data for 7129 gene expression levels are 

extracted.  

Mean values for each gene are subtracted off before 
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selecting the most prominent genes for performing the 

orthogonal decomposition for all data. Given a cancer training 

set 
CN

i

C

iT 1}{   with 
NC samples, and a normal training set 

{Tj
N} j=1

NN

,, with 
NN samples, we define the Signal-to-Noise 

ratio for each gene 
g

 as: 
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We sort the SNR values for the genes in descending order 

and select only the genes with the highest SNR score for our 

analyses. Figure 3 shows ten genes with the top ten scores 

using SNR using training data from colon cancer and healthy 

samples. Cancer samples are plotted in red along x=1-40 and 

healthy samples are plotted in blue along x=41-62. 

Expression levels for each sample are plotted against y-axis. 

Horizontal lines across the chart indicate the means of the 

cancer and healthy samples for each gene. 

 
Fig. 2. All gene expressions from a colon cancer data set for arbitrary cancer 

sample and arbitrary normal sample. 

 
Fig. 3. Ten gene expressions with the highest SNR scores evaluated using the 

colon cancer testing set. 

The top prominent genes with the highest SNR scores are 

used for analysis. The process was repeated using 10, 40 and 

100 genes. Gene selection was based on random training sets. 

Training sets consist of 80% of cancerous samples and 80% 

of normal samples. The remaining samples are used for 

testing. The prediction values from FFBPN were mapped to a 

numerical range from 0 to 1. Cut-off thresholds are selected to 

obtain maximum fitness obtained by the training set: 

)y(Specificit)y(Sensitivit)(  fitnessf
.  (2) 

Predictions for the testing set are evaluated using the fitness 

value defined in equation 2. Training and testing processes 

are repeated 100 times, with randomly selected training and 

testing partitions for each of the 100 trials. Averaged 

sensitivity, specificity and accuracy from these predictions 

are reported. Results are also reported when the number of 

training samples was decreased to 50% of the entire dataset 

and additional modes.  

B. Feature Extraction 

Given a cancer training set 
CN

i

C

iT 1}{   and a normal training 

set 
{Tj

N} j=1

NN

, we apply the POD technique to extract the 

primary dominant features 
C and 

N , respectively. We 

use 
NC NN
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elements can be represented as, 
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The following Machine Learning algorithms are used to 

construct classifiers F based on the values of 

NC NN
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the test sets of cancer, 

normal, and both, respectively. For each member of the 

testing set, we define the corresponding metric 
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Figure 4 shows the projections of all samples onto the 

primary tumor and normal modes respectively. Horizontal 

lines along y=0 are drawn to show separation between 

projections of tumor and normal samples. The two projections 

are combined used as x
(l )

, y
(l )

, x
(k )

and, y
(k )

 to construct 

X (l )
and X

(k )
, and are plotted in the right in figure 4. 

Typically, projections using primary dominant features 

resemble normal distribution. However, when the primary 

dominant features do not provide sufficient accuracy, 

additional modes contribute significant class information to 

feature sets. 

Additional modes were investigated to add structure to the 

new features sets. Only the primary dominant modes resemble 

normal distributions. Figures 5 and 6 demonstrate top ranking 

normal and tumor modes in order of mean differences. The 

first charts of each figure demonstrate clear separation 

between two classes, with the occurrence of a few outliers. 

Training samples are labeled along x-axis and corresponding 

projections are plotted along the y-axis. Top ranking modes 

were used to construct X
(l )

and X
(k )

. Results using the top 2, 

4, and 6 modes are reported. 
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 Fig. 4. Projections over primary dominant colon cancer and normal modes 

for all samples. 

 

Fig. 5. All normal modes ranked in order by mean differences, with 

projections from training samples only. 

 

Fig. 6. Top 20 tumor modes ranked in order by mean differences, with 

projections from training samples only. 

 

III. MACHINE LEARNING MODELS 

A. Support Vector Machine 

Since we perform our projections onto the dominant cancer 

and normal POD features, the hyper-plane is two-dimensional 

and SVM draws a contour between the cancerous and normal 

classes [6]. For simplicity, we assume that the training data is 

linearly separable and utilize a linear SVM. The SVM 

algorithm constructs the line bmxy   that maximizes the 

margin between the positive and negative groups. In this case, 

the classifier is given by   
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B. Feed Forward Back Propagation Network  

For the Feed Forward Back Propagation Network (FFBPN), 

we assume a simple, single layer perceptron with two inputs 

and one output (see [7] for more details). The FFBPN is 

constructed using the MATLAB command “newff”, where 

the weights 
),( 21 ww

 and the bias parameter   are found 

based on the training sets. The network architecture is 

activated by a hyperbolic tangent sigmoid function,  
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Note that the cut-off value cutoff
 is determined from the 

Receiver-Operating-Characteristic (ROC) curve and equation 

2.   

C. Self Organizing Map 

SOM starts out with an initial two-dimensional map and, 

when introduced to the training set, it updates the map 

iteratively to fit the distribution of the clusters in the training 

set. When a testing set is fed into the map, the map classifies it 

according to its nearest cluster of the training set. We 

implement the SOM scheme using four neighborhood 

functions (Bubble, Gaussian, Cut-Gaussian, and Epanechicov) 

sequentially to exhaust all possible maps. Both the batch and 

the sequential training algorithms are also explored in this 

study. SOMs are implemented using the somtoolbox (see [8] 

for further details).  

 

IV. RESULTS 

Sensitivity, specificity, and accuracy are used to determine 

the performance of classifiers in this study. Sensitivity 

measures the ability to correctly identify those with the 

disease, whereas specificity measures the ability to identify 

those without the disease. Accuracy shows the ratio of true 

predictions (true positives and true negatives) out of all 

predictions. For all test set predictions, the number of true 

positives (TP), true negatives (TN), false positives (FP), and 

false negatives (FN) are determined. Sensitivity, specificity, 

and accuracy are evaluated to determine the quality of the 

network: 
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Results using extended POD with machine learning 

techniques demonstrate slightly improved predictions when 

compared to the standard POD method. A study [9] using 

SVM and SOM without POD on colon and leukemia cancers 

has been compared to our proposed methods. Our methods 

produce better results (+90% versus +70%); however, there 

are different assumptions such as holdout percentages (20% 

versus 50%) for training and testing. Results reported are 

obtained using 40 genes selected from 80% of the raw data for 

training standard and extended POD methods. 

A. Liver Cancer Data 

POD feature extraction for one trial is plotted in Fig. 7. The 

horizontal axis is the case number and the vertical axis 

represents its projection value. Cancerous and normal 

samples are numbered 1-105 and 106-181, respectively. The 

line y=0 is drawn horizontally along the plots for each 
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projection in Fig. 7. A large percentage of projections from 

cancerous tissue samples exceeded y=0. Similarly, a large 

percentage of projections from normal tissue samples are less 

than y=0. In this case, the standard POD method performs 

rather well as a predictive classifier. The ROC curve for 

training data using POD cancerous feature (blue), POD 

normal feature (green), and FFBPN (red) are shown in Figure 

8. Points with the largest fitness values are circled and the 

corresponding cut-off thresholds are used for predicting the 

test set. In addition, we find from Figure 8 that while the 

FFBPN obtains a smaller false positive rate than the POD 

normal feature, it obtains a higher true positive rate than the 

POD cancer feature. The SOM method, displayed in Fig. 9, 

indicates distinct cancerous and normal clusters. Labeled 

neurons show that only a small percentage of the map neurons 

have predictive capabilities prior to pruning. The SVM 

hyper-plane, shown in Fig. 10, is constructed using the 

training set, denoted with red and green. Test data is denoted 

in magenta and cyan. Average accuracies for five random 

trials and all classifiers are shown in Fig. 11. 

 
Fig. 7. Projections over primary dominant liver cancer and normal modes 

for all samples. 

 
Fig. 8. SOM constructed with primary dominant modes of training liver 

cancer and normal samples. Weights for mapping of tumor samples are 

indicated in red, and normal samples are indicated in green. 

 
Fig.  9. ROC curves for training sets using standard and extended POD 

with FFBPN. Cutoffs with max fitness are circled in red. 

 

Fig. 10. The SVM hyper-plane, shown in, is constructed using the 

training set, denoted with red and green. 

 

Fig. 11. Average sensitivities, specificities and accuracies for screening 

liver cancer from 100 random trials. 

B. Leukemia Data 

In this data set, there are no normal samples and the classes 

are AML and ALL. Here we treat the ALL samples as if they 

are normal samples. Results from AML and ALL predictions 

are shown in Figure 12. Accuracy of extended POD 

predictions improved only slightly using machine-learning 

techniques. Accuracy for this data using SVM and SOM for 

extended POD exceed recognition rate for feature selection 

methods proposed in [9]. Furthermore, using extended POD 

for prediction of unknowns obtains slightly better results 

compared to a majority vote ensemble classifier [9] (97.3% 

versus 97.1%).  

 
Fig. 12. Average sensitivities, specificities and accuracies for screening 

AML leukemia from 100 random trials. 
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C. Colon Cancer Data 

In the results for liver cancer and leukemia, there is little 

improvement in overall accuracy for extended POD 

compared to standard POD. Compelling improvements using 

extended POD were obtained in screening of colon cancer, 

where standard POD obtained accuracy <70%. Prediction 

results from screening of colon cancer test data using our 

proposed methods are summarized in Figure 13. Sensitivity, 

specificity, and accuracy for extended POD using linear SVM 

demonstrates improvement to the standard POD with primary 

dominant features. As shown in figures 5 and 6, projections 

over the primary dominant modes resemble a normal 

distribution. Results from extended POD using SVM trained 

with only primary dominant modes are comparable to 

accuracy measures obtained using a parametric Gaussian 

classifier on the primary dominant modes. A Gaussian 

classifier obtains sensitivity=92.37%, specificity=60.45%, 

and accuracy=81.08%. Additional modes deviate from the 

typical normal distribution, so as modes are added to the 

feature vector, results obtained using linear SVM tend to be 

exceed results obtained with Gaussian classifier. 

 
Fig. 13. Average sensitivities, specificities and accuracies for screening 

colon cancer from 100 random trials. 

Figure 14 summarizes extended POD results using feature 

vectors with 2, 4, and 6 total modes respectively. Using 80% 

of data samples, screening of colon cancer using extended 

POD trained with two modes from each class provides 

optimal results in overall accuracy. Additional modes show 

little to no improvement for the configuration.  

 
Fig. 14. Average sensitivities, specificities and accuracies for screening 

colon cancer from 100 random trials using extended POD with feature 

vectors containing 2, 4, and 6 modes. 

Figure 15 shows improvements only 50% of the data for 

training 100 genes expressions. Predictions are made using 

extended POD and 1, 2, 4, 6, 8, and 10 modes. Introduction of 

multiple nodes increases sensitivity and accuracy, at the 

expense of specificity. Peak accuracy was obtained with 4 

normal and 4 cancer modes. 

 
 Fig. 15. Average sensitivities, specificities and accuracies for screening 

colon cancer from 100 random trials using extended POD with feature 

vectors containing 1, 2, 4, and 6, 8, and 10 modes. 

 

V. SUMMARY AND CONCLUSIONS 

The results from 100 random trials for extended and 

standard POD methods demonstrate that extended POD 

method improves overall accuracy compared to standard 

methods. For liver cancer and leukemia, the standard POD 

alone was capable of extracting linearly separable sets, and 

was sufficient for obtaining accurate results. In such cases, 

when standard POD using only the primary dominant normal 

mode provided sufficient results (accuracy >95%), the 

extended methods improved specificity. 

 On the other hand, for colon cancer screening, the standard 

POD requires the extended method to obtain sufficient results. 

In such cases, when the standard POD screened poorly 

(accuracy<70%), extended POD with primary dominant 

features only improves sensitivity significantly. Although this 

is at the expense of specificity, overall accuracy using the 

extended method exceeds that of the standard method. 

Further investigation demonstrated that addition of several 

modes in the feature set contributes more accurate results. 

Since class projections using additional modes do not exhibit 

normal distributions, use of parametric learning techniques 

tend to over fit the data. Machine learning techniques, 

particularly SVM, demonstrated promising results, obtaining 

increased accuracy while still generalizing the structure of 

class information from additional modes.  

On average, the extended POD with linear kernel support 

vector machine outperformed machine-learning algorithms 

described in this study. Although extended POD with only 

primary dominant features for colon cancer screening results 

in high occurrence of false alarms, this method improves 
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sensitivity enough to improve overall accuracy. Use of 

additional modes recovers loss in specificity, especially when 

only a few training samples are known. For predicting colon 

cancer with few training samples (only 50% of entire dataset), 

best results were obtained with a feature set consisting of 

projections from 4 tumor and 4 normal modes. 
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