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 

Abstract—Undetected mislabeled samples may affect the 

results of genotype studies, particular when rare genetic 

variants are investigated. Mislabeled samples are not often 

detected during quality control and if they are detected, they are 

normally discarded due to a lack of a reliable method to recover 

the correct labels.  

Here we describe a statistical method which given a few extra 

independent genotypes (barcode genotypes) detects mislabeled 

samples and recovers the correct labels for sample mix-ups. We 

have implemented the method in a program (named Wunderbar) 

and we evaluate the reliability of the method on simulated data. 

We find that even with only a small number of barcode 

genotypes, Wunderbar is capable of identifying mislabeled 

samples and sample mix-ups with high sensitivity and specificity, 

even with a high genotyping error rate and even in the presence 

of dependency between the individual barcode genotypes.  

To detect mislabeled samples, we calculate the probability 

that the discordance between genotypes in the data and in the 

independent genotypes can be attributed to random 

(non-mislabeling) genotyping errors. To identify mix-ups we 

calculate the probability of identifying the set of identical 

genotypes between sample x and sample y by chance. Based on 

this we calculate a mix-up confidence score with penalization for 

introducing mismatches in the proposed new label and 

adjustment for independency among the genotypes. This 

confidence score is used to identify probable mix-ups. 

 

Index Terms—Barcoding, genetics, quality control. 

 

I. INTRODUCTION 

While absolutely essential, it may be challenging to ensure 

that genotypes are correctly coupled with the sample IDs 

when obtaining genotype data for a large number of samples. 

Often these data are in the form of single nucleotide 

polymorphism (SNP) arrays, but the concern about sample 

label quality control transcends the type of genotyping 

technology.  

In the process of genotyping samples with SNP arrays there 

are a number of ways in which mislabeling may occur; 

Mislabeling or swapping of blood sample vials, pipetting 

errors, masterplate orientation, and database entry blunders, 

etc. 

In June 2010, the personal genomics company 23andMe 

sent out the wrong genotypes to 96 people [1]. This caused 

major frustration among customers, some of which ended up 

with doubts about biological parenthood. The culprit was a 
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flipped 96 well masterplate containing their DNA samples. 

Because of the severe consequences, a mix-up like this is not 

likely to go unnoticed in personal genomics. In academic 

studies, however, such errors could easily happen without 

being discovered, and if left unnoticed can lead to publication 

of false results. To avoid mislabeling, the genotype data must 

be carefully examined and compared against available 

phenotypic information. For instance, routine quality control 

often includes gender verification by comparing the genetic 

gender with the recorded phenotypic gender of the sample and 

a verification of the known family relations between samples 

[2]. Most datasets contain only unrelated samples in which 

case the similarity between the genotypes of family members 

cannot be used to distinguish samples. Furthermore, the 

gender check does not identify sample mismatches between 

samples with identical gender, and it cannot be used to detect 

which samples are swapped if there is more than one 

mismatch.  
A much more reliable technique is to genotype a small 

subset of the genetic variants included in the array in the same 

samples using an independent and more economic platform. 

These genotypes serve as a molecular barcode that can be 

used to identify the sample. If the sample is correctly labeled, 

then the barcode genotypes will agree to the sample genotypes 

thereby minimizing possible genotype errors. The term 

genetic barcoding and the idea underlying it are well known 

within forensic genetics [3] and in species identification [4]. 

With a sufficient number of genotypic variants serving as 

genetic barcode, it is possible to detect the correct labels for 

mislabeled or swapped DNA samples. The number, quality 

and independence of the genotypes serving as barcodes are 

important. Sometimes, a few such genotypes just happen to be 

available from earlier studies of the same samples, but may be 

obtained using a different and possibly error-prone, and 

outdated technology. 

We here present a statistical method which is capable of 

identifying mislabeled samples and mix-ups with high 

reliability even when a limited amount of suboptimal quality 

barcoding genotypes are available, and even if they are in 

partial linkage disequibrilium (LD). We have implemented 

this method in the program Wunderbar, which is freely 

available (GPL license). The program is compatible with the 

widely used genotype analysis tool Plink [5] and uses the 

Plink format for both array genotypes and barcoding 

genotypes. It is written in the Ruby programming language 

which runs on a variety of operating systems. 

Several tools [6], [7] exist to identify mix-ups when GWAS 

data is accompanied by expression data. However, we are not 

aware of any other tools which are designed to facilitate the 

process of examining the concordance between barcode and 

array genotype data. 
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II. APPROACH 

Our approach separately deals with the problem of 

detecting single mislabeled samples and the more complex 

problem of detecting mix-ups, e.g., samples that have been 

swapped. The former problem is a logical precedent of the 

latter problem, e.g., if two samples are swapped then they 

must be also mislabeled separately.  

A. Testing for Mislabeled Samples 

To test for mismatches, we compare the barcoding 

genotypes with array genotypes for each labeled individual in 

a dataset containing n samples. 

When we identify discordance between barcode and array 

genotypes in an individual, we would like to know the 

probability that this mismatch is likely to happen due to 

random genotyping errors, as opposed to being a mislabeling. 

To reflect this, we introduce a p-value, which is a probability 

that the discordance can be attributed to random 

(non-mislabeling) genotyping errors. When the p-value is less 

than α, we consider the discordance to be caused by 

mislabeling. The higher the discordance between the barcode 

and array genotypes is in an individual, the less likely it is that 

the discordances can be attributed to chance. This is reflected 

in the p-value, and thus for a significant low value of α only 

individuals with a high degree of discordance between the 

barcode and genotype arrays is identified as a mislabeling. 

To calculate the p-value, we first make the assumption that 

the frequency of array versus barcode mismatches for each 

SNP is estimates of the probabilities that a mismatch on that 

particular SNP occurs by chance. This assumption relies on 

the number of mismatches to be small relative to the total 

number of samples. We treat these estimates as independent 

probabilities and calculate the probability of a particular 

discordance in an individual as the product of the mismatch 

probabilities for each mismatched SNP (see equation 1). 
We expect the array genotypes to include more SNPs than 

the barcode genotypes, but for barcoding purposes we only 

need to consider the set of SNPs that are in common between 

the array genotypes and the barcoding genotypes.  

We use the notation, G
array

, to describe the array genotypes. 

G
array

 is an n× m matrix where n is the number of individuals 

and m is the number of SNPs which present both on the array 

and in the barcode. The genotype of a particular individual i 

on a particular SNP j is given by  

array
Gij ,  

where 0 < i < n and 0 < j < m. 

For each SNP the genotype is an integer in the set [0, 1, 2, 3] 

where 0 means that the genotype is unknown, 1 means 

homozygous wildtype, 2 means heterozygous and 3 means 

homozygous for the variant. We define the barcoding 

genotype matrix G
barcode

 as the same n individuals and the 

same m SNPs, such that G
array

 and G
barcode

 include the same set 

and order of SNPs and individuals.  

L is a missingness matrix with the same dimension and 

order as G
array

 and G
barcode

. The element in position i, j – 

denoted Lij – is 1 whenever 
sample

Gij  ≠ 0 
barcode

Gij  ≠ 0, i.e., 

when SNP j in individual i is present in both G
array

 and 

G
barcode

.  

The match matrix M is used to indicate whether samples 

have identical genotypes in both G
array

 and G
barcode

. The 

element in position i, j (Mij) of the match matrix M is 1 

whenever 
array barcode

G Gij ij  and 0 otherwise. Oppositely, 

in the mismatch matrix M  , Mij
  is 1 whenever 

array barcode
G Gij ij  and 0 otherwise. 

The probability that a particular set of mismatches occur in 

a sample is calculated as the product of the relative 

frequencies of mismatching SNPs as detailed in equation 1 

below: 

      
1

( )
1

1

n
Mm k kj

P mismatch M Mi ij ijnj L
k kj

 
 

  

 
 
 
 

        (1) 

Note that this equation is conservative in the sense that if 

there are mislabeled samples, their mismatched SNPs will 

contribute towards increasing this probability and it is 

therefore expected to be a slight overestimate of the real 

chance probability.  

Besides this point probability we are interested in the 

probability of getting as bad a mismatch as the one observed 

for a particular individual by chance, i.e, assuming that no 

mislabeling has occurred. This probability, which we 

denote
mislabel

ip , is a p-value which serves as a statistical test 

where the null hypothesis is to observe a particular set of 

mismatched genotypes as extreme as the ones observed in the 

data by chance in a correctly labelled sample. The point 

probability described in equation 1 is a measure of the chance 

mismatch extremity and 
mislabel

ip is hence the probability of 

seeing a probability as low as P(mismatchi).  

To calculate 
mislabel

ip , we use a random sampling 

procedure. In brief, the procedure samples a large number of 

random P(mismatch) probabilities according to the SNP 

mismatch frequencies  observed in G
array

. 
mislabel

ip  is then 

equal to the lowest percentile of sampled probabilities to 

which P(mismatchi) belongs.  

We reject the null hypothesis (chance mismatch) when 
mislabel

ip  < α, for a sufficiently small α, and as a consequence, 

individual i is categorized as mislabeled. To select a 

reasonable value for α, one should consider the level of 

sensitivity that is required to detect mislabeled samples. An α 

value of 0.05 is expected to detect 19/20 mislabeled samples. 

B. Testing for Mix-ups 

A mix-up is when a mislabeled sample which is labeled as x 

is actually another sample y. Mix-ups can for example be in 

the form of swapped samples, where x is labeled as y and vice 

versa. We use the notation x→y to represent a mix-up, i.e., the 

case where the genotype of sample x corresponds to the 

genotypes of the sample labeled y in the barcoding data. In the 

following we present a method to identify mix-ups deemed 

statistically unlikely to occur by chance-similarities between 

the genotypes of a pair of samples. Compared to our method 
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for identifying mislabels, we here use a score instead of a 

p-value. The score incorporates the p-value for finding a 

mix-up by chance and a penalization for introducing 

mismatches in the proposed new label. Furthermore, we also 

incorporate a LD adjustment when calculating the p-values 

for mix-ups. 

For each SNP j we calculate the relative frequencies of 

each genotype g: 

            
( )1

( , )
( , )1,2,3 1

n H giji
R G gj n H G gg iji

 


  

              (2) 

H is defined as a function of a genotype g and a position 

index i, j: 

                
1

( , )
0

if G gijH G gij
otherwise







                    (3) 

For each pair of samples, x and y, we calculate the 

probability that the set of identical overlapping genotypes 

between sample x and sample y would occur by chance (the 

overlap probability). This is calculated as the product of 

genotype probabilities for all matching genotypes: 

                    ( )
1

m x y
P x y Fjoverlap j


  


                        (4) 

where, 

( , ) 0

1

array arraybarocde barcode
R G G if G Gx y j xj xj yjFj

otherwise

 





  

(5) 

The equation used to calculate the probability assumes 

independence between the genotype frequencies of the SNPs. 

This may lead to an inflation when the independence 

assumption is incorrect, such as if the SNPs are in LD, or if the 

samples are related. 

To correct for inflation, we calculate an inflation factor by 

means of a sampling procedure. Random subsets of the 

barcoding SNPs are repeatedly sampled along with genotypes 

from the array genotypes and it is measured how often the 

random subset genotypes match the sample in question (x). 

The )( yxPoverlap  probability is then multiplied with the 

inflation factor to give a more realistic measure. The sampling 

algorithm is shown in pseudo-code below: 

 

PROC LD-RATIO: 

LET sumOfRatios :=  0 

Ω TIMES DO 

       LET numSnps := random integer in interval [1-m] 

    LET snps := numSnps random snps in {1,…,m} 

       LET ncount := 0  

       FOR i in 1 to n 

             IF 
array

ij

barcode

xj
snpsj

GG 


 THEN 

                   ncount := ncount + 1 

             END IF 

        END FOR 

        LET nexpected := ( , )
array

R G geno njj snps



,
 

  LET sumOfRatios  :=  sum_of_ratios +  
expected

count

n
n

 

RETURN  
sumOfRatios


 

 

The procedure returns the mean of a series of ratios 

between observed random genotype subsets and expected 

counts of those genotype subsets in G
array

. The expected 

number of occurrences nexpected of a set of genotypes is the 

product of the genotype frequencies in G
array

×  n. 

The loop of procedure runs Ω times, which is a user 

adjustable parameter to the program. Increasing the number 

of loop iterations increases the precision of the ratio estimate, 

but it also significantly adds to the execution time, since this 

procedure has run for every potential mix-up, i.e., on the order 

of n× n times.  

The overlap probability measure does not account for the 

fact that when we are allowed for arbitrary mismatches, then 

there is an exponential number of possible ways that one 

individual’s barcode genotypes may overlap (partially match) 

with another individuals array genotypes. )( yxPoverlap   

is the concrete probability for one of these exponentially 

many possible overlaps. To adjust this we apply a mean-field 

approximation, which consists of multiplying the 

LD-adjusted overlap probability by the number of possible 

ways that we can match two samples with at least as many 

overlapping/identical genotypes, e.g., allowing k mismatches, 

1 ≤ k ≤ m, then the number of possible ways to partially match 

two samples is expressed as the binomial series, 
1

k m

k

 
 
 

. 

Intuitively, this may also be seen as a penalty on the score 

which reflects the negative evidence of having a number of 

mismatching genotypes. 

Because of the nature of the mean-field approximation, the 

result is no longer a probability measure. Instead, we refer to 

it as the mismatch-adjusted overlap measure. The mean-field 

is a good approximation when m is small (e.g., less than 64), 

but it becomes increasingly inaccurate when m is large. Hence, 

using too many barcoding SNPs will negatively affect 

accuracy. 

The mismatch-adjusted overlap measure is not in itself 

useful to indicate whether the overlap is due to chance or 

caused by a mix-up. To investigate this, we calculate yet 

another p-value, which indicates the probability of seeing a 

mismatch-adjusted overlap measure as extreme as or more 

extreme than a given one by chance. To calculate this p-value 

we employ a sampling procedure. Random “barcode” 

genotypes which mimic the genotype frequencies in the 

sample genotypes are created and matched to all array 

genotypes. For each match we record the mismatch-adjusted 

overlap measure of the match. With a large amount of such 

probabilities we are equipped to ask the question of which 

percentile a particular mismatch-adjusted overlap measure 

belongs too. The p-value – which is denoted yxp  –  is then 

the lowest percentile to which a mismatch-adjusted overlap 
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measure for the match yx   belongs. 

Finally, we score and rank matches according to a 

combined probability measure which for each pair of samples 

takes into account the probability of each of the of samples 

being mislabeled as well as the probability that they are 

swapped: 

(1 ) (1 ) (1 )
mislabel mislabel

score p p px y x y x y        

(6) 

This is an approximate confidence score and by applying a 

cut-off on the score, we can classify mix-ups. The user can 

select an appropriate cut-off, e.g., 0.95%, which corresponds 

to a particular specificity/sensitivity trade-off.  However, the 

score is an independent measure of the probability of a mix-up 

and classifications based on this measure may warrant further 

investigations. For instance, with a given cut-off value there 

may be several probable mix-ups with the same label. 

 

III. EVALUATION 

We evaluate the Wunderbar program with regard to its 

ability to detect mislabeled samples as well as its ability to 

detect swaps. We perform the evaluation for a varying 

number of mislabeled/swapped samples and for a varying 

number of barcoding SNPs. Furthermore, we evaluate the 

effect of the LD-adjustment procedure.  

In our experiments, we simulate a chip array of SNPs for 

1000 individuals in the first two experiments and 100 

individuals in the last experiment. For each individual, a SNP 

genotype is picked randomly as either homozygote wildtype, 

heterozygote, homozygote derived allele or as missing data. 

The chance of a missing genotype is 12.5% whereas each of 

the three possible alleles are equiprobable (~ 29.17%). 

The barcoding array is created as an identical copy of the 

chip array.  In this barcoding array we then simulate random 

mismatches with regard to the original chip array genotypes. 

This has been done in order to mimic realistic data which may 

have random genotyping errors. The chance of a genotype 

being changed to a mismatching genotype in the barcoding 

array is fixed at 1% in all experiments. For a particular 

mismatching genotype, there is a 16.67% chance that it will be 

changed to a missing genotype call and 41.67% chance that it 

will be substituted with either of the two alternative 

genotypes.  

To simulate mix-ups we swap the genotypes of two samples 

on chip array, but not in the barcoding array.  

The number of sampling iterations used to calculate the 

p-value was set to 10000 in all experiments. LD adjustment is 

not used in the first two experiments (Section III.A and III.B) 

and genotypes for different SNPs are generated independently 

of each other.  In the final experiment in which we test the LD 

adjustment procedure, we simulate a chip array of SNPs in 

high LD (R
2
 = 90%) and report the difference in accuracy with 

and without LD adjustment (Section III.C). 

We use receiver operating characteristic (ROC) curves to 

report the results.  We generate ROC curves by measuring the 

true and false positive rates for the top-n candidates produced 

by Wunderbar for all possible values of n. 

A. Varying the Number of Barcoding SNPs 

In this experiment we deliberately mislabel eight samples. 

Then we use from one and up to six of the SNPs in the 

barcoding array to attempt to identify the mislabeled samples.  

The ROC curve in Fig. 1 displays the accuracy for 

identifying mislabeled samples and the ROC curve in Fig. 2 

displays the accuracy for identifying mix-ups.  

From the ROC curves in both Fig. 1 and Fig. 2, it is 

apparent that for more than three SNPs, Wunderbar has 

prediction power to identify the mislabeled samples as well as 

the mix-ups with almost perfect accuracy for the chosen 

number of samples (1000). 

 

 
Fig. 1. ROC curve that displays the accuracy for identifying mislabeled 

samples with varying number of SNPs. 

 

 
Fig. 2. ROC curve that displays the accuracy for identifying mix-ups with 

varying number of SNPs. 

 

B. Varying the Number of Swaps 

As a second experiment we keep the number of SNPs 

constant. We use five SNPs, which in the previous experiment 

is demonstrated to have sufficient predictive power. Then we 

vary the number of mislabeled samples in the dataset. All 

mislabeled samples in the data are in the form of pairs of 

swapped samples.  

The ROC curve in Fig. 3 shows the accuracy for 

identification of mislabeled samples and the ROC curve in Fig. 

4 shows the accuracy for identification of mix-ups. Even with 

a high percentage of mislabeled samples, Wunderbar reliably 

detects the samples that have been mislabeled. It also shows 

from Fig. 4, that identifying swaps is a more difficult problem 

and with 64 swaps (more that 5% of all samples) detection is 

not sufficiently accurate to be blindly trusted when only using 
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five SNPs. However, even with 64 swaps and only five SNPs 

the achieved level of accuracy shows that the confidence 

scores provided by the program are still very informative. 

Coupled with further knowledge (more SNPs or other sources 

of information), the confidence scores could still help to 

resolve mix-ups.  
 

 
Fig. 3. ROC curve that displays the accuracy for identifying mislabeled 

samples with varying number of swaps. 

 

 
Fig. 4. ROC curve that displays the accuracy for identifying mix-ups with 

varying number of swaps. 

 

 
Fig. 5. ROC curve that displays the accuracy for identifying mix-ups with 

and without LD-correction. The ROC curve was produced for a dataset with 

four swaps, five barcoding SNPs, 100 samples. The LD-adjustment was run 

for 50 iterations for each pair of samples. 

 

C. Experiment 3: Effect of LD-Adjustment 

In the two previous experiments, we have been using SNPs 

that were independent. This might not be the case with actual 

barcoding SNPs, which may be left-overs from a previous 

study, perhaps of a narrow region in the genome. In such a 

case, the SNPs may be in LD. Here, we simulate a chip array 

of SNPs in high LD (R
2
 = 90%) and we test how this affects 

the accuracy of Wunderbar with and without the 

LD-adjustment procedure.  

Fig. 5 shows a ROC curve of the accuracy for detecting 

mix-ups with and without the LD-adjustment procedure. It 

can be observed that LD-adjustment procedure improves 

accuracy significantly.  

 

IV. CONCLUSION 

While Wunderbar is useful to detect potential sample 

mix-ups, it is difficult to determine where the mix-up has 

occurred. Barcoding genotypes only help to identify mix-ups 

that occur at the DNA sample level, but do not help to identify 

mix-ups that occur in phenotype registration. Furthermore, 

even at the DNA sample level, the approach does not reveal 

whether the mix-up occurred in the G
array

 or G
barcode

. To reveal 

this, additional information is required such as phenotype 

information and its relation to the genotypes, the genotypic 

gender versus the reported gender and the verification of 

reported familiar relations between samples compared to the 

levels of shared genotypes. In addition, knowledge about the 

genotyping technology and the protocol for obtaining 

genotypes can provide useful pointers to resolve this issue. 

For instance, genotypes could be swapped due to flipped 

masterplates, as was the case for the 23andMe episode. Future 

versions of Wunderbar may try to incorporate and take 

advantage of such information. In particular knowledge of sex, 

and easily obtained phenotypes like eye and hair color [8] as 

well as blood type [9] and similar  phenotypic information 

that have direct parallels on the genotypic level would be 

useful to incorporate in the model. 

Wunderbar is available for download from: 

http://cth.github.io/wunderbar/ 
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