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Investigating Machine Learning Techniques for Detection
of Depression Using Structural MRI Volumetric Features

Kuryati Kipli, Abbas Z. Kouzani, and Isredza Rahmi A. Hamid

Abstract—Structural MRI offers anatomical details and high
sensitivity to pathological changes. It can demonstrate certain
patterns of brain changes present at a structural level. Research
to date has shown that volumetric analysis of brain regions has
importance in depression detection. However, such analysis has
had very minimal use in depression detection studies at
individual level. Optimally combining various brain volumetric
features/attributes, and summarizing the data into a distinctive
set of variables remain difficult. This study investigates machine
learning algorithms that automatically identify relevant data
attributes for depression detection. Different machine learning
techniques are studied for depression classification based on
attributes extracted from structural MRI (sMRI) data. The
attributes include volume calculated from whole brain, white
matter, grey matter and hippocampus. Attributes subset
selection is performed aiming to remove redundant attributes
using three filtering methods and one hybrid method, in
combination with ranker search algorithms. The highest
average classification accuracy, obtained by using a
combination of both SVM-EM and IG-Random Tree
algorithms, is 85.23%. The classification approach
implemented in this study can achieve higher accuracy than
most reported studies using sMRI data, specifically for
detection of depression.

Index Terms—MRI, brain image analysis, image feature
selection, machine learning, depression detection.

[. INTRODUCTION

Depression is the most common mental disorder
worldwide and currently the fourth largest contributor to the
burden of disease as reported by the World Health
Organization [1]. It is estimated that by 2020, depression will
remain a leading cause of disability, second only to
cardiovascular disease [1]. Depression is associated with
widely varying psychological and physiological features, and
this heterogeneity is acknowledged within classification
systems [2]. Diagnostic criteria for major depressive disorder
(MDD) are currently based on clinical and psychometric
assessment. The main procedures for evaluation of patients in
the field of MDD are neuropsychological screening tests.
Some widely used screening tests for the evaluation of
depression include Hamilton Rating Scale for Depression
(HRSD), Diagnostic Interview Schedule, and Hospital
Anxiety and Depression Scale.
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The objective of this study is to provide an automated tool
to help in diagnosis of depression by differentiating between
healthy and depressed patients in SMRI data. Evaluation of
sMRI of the brain is usually achieved through visual ratings
performed by medical experts (i.e., radiologists,
neuroradiologists). However, conventional evaluation of
these scans often relies on manual reorientation, visual
reading, and semiquantitative analysis of certain regions of
the brain. These steps are difficult, time consuming,
subjective, and prone to error. In practice, no clinical expert
would diagnose brain diseases only by looking at the
abnormality of a single region of the brain. Instead, clinical
experts carry out a comprehensive visual inspection of every
part of the brain. Therefore, an automated detection system is
warranted. Automated tools can be applied to anticipate the
diagnosis, and avoid the inter and intra rater variability
observed when pathologists give different relative important
to each of the grading criteria. The focus of this study is to
investigate machine learning techniques, including attribute
selection and classification. Attribute selection aims at
retaining only the most relevant attributes and thus improve
the generalization ability and the performance of the
classifier [3].

In this study, we explore various parts of the brain using
the sMRI imaging data by extracting volumetric attributes
from the regions and assessing the significance of each
attribute during classification. The attributes extraction has
been done by the database provider [4] whereas the purpose
here is to focus on the attribute selection and classification. In
this work, we also compare the performance of the attribute
selection and classifier algorithms by using the accuracy rate.
To the authors knowledge, this is the first study that explores
machine learning algorithms for depression classification
from volumetric attributes. In summary, the contributions of
this paper include: 1) evaluating and determining the most
discriminant sMRI volumetric attributes for single-subject
classification of depression 2) identifying machine learning
algorithms that automatically determine relevant attributes
and are optimal for depression detection.

This paper is organized as follows. Section II describes the
related works. Section III explains the methods and the
algorithms, as well as the selected attributes. Section IV
describes the proposed experimental procedure comprising
the system flowchart. Section V presents the experimental
results and discusses them. The conclusions are given in
Section VI.

II. RELATED WORKS

In group-level analysis, depression is mainly characterized
by volumetric reductions or increase in the hippocampus,
amygdala, anterior cingulate cortex, orbitofrontal cortex,
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dorsolateral prefrontal cortex, subgenual prefrontal cortex,
putamen, and caudate. Also cerebrospinal fluid have been
specifically associated with depression. However, the
available individual depression detection studies based on
sMRI (Costafreda et al. [5], Nouretdinov et al. [6], Gong et al.
[7], Mwangi et al. [8], [9], Bao et al. [10]) have utilized
different attributes for the detection. The attributes used are
voxel based morphometry, brain shape and voxels value.

Attribute selection processes still have not gained much
attention in the available depression detection research. There
are only few studies that reported on attribute selection
process. The reported studies on the investigation of attribute
selection from sMRI depression data implemented ANOVA
[92] and #-test on VBM [8]. Costafreda ef al. [5] implemented
the whole-brain analysis of variance filtering to select the
areas of maximum group differences between patients and
controls. Mwangi et al. [8] implemented an attribute
selection #-test filter in VBM to identify the voxels that
differed most in depressed patients versus healthy controls.
They also investigated a wrapper method called Recursive
Feature Elimination. In other brain imaging studies, Principal
Component Analysis (PCA) was employed by Fu et al. [11]
and Marquand ef al. [12] for attribute selection. The PCA is
appealing because it reduces the dimensionality of the data
and therefore reduces the computational cost of analyzing
new data. Mwangi et al. [8] used relevance vector regression
(RVR) that is a sparse algorithm that employs only a fraction
of its basis functions to make predictions. A study by
Chyzhyk et al. [13] employed Lattice Independent
Component Analysis (LICA) and the kernel transformation
hybrid with dendritic computing classifiers. These previous
studies did not specifically investigate attribute selection.

At the classification, the SVM classifier was employed by
Costafreda et al. [5], Gong et al. [7] and Bao et al. [10].
Besides the SVM classifier, Bao et al. [10] also investigated
the K-Nearest Neighbor classifier for predicting treatment
remission in MDD. Nouretdinov et al. [6] proposed a general
probabilistic  classification method to structural and
functional MRI to investigate diagnostic and prognostic
prediction in depression. The proposed method of
classification is known as transductive conformal predictors
(TCP). Mwangi et al. [9] used regression analysis based on
relevance vector regression which is a sparse Bayesian
leaning method to predict brain disease. In another published
study, Mwangi et al. [8] investigated both RVM and SVM
machine learning for diagnostic purpose.

[II. METHODS

A. Description of the Data, Definition of ROIs and
Attribute Extraction
The 3-D volumetric attributes were extracted from sMRI
data provided by Neuropsychiatric Imaging Research
Laboratory at Duke University called MIRIAD [4], a
NIMH-supported study that has enrolled older depressed and
non-depressed adult participants. A total of 115 brain data
were included consisting of 88 healthy controls and 27
depressed images. Forty-four volumetric attributes were used
for investigation (i.e whole brain volume, gray matter volume,
white matter volume, hippocampus volume and etc). A list of
attributes and their definition is available in Appendix I. The
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extracted ROIs were manually traced by an expert
neuroradiologist using the Analyze tool, and volumes
measured using MrX tools. More detail on the pre-processing
is given in ref. [14].

B. Attribute Selection, Ranker Search and Classifier
Algorithms

Four attribute selection algorithms are used including one
rule (OneR), support vector machine (SVM), information
gain (IG) and ReliefF. In this study we applied default setting
for the algorithms run in WEKA, a non-commercial and
open-source data mining system [15].

The OneR algorithm creates one rule for each attribute in
the training data, then selects the rule with the smallest error
rate as its ‘one rule’. To create a rule for an attribute, the most
frequent class for each attribute value must be determined.
The most frequent class is simply the class that appears most
often for that attribute value. Finally, it chooses the attribute
that offers rules with minimum error and constructs the final
decision tree [16].

The SVM evaluates the worth of an attribute by using an
SVM classifier [17]. The SVM is that the weights of the
decision function are a function only of a small subset of the
training examples, called “support vectors”. Those are the
examples that are closest to the decision boundary and lie on
the margin. The existence of such support vectors is at the
origin of the computational properties of the SVM and its
competitive classification performance.

The IG evaluates the worth of an attribute by measuring
the information gain with respect to the class. The
information gain is equal to the total entropy for an attribute if
for each of the attribute values a unique classification can be
made for the result attribute.

The ReliefF evaluates the worthiness of an attribute by
repeatedly sampling an instance and considering the value of
the given attribute for the nearest instance of the same and
different class [18]. It can operate on both discrete and
continuous class data.

The Ranker Search algorithm is an extension of the
standard forward selection/best first that allows for either a
fixed set (i.e. select no more than n attributes) or a fixed width
(consider only adding an attribute from the top n ranked
attributes to the current subset at each step) approach to be
used. Both these options result in a faster search than standard
forward selection (they give similar and sometimes better
results due to less overfitting) [15], [19].

There are many classification algorithms that can be used
for classification. In this paper, we used ten different
classifiers: Naive Bayes, SVM RBF, SVM Sigmoid, J48,
Random Forest, Random Tree, VFI, LogitBoost, Simple
KMeans Classification Via Clustering (KMeans), and
Classification Via Clustering EM (EM).

IV. EXPERIMENTAL PROCEDURES

The experiments are conducted using WEKA, a
non-commercial and open-source data mining system [2], [3].
WEKA contains tools for data pre-processing, classification,
regression, clustering, association rules, and visualization. It
is also well suited for developing new machine learning
schemes. Attributes selection is performed using a cross
validation strategy with 10 folds and 1 seed.
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1) Volumetric attributes are selected (see Appendix I) from
the sSMRI dataset (44 attributes are selected in this work).
From the selected attributes we constructed a data matrix.
Class values are assigned as nominal/binary (0, 1) values;
0 represents healthy subjects and 1 stands for depressed
subjects.

All the attributes are ranked using four attribute selection
methods.

The attribute rankings are tabulated from highest to
lowest for the four methods.

New datasets are created from each attribute ranking
result; A total of 17 new matrixes are formed out of the
original data matrix as follows: Top 1, Top 2, Top 3, Top
4,Top 5, Top 6, Top 7, Top 8, Top 9, Top 10, Top 15, Top
20, Top 25, Top 30, Top 35, Top 40, and Top 43.

The new data subsets are named according to format; Top
<Ranking No.> <Attribute Selection Name>. Each
attribute selection has 17 sets, thus, there are 68 new
dataset formed from this combination.

Ten classifiers are selected for the classification: Naive
Bayes, SVM RBF, SVM Sigmoid, J48, Random Forest,
Random Tree, VFI, LogitBoost, Simple KMeans
Classification Via Clustering, and Classification Via
Clustering EM. The classification experiments were
designed as training/test of 70/30. All together we have 68
X 10=680 possible combination. Instances were
“arranged to ensure balanced no of class in each sub set”.
The classification rule set to follow the initial
arrangement (with order preserved).

The accuracies percentages for the classification were
automatically calculated by WEKA. The results are
ranked in descending order using the accuracy
percentage.

2)

3)
4)

5)

6)

7)

8)

V. RESULTS AND DISCUSSIONS

A. Classification Performances

Table I shows the accuracy rates (percentage of correctly
classified samples) and the average area under the receiver
operating characteristic curve (AUC), respectively, for the
combination that achieved accuracy greater than or equal to
80%. The results are sorted from the highest to lowest
accuracies. It can be seen that the hybrid evaluator SVM and
the filter evaluator IG has the highest accuracy.

The best accuracy for the attribute selection-classifier is
displayed in Fig. 1. When the presented attribute selection
methods were used in combination with an SVM
RBF/Sigmoid, the results were consistent regardless of the
attribute selection used. The evaluator OneR in combination
with SVM RBEF classifier produced slightly higher accuracy
0f 79.41% compared to the other methods. These results were
comparable or better than those reported in previous works
[51, 171, [8], [10] using the SVM. The existing works reported
accuracies between 58.70% to 87.1% when using the SVM,
while our classification showed stable results between 76.47
to 79.41%. However, the accuracy increased when an EM or
Random Tree classifier was applied instead of the SVM. The
hybrid evaluator SVM in combination with the EM classifier
and the filter evaluator IG in combination with the Random
Tree classifier recorded highest accuracy of 85.29%. The
good performance of the EM classifier here attributed to the

%
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significantly small number of attributes, N=7 needed for the
classification. Overall, it can be seen that the EM, J48,
Random Forest and Random Tree classifiers achieved good
performances and have the potential for depression detection
classification problem. However, the Naive Bayes and the
VFI performances were very sensitive to the attribute
selection used.

Finally, the proposed attribute selection was compared
against the previous works [5], [8] which used statistical filter
method (ANOVA and #-test). The classification accuracy in
ref. [5] is 67.6%, which is smaller than the accuracy of the
proposed attribute selection. However, the classification
accuracy in [8] is 87.1%, which is slightly higher than the
accuracy of the proposed attribute selection. The
performance difference may also be due to the difference in
the attributes used.

TABLE I: AVERAGE ACCURACY (ACC), NUMBER OF ATTRIBUTES (N),
F-MEASURE AND AREA UNDER THE CURVE (AUC)

Evaluator Classifier N Accuracy AUC

SVM EM 7 85.2941 0.6875
1G RandomTree 15 852941 0.6875
ReliefF J48 30 82.3529 0.4856
1G J48 35 82.3529 0.4856
SVM Kmeans 1 82.3529 0.6683
SVM Kmeans 7 82.3529 0.6683
All NaiveBayes 44 82.3529 0.5962
SVM RandomForest 8 82.3529 0.7163
1G RandomForest 6 82.3529 0.7188
1G RandomForest 15 823529 0.6875
ReliefF RandomTree 3 82.3529 0.6250
ReliefF RandomTree 5 82.3529 0.6250

B. Evaluation of Attributes/Features

The attributes of the final set are different for each
classification pair and each attribute selection method. Table
Il shows the most frequent selected attributes at certain
achieved accuracy. The table tabulates the attributes with its
corresponding frequency and ranked in descending order.
From Table II, it can be seen that the Top 2 attributes
contributed to accuracy > 75-85 are the same and the Top 4
attributes contributed to accuracy > 75 and 80 are the same.
For the accuracy score of 75 or above, the Top 1 (Itotgm) in
the ranking doubled the frequency for attributes on ranked
number 11 (rhippoc) and 12 (rtotgm).

Specifically, when the accuracy > 80, the Top 1 and 2 have
significantly higher frequencies compared to the rest. The
frequency reduced significantly from Top 2 to Top 3
attributes. Interestingly, for higher accuracy (85%), we could
perceive that only 18 attributes contributing and the
frequency for the Top 4 attributes is actually doubled the
remaining. Specifically for accuracy > 85%, left-brain
dominated the contribution with total frequency of 14
frequencies. Fig. 2 illustrates the most important brain
attributes for the accuracy >85%. This result is in accordance
to reported works in depression at group-level statistical
analysis. For example, previous studies have shown a
morphometric reduction of the hippocampus (bilateral
hippocampus, left and right hippocampus, and hippocampus
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grey matter) in patients with depression compared to healthy
controls [20]. It can be seen that on overall, the most
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Fig. 1. Best classification accuracy of attribute selection-classifier combination.

TABLE II: THE MOST FREQUENT SELECTED ATTRIBUTES AND THE

CORRESPONDING FREQUENCY

ACC>T75 ACC=80 ACC>85
No Attributes /| Attributes /| Attributes f
1 Itotgm 204 | ltotgm 10 | Itotgm 2
2 lhemis 194 | lhemis 9 | lhemis 2
3 Inonlgm 182 | Inonlgm 7 | ltotesf 2
4 Itotesf 145 | ltotesf 7 | nvesf 2
5 wholebr 144 | nvesf 7 | lnonlgm 1
6 cerebrm 131 | wholebr 6 | wholebr 1
7 tothippoc 128 | Invesf 5 | Invesf 1
8 Invesf 127 | lvent 5 | lvent 1
9 nvesf 116 | rhippoc 5 | rhippoc 1
10 lvent 113 | ltotwm 5 | ltotwm 1
11 rhippoc 109 | Igmles 4 | lgmles 1
12 rtotgm 96 | totgm 4 | totgm 1
13 ltotwm 91 | nonlgm 4 | nonlgm 1
14 lgmles 91 | Inonlwm 4 | Inonlwm 1
15  totgm 84 | totvent 4 | totvent 1
16 totesf 82 | cerebrm 3 | ltotles 1
17 nonlgm 80 | tothippoc 3 | rgmles 1
18  rgmltc 78 | ltotles 3 | lwmles 1
19  rmonlgm 76 | rgmles 3 | cerebrm 0
20  ltotles 75 | lwmles 3 | tothippoc 0
*ACC: accuracy
Left Brain Right Brain

lemles
Ilhemis

Inonlgm e

)

ltotgm
ltotles
ltotwm
lvent

lwmles

Fig. 2. The most important brain attributes (4CC>85%).
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VI. CONCLUSION

In this study, several machine learning techniques for
attribute selection and classification were examined for
depression detection using the brain volumetric attributes.
The potential of attributes extracted from the brain sMRI
volumetric calculation was explored and the diagnostic value
of each attribute was investigated. The performance results
highlight the potential of depression detection from sMRI
volumetric attributes. The SVM evaluator in combination
with the EM classifier and the IG evaluator in combination
with the Random Tree classifier have achieved the highest
accuracy. However, the small sample sizes limits the ability
to draw firm conclusions. Thus, further studies with larger
datasets are necessary to generalize the results and improve
the performance of the whole detection system.

APPENDIX
APPENDIX I: VOLUMETRIC ATTRIBUTES DESCRIPTIONS
No  Attributes  Description
Non-Iesion gray matter (GM) volume in whole
1 nonlgm brain
Subcortical gray matter lesion (GML) volume in
2 gmles cerebrum
3 totgm Total GM volume
4 nvesf Non-ventricular CSF volume in the whole brain
5 totvent Total Lateral ventricle volume
6 totcsf Total CSF volume
Non-lesion white matter (WM) volume in whole
7 nonlwm brain
8 wmles WM lesion volume in the cerebrum
9 totwm total WM volume
10 totles total lesion volume
11 wholebr whole brain volume
Non-lesion GM volume in left cerebral
12 Inonlgm hemisphere
Subcortical GML volume in the left cerebral
13 lgmles hemisphere
14 ltotgm left hemisphere total GM volume
Non-ventricular CSF volume in left cerebral
15 Invesf hemisphere
Lateral ventricle volume in left cerebral
16  lvent hemisphere
17  ltotesf left hemisphere total CSF volume
Non-lesion WM volume in left cerebral
18  Inonlwm hemisphere
19  Iwmles WML volume in the left cerebral hemisphere
20  ltotwm left hemisphere total WM volume
21 Itotles left hemisphere total lesion volume
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lhemis left hemisphere volume
Non-lesion GM volume in right cerebral
rnonlgm hemisphere
Subcortical GML volume in the right cerebral
rgmles hemisphere
rtotgm right hemisphere total GM volume
Non-ventricular CSF volume in the right cerebral
rnvesf hemisphere
Lateral ventricle volume in the right cerebral
rvent hemisphere
rtotesf right hemisphere total CSF volume
Non-lesion WM volume in right cerebral
rnonlwm hemisphere
rwmles WML volume in the right cerebral hemisphere
rtotwm right hemisphere total WM volume
rtotles right hemisphere total lesion volume
rhemis right hemisphere volume
cerebrm cerebral volume
Igmtc Left caudate GM volume
lgmltc Left caudate lesion volume
rgmtc Right caudate GM volume
rgmltc Right caudate lesion volume
Iputamn Left putamen volume
rputamn Right putamen volume
lhippoc Left hippocampus volume
rhippoc Right hippocampus volume
totputamn  total putamen volume
tothippoc total hippocampus volume
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