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Abstract: Closed-loop insulin delivery system have led to significant improvement in the quality of life of 

subject with diabetes and are challenging to overcome the barrier of hypoglycemia, the most frequent 

complication of insulin therapy. The reliability of the system, composed by a computer algorithm, a glucose 

sensor and an insulin infusion device, depends on the knowledge and predictor capacity of the physiology 

of blood glucose regulation. This paper describes the physical-mathematical fundamentals and the most 

important results of a new three-compartmental model. The model includes exogenous insulin injected in 

subcutaneous tissue with local degradation, three explicit delays and three influencing 

physiologically-based parameters controlling the regulatory system. The parameters have been calculated 

through the simulation of actual clinical data and, therefore, implemented into the mathematical model to 

successfully simulate the clinical data obtained at Campus Biomedico in the normal-life regulation (1 day 

and 4 days) of diabetic patients. The estimated model parameters were physiological meaningful and 

provided insights on the subject's dysfunction. 
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1. Introduction 

Although many innovations have been made in the field of insulin manufacturing and delivery, many 

patients remain unable to achieve glycemic targets and HbA1c good levels [1]. Diabetes patients suffer from 

high morbidity and mortality rates due to complications that could be prevented with intensive treatment 

and novel technologies. Over 400 million adults currently have diabetes, and this number is expected to 

increase by 50% in the next 25 years; The global prevalence of diabetes is estimated to be around the 10% 

in both males and in females [2].  

Nowadays, the Artificial Pancreas (AP), investigated and discussed since the 1970s [1]-[4], has become a 

hot area of translational research and industrial development and likely the most promising technological 

development in the treatment of diabetes [3]-[6]. Artificial pancreas, schematically described in Fig. 1, 

consists of a closed-loop control realized through asubcutaneous system combining a sensor for the CGM, a 

control algorithm and an insulin infusion device.  

The mathematical algorithm, included in the closed-loop control, to maintain glucose concentration 

within the normal range, must cope with [4]: 

 complex biological mechanism in glucose-insulin control regulations resulting in non-linear 
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dynamics,  

 delays and inaccuracies in both glucose sensing and insulin delivery device as the intrinsic delay 

between the insulin action (time needed for the occurrence of the insulin absorption peak after the 

injection)and the measuring of the interstitial glucose concentration, 

 disturbances occurring in the system due to the meals ingestions or physical activities; the AP 

controller has to find a trade-off between slow-pace regulation (quasi-steady state) and drastic 

postprandial regulation; a slow response cannot provide a good attenuation of postprandial glucose 

peaks and an excessive responsiveness may result in system oscillations; 

The first generation of AP are actually “hybrid closed-loop systems,” due to the requirement of external 

intervention (usually for considering the mealtime and exercise). Research efforts are still needed to 

delivery fully closed-loop systems, employing artificial intelligence. The class of model-predictive-control 

(MPC), using quantitative mathematical model of the metabolic system with delays and constrains, is the 

most suitable approach for the control system implementation and has overcome the difficulties 

encountered by the standard proportional integral derivative (PID) controllers [7], [8]. 

Since the performance of the control strategy depends on the model accuracy, the modeling development 

and validation is the most critical step in the AP improvement. Starting from the “minimal” models to the 

phenomenological models (based on the actual pharmacokinetics–pharmacodynamics modeling)have been 

proposed and validated in the literature with varying degrees of complexity, different compromises 

between the number of equations and the model accuracy [9]-[14]. Most of them can be characterized by 

the expedient of assuming a large collection of tissues and organs as compartment to simplify the 

phenomenology with a system of ordinary differential equations [9]-[13]. 

In this paper, we present the results of our MPC consisting in aglucose-insulin interactions DDEs (delay 

differential equations) tested on actual clinical data. The model describes the glucose-insulin interactions in 

three compartments: the subcutaneous (SC) compartment, the plasma compartment (including the rapidly 

equilibrating tissues) and the interstitial fluid (ISF) compartment (including the slowly equilibrating 

tissues). The DDEs includes six identifiable parameters able to account for the inter-patient variability. The 

availability of realistic individual models is the basis for conducting an in-silico trial: the closed-loop control 

can be tuned individually and then tested on each virtual patient. 

 

 
Fig. 1. Descriptive scheme of the closed chain system for glucose-insulin control in an artificial pancreas. 

 

2. Mathematical Modelling 

Other authors recently that a three-compartment model incorporating a (“a priori”) knowledge of 

physiological parameters to achieve inter-patient specificity is required to describe basal glucose kinetics 
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[15], [16]. In this paper we tested a three compartmental model that takes into account the main 

physiological factors playing a role on the blood glucose curve over time and the variability between 

patients (due to gender, age, weight, lifestyle, and physiological factors). The model, extending the former 

work of Wu at al. [14], includes the dynamics of the insulin releasing, the subcutaneous adsorption. And the 

delay caused by the absorption by sub-skin tissues and by the subcutaneous glucose sensor. There are two 

glucose sources (the hepatic glucose production from the liver and the glucose intake from gut) and three 

mechanisms of glucose utilization in the model: insulin-independent, insulin-depended and renal excretion. 

There are two sources of insulin in the system: the endogenous insulin secreted by the β-cells of the 

pancreas and the exogenous insulin injected in the subcutaneous tissue. The three compartments 

represented are:  

1) the plasma and rapidly equilibrating tissues,  

2) the ISF compartment, representing the tissues slowly equilibrating with plasma  

3) the SC compartment simulating the exogenous insulin dynamic in subcutaneous tissue . 

The mathematical formulation of the glucose-insulin regulatory system consists of the DDEs that follow: 

 

�̇�𝑃(𝑡) =  𝐺𝑖𝑛(𝑡) + 𝐻𝐺𝑃 (𝐼𝑝(𝑡 − 𝜏1)) − 𝑈𝑖𝑖 (𝐺𝑝(𝑡)) − 𝐸 (𝐺𝑝(𝑡)) − 𝑘1𝐺𝑝(𝑡) + 𝑘2𝐺𝑖 (𝑡)       (1) 

 

�̇�𝑖(𝑡) =  𝑘1𝐺𝑝(𝑡) − 𝑘2𝐺𝑖(𝑡) − 𝑈𝑖𝑖 (𝐺𝑝(𝑡), 𝐼𝑖 (𝑡))                   (2) 

 

�̇�𝑃(𝑡) =  𝑘𝑎1𝐼𝑠𝑐(𝑡) + 𝛼 ∙ 𝑆 (𝐺𝑝(𝑡 − 𝜏2)) − 𝑚1𝐼𝑝(𝑡) +  𝑚2𝐼𝑖(𝑡) − 𝑘𝑒𝐼𝑝(𝑡)             (3) 

 

�̇�𝑖 (𝑡) =  𝐼𝑝(𝑡) − 𝑚2𝐼𝑖(𝑡) − 𝑚4𝐼𝑖(𝑡)                         (4) 

 

�̇�𝑠𝑐(𝑡) = 𝑈(𝑡 − 𝜏3) − 𝑘𝑎1𝐼𝑠𝑐(𝑡) − 𝑘𝑒1𝐼𝑠𝑐(𝑡)                      (5) 

 

where 𝐼𝑝 and 𝐼𝑖 are the plasma and ISF insulin in the insulin sub-system, 𝐼𝑠𝑐 is the insulin injected 

through the SC-compartment; 𝐺𝑝 is the plasma glucose and 𝐺𝑖 is the ISF glucose. S is the insulin secreted 

by endocrine pancreas; HGP stands for the glucose hepatic production; 𝑈𝑖𝑖 is the insulin-independent 

glucose utilization; 𝑈𝑖𝑑 is the insulin-dependent glucose utilization; 𝐸 the renal excretion; 𝐺𝑖𝑛is the 

glucose intake rate and 𝑈 stands for the exogenous insulin [14], [17]. Insulin-dependent glucose utilization, 

depending on both insulin and glucose levels according is reported in  the following equation: 

 

𝑈𝑖𝑑(𝐺𝑖,𝐼𝑖 ) =  𝛽 ∙ 0.01𝐺𝑖/𝑉𝑔𝑖 ∙ {4 + 90/ [1 + 𝑒𝑥𝑝 (−1.772𝑙𝑜𝑔 [𝐼𝑖 ∙ ( 1

𝑉𝑖𝑖
+

0.03

𝑒
)] + 7.76)]}        (6) 

 

Insulin-independent glucose utilization is mathematically formulated by Eq 7.  

 

𝑈𝑖𝑖(𝐺𝑝) = 72 [1 − 𝑒𝑥𝑝 (−
𝐺𝑝

144𝑉𝑔𝑝
)]                              (7) 

 

The hepatic glucose production increases with the decreasing of plasma insulin concentration; the 

glucagon concentration is not included in this model. The function HGP,  represents the effect of insulin on 

the glucose production. High insulin concentrations completely inhibit glucose pr oduction, whereas lower 

insulin concentration increases the glucose output as reported by the following equation:  
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𝐻𝐺𝑃(𝐼𝑝) = 170/[1 + 𝑒𝑥𝑝 (0.29(
𝐼𝑝

𝑉𝑖𝑝
− 17.5))]                     (8) 

 

Renal excretion occurs in the regulatory system when the plasma glucose level is higher than a threshold 

value as in Eq.9. The parameter values can be found in the cited literature [14], [17]. 

 

𝐸(𝐺𝑝) = 0.0005[𝐺𝑝(𝑡) − 𝑘𝑒2 ∙ 𝐵𝑊]                            (9) 

 

The Gut absorption profiles simulate the condition of the m-th meal ingestion 𝐺𝑚 at time 𝑡𝑚. Glucose 

input 𝐺𝑖𝑛 is obtained by integrating all meal intake 𝐺𝑚 andinterpolating the experimental data. 

 

𝐺𝑖𝑛(𝑡) = ∑ 𝐺𝑚(𝑡 − 𝑡𝑚) ∙ 𝒰(𝑡 − 𝑡𝑚)∀𝑚∈𝑀                        (10) 

 

The model includes insulin Lispro kinetics with bolus and continuous subcutaneous insulin infusion (CSII) 

ways of delivery. The insulin is absorbed in subcutaneous tissue with a time delay before its appearance in 

plasma. Insulin secretion in the bloodstream is stimulated by high plasma glucose concen tration as showed 

in the following equation: 

 

𝑆(𝐺𝑝) = 210/[1 + 𝑒𝑥𝑝(5.21 − 0.003𝐺𝑝/𝑉𝑔𝑝)]                 (11) 

 

Table 1 reports the definition and explanation of the inter-patient adjustable parameters reported in the 

model. Further details on the discussion of physiologically-based parameters are reported in the literature 

[14], [17]. 

 
Table 1. Definition and Explanation of the Inter-Patient Adjustable Parameter 

𝜏1 

Time delay of hepatic glucose production from glycogen stores (in minutes). It presented strong inter-patients 
variability due to the complexity of the hepatic mechanisms since it is due to the liver stimulation by the plasma 
insulin. 

𝜏2 Time delay of pancreatic insulin production. 

𝜏3 Time delay of insulin subcutaneous delivery (with a little inter-patient variability due to the subcutaneous tissue 
resistance after a prolonged use). 

𝒌𝒂𝟏 Mass transfer rate constantof exogenous insulin from subcutaneous tissue to plasma compartment; individual variable 
parameter based on subject’s clinical data (in the range 0-1 min-1) 

𝜶 Residual capacity of pancreas to produce insulin in relation to high blood glucose level (in the range 0-1). 

𝜷 body sensibility to the insulin action in stimulating both glucose uptake and metabolism. The values (in the range 0-1) 
were over 0.7 in agreement with type 1 diabetes that do not present insulin resistance. 

 

3. Results and Discussion 

This model has been tested by simulating the clinical data, during normal life 1 and 4 days, from T1D 

patients attending the Endocrinology and Diabetes Department of University Campus Bio-Medico in Rome. 

The therapy pump allows setting a basal rate insulin delivered all throughout the day and night for normal 

body function without food and a bolus (or dose insulin on demand). Some model parameters assumed 

fixed values for each case study, both fixed and experimentally determined through the simulation of th e 

clinical case studies).  

The identification of the six parameter of Table 1 (influencing the behaviour of glucose regulation system) 

allowed to tailor the simulation on the real clinical scenario (patient customization).Total time delay 
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resulted in an overall 100 min or more; the time-to- peak of the plasma insulin concentration for 

short-acting insulin is 50-60 min followed by the delay in the insulin action (30-40 min) and the delay 

relative to the glucose diffusion from the plasma to the interstitial fluid of 10-20 min. 

Fig. 2 and 3 depict the values of 𝐺𝑖(𝑡), both simulated and experimentally evaluated, relative to one 3 

cases studies, the first two, reported in Fig.2, for 1 life day and the last one, reported in Fig. 3, for 4 life 

days.The model output is represented by a continuous blue line, the red line represents the clinical data 

collected by the continuous glucose monitoring sensor; at the bottom of Fig. 2 and 3, the green solid curve is 

the injected insulin whereas the grey dashes curve represents the gut-absorption dynamic. While insulin is 

represented by a discrete input with respect to time (histogram) the contribution of cairbodrati is delayed 

over time thanks to the use of the absorption model (a.11). 

 

 

 
Fig. 2. Glucose level profiles with the simulation and the insulin and Glucose Intake for two patients  during 

1 life day. 

 

From the aforementioned figures it is evident the good agreement, from a qualitatively point of view, 

between clinical data e simulated curves. Globally, the proposed model gives a good representation of 

biological regulation system. From the knowledge of the physiologically based parameters of Table 1, the 

meal glucose uptake and insulin injected (the main input of the insulin-glucose regulation model) the 

simulated glucose level is in good agreement with the measured pattern that significantly decreases after 
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insulin injection. This model has been preliminary compared to the model of Wu et al., [14], showing 

promising results [17]. 

 

 
Fig. 3. Glucose level profiles with the simulation and the insulin and Glucose Intake for one patient during 4 

life days. 

 

4. Conclusions 

MPC reached a good representation of biological regulation system as proved by the pertinent literature 

and the three compartmental model, here described. The differences between the simulation and 

measurement might be causedby other disturbances:  

 the physical activity: exercise increases rates of glucose uptake and rates of endogenous glucose 

production must increase to meet the increased metabolic demands of the muscles to prevent 

hypoglycemia.  

 subject's condition: glucose-insulin system may be disrupted by severe diabetes. The severity of diabetes 

may cause the model inability to predict glucose level. Other important factors in diabetics may be 

obesity, the stress and all the pathologies correlated with diabetes.  

 Influences of other hormones and nervous system, usually not considered in this kind of works.  

The physiologically-based approach allows to personalize the AP and to increase the clinical knowledge 

to better define the therapy. Although this work has the advantage of obtaining characteristic parameters of 

disease and physiology, our research group is working on hybrid black-box approaches to further improve 

the predictive capacity without losing the information regarding the actual phenomenology of the AP 

system. 
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