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Abstract: This is a mathematical modelling study in computational science that recognized patterns used 

based on the biological data. The biological data were obtained through the number of clusters and the 

shape of each clustered means Interaural Level Differences (ILD) and were both analytically examined by 

the data classification study. Then the result of the classification study trained by the Artificial Neural 

Networks to build a master-template for a single array. Here, these typified single array patterns were 

exclusively tested for several curve fitted functions and the outcome was the probability density functions 

“pdf” with the linear regression parameters. This initial evaluation confirms two Gaussian functions were 

both suitable models for the data sets, and then coefficients of these functions verified for a correlation to 

be validated. In conclusion, a parameterized first-order Gaussian function can be used as the mathematical 

model for all ILD patterns; the energy efficiency is also discussed.  
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1. Introduction 

This paper introduces a new approach to develop a mathematical modelling from clustered data. There 

have been many modelling applications in machine learning, and considering to derive an algorithm from 

biological data sets; for recently examples, using the taxonomic levels of microbiomes information that 

helps to predict the time of death of the human cadaver [1] or predicting relationship trouble from vocal 

patterns in couples’ speech [2], or developing hearing devices [3]. The patterns used for this study also 

came from the biological data sets, in next subsection.  

1.1. Recognized Patterns: The Biological-data, ILD 

One of the sound localization cues is the ILD; these common shapes of ILD sensitivity functions as 

recognized patterns have been classed in four “general” forms [4]. These four classical patterns) are namely 

Insensitive, Peaked, Sigmoidal-IE, and Sigmoidal-EI, and show similarity across four important auditory 

nuclei. However, in a previous ILD data classification study showed that the “seven” number and “similar” 

types of generic ILD function patterns methodologically verified. This following method is a non ad hoc 

basis and mapped well on to the electrophysiologically determined ILD sensitivity functions [5]. In this 

analytical work, the data were collected from the central part of the inferior colliculus (ICc,) (it is the certain 

part of the rats’ brain used as an experiment animal), and the ILD sensitive neurons have been observed and 

the formation of ILD patterns occurred in the auditory nuclei. These recognized patterns in the ICc also 

show similar patterns in other mammals such as in cats, bats or in rats [6]-[8]. 

The justification of ICc selection for the data; several auditory nuclei contain cells that code binaural cues 
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and therefore are likely to be involved in sound localization. The data collected for “ILD patterns” have come 

from the center of IC; the IC has been focused upon because (a) it is an obligatory auditory nucleus both in 

addition to general and in respect to sound localization in particular, (b) it is the site at which binaural cues 

converge in at least some species [9], (c) it is easy to collect electrophysiological data on ILD coding and 

such coding here is very similar to that seen within the auditory cortex, and (d) although ILD coding is 

present in sub-colliculi structures, there is good evidence that it is generated de novo within the IC, 

suggesting that this is an important structure in ILD-based sound localization. 

1.2. Using Curve Fitting Techniques 

A literature search for the data curve fitting application was carried out and with the limited results 

found in the auditory related studies. For example, Gaussian and Sigmoidal curve fitting functions were used 

to compare the relationship between discharge rate and azimuthal sound location and the goodness of fit 

also examined by the correlation of these curve fitting function coefficients [10]. Although the Groh’s 

method was similar to this methodology, the motivation of the study was not developing the mathematical 

model. Few other curve fitting applications are; in the auditory filter bank design that used a least-squares 

criterion to fit a 7th order polynomial curve fit to data [11], and another filter design application which was 

used in tuning the curves of an auditory nerve fiber utilizing the filter of a 9th order nominator and 9th order 

denominator fit to each measured data [12]. A similar application was in the evoked potential, using an 

exponential curve fit by [13]. Another, exponential curve fit case was previously used by Ponton, but was 

replaced with a least-square single time-constant nonlinear curve fit for the brain-stems auditory response 

signals data [14]. The other model looks at how, the nonlinear curve fits into the auditory averaged 

electroencephalic responses data [15], or how a waveform from the motion of the swim-bladders of fish in 

the Peripheral auditory systems mechanics fits; which was using a least-squares technique [16]. 

The most related curve fitting method to this technique was compared: In a study of intensity coding for 

frogs it was shown that calculating dynamic range based on the curve fitted function of a monotonic 

rate-intensity function [17]. Eggermont utilized a sigmoidal function to fit the data, using different 

variations of standard deviation. This approach was also applied to the parameters of the pdf models. This 

curve fitting technique was previously proposed in the use of automatic pattern recognition for the 

Auditory Brainstem Response (ABR) waveform, [18]. The number of curve fitted functions examined to 

select the suitable function to be modeled for ABR. The result was the parameter of this mathematical 

modelling of ABR pattern, and suggested to utilize as an automatic health diagnostic tool. 

2. Method 

A two-step procedure was applied for Neural Network trained clustered data “seven group of ILD 

patterns,” using the curve fitting toolbox of MATLAB. In this manuscript, the result from the Neural Network 

trained clustered data were used as a master-template, instead of averaging clustered data-points as were 

in [18] with reasons detailed in the [19]. The first step is to find the suitable curve fitting functions if it is 

appropriate for the master-template then second step is to assess the first step’s result for filtering in some 

of the curve fitting functions, namely 1st and 2nd order Gaussian functions. This curve fitting assessment is 

simply carried out a group of statistical data-analysis including the linear regression for varying the 

coefficients of the curve fitted functions. The results from the goodness of fit, confidence limits, and 

linearity tests; they all were used to verify the suitability of the curve fitted function. The variations of the 

Gaussian coefficients were examined to find any systematic differences or linear relations (correlations) 

between each of clustered data. This examination was necessary to build a mathematical model for all ILD 

patterns where towards a generalization work was based on the relationship of these varying coefficients. 

Using pdf on the estimation technique had been previously established, [20]. Here, the result of the first 
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step needed to find out if the pdf (the normal distribution) [21]) with two parameters, namely “μ” mean and 

“σ” standard deviation (or σ2 as a variance) were both capable of producing normalized ILD patterns. The 

systematically variations of these two parameter values of pdf produced 432 different types of plots and 

252 of them plots was visually examined for the suitable in seven “normalized” ILD patterns, Appendix. 

 

 

Fig. 1. ANN trained Cluster 1 through 7 data (asterisk) points and fitted second-order Gaussian model 

data (solid line) within 95% confidence limits were organized by seven windows; more details are in 

the Appendix. 
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Those two sets of seven parameter values were tested for their linearity, and the result of the linearity 

assessment helped to select the suitable curve fitting function from the 1st and 2nd order Gaussian functions. 

The next step was to resolve which Gaussian functions would be a more appropriate choice for all ILD 

patterns that was also based on the linearity test for their seven sets of coefficients.  

 
Table 1. The Values of Six Coefficients from the 2nd Order Gaussian Curve Fit 

Cluster 
No: 

The coefficients of a 2nd order Gaussian model 

a1 b1 c1 a2 b2 c2 

 

#1 0.4504 14.899 2.6866 1.1955 19.509 9.1909 

#2 0.5755 10.198 2.7534 1.3832 20.855 9.5695 

#3 0.9696 12.630 4.8823 0.6599 7.6572 1.7055 

#4 0.5879 9.8477 4.5252 0.5747 7.5732 1.6753 

#5 0.7669 9.4160 3.3590 0.3477 8.2000 1.3660 

#6 0.6481 7.1268 3.2330 0.5961 34.132 38.681 

#7 0.9161 2.4890 11.280 1.9281 28.541 13.853 

 

2.1. Mathematical Representation of the Group of Data Using Curve Fitting 

The curve fitted for each of the seven patterns of ILD functions (master-template) were initially tested by 

the curve fitting toolbox to find the suitable Gaussian function. The 2nd order Gaussian function with 

six-coefficients was presented (1), and the fit options for the Gaussian models parameters and goodness of 

fit statistics were also explained in detail, Appendix. The 2nd order Gaussian functions used in the model 

fitted all seven data cluster sets. The coefficients (a1, a2, b1, b2, c1, and c2) varied for each seven ILD patterns. 

 

𝑓(𝑥) = 𝑎1e
−(

𝑥−𝑏1
𝑐1

)
2

+ 𝑎2e
−(

𝑥−𝑏2
𝑐2

)
2

                         (1) 

 

The coefficients of the 2nd order Gaussian functions vary by the fit to each of the master-template, and the 

values of these coefficients were tabulated in Table I. Each set of coefficients was also included within the 

inset of the figures (Fig. 1). The default values of the parameters for the curve-fitted function were tabulated 

in the Appendix. The analysis of fitted curves for the master-template resulted in seven sets of coefficients 

where these values are presented in Table I and insets of the figures (Fig. 1). Two groups of seven 

curve-fitted coefficients were also depicted in six boxes (Fig. 1) and their linearity examination in Fig. 2. The 

linearity examination was tested for each group of six coefficients, which were obtained from the curve 

fitted functions. The 1st order polynomial model Least Squares Fit Line (LSFL) was applied to these groups, 

one-by-one. For example, the first group of seven “a1” coefficients was presented in “BOXa1” in Fig. 1, as well 

as the linearity test of seven “a1” coefficients in the first window of Fig. 2. In the end, the resulting linearity 

tests showed that six groups of seven coefficients all varied in linear variation according to the 1st order 

polynomial model LSFL, (Table II). The results from the 1st order polynomial model showed seven 

coefficients and so their curve fitted data were linearly related to each other. Each “p1” and “p2” values for fit 

line were termed for the coefficients. 

 
Table 2. First-Order Polynomial (p1.x+p2) Model Used for Testing the Linearity of Six Coefficients 

 C O E F F I C I E N T S  

Polynomial a1 b1 c1 a2 b2 c2 

 p1 0.0478 -1.664 0.9006 0.0111 1.9350 2.5670 

p2 0.5107 16.170 1.0720 0.9105 10.320 0.5961 

 

The coefficients from the 2nd order Gaussian curve fit were all positive numbers that varied between 

+0.34 and +38.68. These values are also presented in a group of six boxes (Fig. 1), with their linearity 
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examination in Fig. 2. On the left-hand side of Fig. 2, three windows showed the coefficients of “a1”, “b1”, and 

“c1”, which were from the first part of (1). On the right-hand side of the same figure (Fig. 2) three windows 

showed the coefficients of “a2”, “b2”, and “c2”, which appeared as the second part of the same equation, (1). 

The LSFL is applied for each group of the coefficients as a linearity test, Fig. 2. The linearity test of the 

coefficients was separately examined (i.e.; seven “a1” from seven ILD data clusters, seven “b1” from seven 

ILD data clusters, etc.) six coefficients were tested by the “LSFL” method. All 42 coefficients (six coefficients 

for each of the seven ILD data clusters) were tabulated in Table I. Each variation was fitted for each set of 

coefficient by the 1st order polynomial model; their coefficients (“p1” and “p2”) are both expressed in Table II. 

The statistical results are expressed in terms of goodness of fit for a LSFL versus each coefficient from the 

2nd order Gaussian model depicted in Fig. 2. The closer the values of SSE and RMSE are to zero the better the 

fit, in contrast to a higher value for the R2 and Adj.R2 approaching one being a better fit (Appendix) for the 

1st order polynomial model of the coefficients (a1, b1, c1, a2, b2, and c2), Table 3. 

 

3. Results 

In summary, the ILD patterns were reviewed as clustered data; for ongoing high frequency sounds, the 

major cue is the difference in intensities produced at the two ears as a sound moves around the head. In 

mammals, it appears that this cue is first functionally coded by neurons in the auditory midbrain and occurs 

through a variety of interactions between excitatory and inhibitory inputs ultimately emanating from the 

two ears in mammals as one of the important sound localization cues. In a previous data-classification work 

Fig. 2. The coefficients of a 2nd order Gaussian curve fit are presented for each of the 7 ILD patterns. These 

fitted values of the 6 coefficients were individually grouped for the comparison; more details are in the 

Appendix. 
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[5] using ILD data, which was extracted from the extracellular recordings that were collected from a rat’s IC. 

A brief description of a previous data classification study was explained that averages were first verified 

from all ILD patterns in each of the seven clustered data to identify the prototypical ILD pattern in that 

cluster. Then, statistical data analysis methods were applied to differentiate between the ILD patterns. The 

result disclosed seven different prototypical ILD patterns, found from the three broad categories of ILD 

patterns, namely peak, sigmoidal (two types “EI” & “IE” of them) and insensitive ILD patterns. Nearly 85% 

of the electrophysiological data were of the peak and sigmoidal type of ILD patterns. These analyses were 

completely congruent with the Cluster Analysis and the seven ILD pattern types from statistical analyses 

corresponded very well with the seven ILD pattern types determined by a previous Cluster Analysis [5]. 

 
Table 3. The Statistical Analysis of the LSFL for 2nd Order Gaussian Model 

Goodness 
of fit 

C O E F F I C I E N T S   (2nd order 
Gaussian) 

a1 b1 c1 a2 b2 c2 

SSE: 0.1528 16.840 32.440 1.9140 588.60 861.20 
R2: 0.2955 0.8215 0.4118 0.0018 0.1513 0.1764 
Adjusted R2: 0.1546 0.7858 0.2941 -0.197 -0.018 0.0116 
RMSE: 0.1748 1.8350 2.5470 0.6187 10.850 13.120 

 
Table 4. The Statistical Analysis of the LSFL for PDF  

1 s t  O R D E R  P O L Y N O M I A L  ( p 1 . x + p 2 )  
T h e  m o d e l  u s e d  f o r  L e a s t  S q u a r e  F i t  L i n e  

G O O D N E S S  O F  F I T    

pdf ADJ.R2 SSE R2 RMSE p1 w/ 95% C.L. p2 w/ 95% C.L. 

µ 0.875 9.964 0.896 1.412 -1.75 (-2.43; -1.06) 17.57 (14.5; 20.64) 

σ 0.172 41.96 0.310 2.897 0.8214 (-0.58; 2.23) 0.8571 (-5.43; 7.15) 

 

Curve fitting has been used for many applications where it may be categorized as a parametric and 

non-parametric data fitting procedure. Due to the results of the many pdf observations, a Gaussian type of 

parametric fit was suitable for seven clusters of ILD data; this observation was also verified by the linear 

variations of two parameters, “μ” and “σ”. Then 2nd order Gaussian function (1) is applied to the 

master-template. The results of six coefficients obtained from a 2nd order Gaussian curve fit model 

presented two issues; (i) the linearity examination of the data and (ii) a 1st order Gaussian fit was sufficient 

for data use. The 2nd order Gaussian fit was (too generic) statistically less descriptive and had difficulty 

interpreting the ILD data model. Therefore, a pdf for ILD data patterns was revised for the 1st order 

Gaussian model that uses two statistical parameters (standard deviation and mean) instead of using just 

two-set of three parameters (a1,2, b1,2 and c1,2). 

1) The spike counts of each ILD data points were resulted from the Neural Network trained seven 

clustered data (e.g., the “Cluster 3” was composed by 21 similar types of ILD patterns, Appendix – Fig. 

8; the ILD patterns incidentally showed similarities within the results of averaged ILD data-points). 

2) Gaussian curve fitted functions were suitable for all seven ILD patterns, within other curve fitted 

functions (i.e. exponential, hyperbolic, sum of exponentials, and etc.). 

3) The coefficients of curve fitted (a) 2nd order Gaussian function, (b) 1st order Gaussian function, and (c) 

the variation of the pdf parameters were all statistically examined; the goodness of the curve fit was 

within the 95% confidence bounds. 

4) The statistically descriptive values for these coefficients were obtained with the curve fitted 

functions, and the values were compared to conclude the mathematical model for the ILD patterns. 

3.1. The Result of the 2nd Order Gaussian Curve Fitting 
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The seven ILD patterns were used as a master-template to find a suitable curve fit model for each group, 

using the curve fitting toolbox 1.1 of MATLAB (Appendix). There were two reasons to apply curve fitting to 

the seven clustered data: (a) in order to examine the correlation among these seven data parameters, which 

are continuous variables, and (b) to convert the discrete data (i.e. ILD functions) into a continuous variable. 

The 2nd order Gaussian function was initially nominated as a model for all seven clustered data within 95% 

of two (upper and lower) confidence limits, as shown in Fig. 1. The next stage, involved a search for linearity 

of the coefficients from the Gaussian model, these coefficients were observed in six different groups (Fig. 1) 

to show the distribution of coefficients. These coefficients, especially “b2” and “c2”, were sparsely distributed 

and appeared in “BOXb2” and “BOXc2” in comparison to coefficients “b1” and “c1” which appeared in “BOXb1” 

and “BOXc1” (Fig. 1). 

1) The result of the set of coefficients distribution is shown as a box representation (Fig. 1) and is 

examined by the coefficients of a 2nd order Gaussian curve fit (Table I). 

2) The result of the LSFLs in Fig. 2 shows linear fitting as a more suitable option for the “a1”, “b1”, and “c1” 

(first three set) coefficients than the (second three set) “a2”, “b2”, and “c2” coefficients. 

3) The result of the goodness of fit test parameters examined for the 1st order polynomial “linear-fit” 

model in Table IV with, parameters are detailed in the Appendix. 

The conclusion was induced from the obtained results of the three elements above; (i), (ii) and (iii) 

establishing that a 1st order Gaussian function (2) is more suitable to use for ILD data model rather than 

using a 2nd order Gaussian model. Although a 2nd order Gaussian function curve fitting is adequate within 

the 95% confidence limits the linear variation of the first set of three coefficients (“a1”, “b1”, and “c1”) are 

better then the second set of three coefficients. In other words, a 1st order Gaussian curve fit (2) or a similar 

type of normal distribution can be used as a model for clustered data representations. This result is also 

supported by one of the 10 different types of distributions that are “physiologically” mentioned among 200 

interspike interval histograms [22]. 

 

𝑓(𝑥) = 𝑎1𝑒
−(

𝑥−𝑏1
𝑐1

)
2

                                     (2) 

 

3.2. The Results of the pdf, and 1st Order Gaussian Curve Fit 

The pdf of a normal distribution is the parameterized 1st order Gaussian function (comparing the 

equations (3) to (2)) and because of this comparison a pdf can be used as a model for ILD data. The 

application of pdf distribution for the seven data clusters and its rational will be addressed. A 1st order 

Gaussian function containing only three coefficients (a1, b1, and c1) (2). A 1st order Gaussian curve fit is good 

enough to be used in ILD data, instead of using a 2nd order Gaussian curve fit, expressed in (1). 

The systematic variation of a normal pdf parameters’ value (“µ” and “σ”) could help generate a different 

shape for a 1st order Gaussian type function. The 13 data points, “x” variables corresponded to an ILD 

function (a change from +30 dB to -30 dB with 5dB decrements), and a number of spike counts which are 

represented by the output of a normal pdf shown as a model. The ILD data clusters with their pdf 

distribution models are both formed to be shown in Fig. 3. The linearity, changes of a models parameters 

(“µ” and “σ”) are separately examined in the last two windows of Fig. 3. The values presented by “µ” express, 

means and “σ” expresses the standard deviations linear variation, which is also supported by a LSFL. The 

pdf of a normal distribution is a 1st order Gaussian function. The pdf depends on the “x” variable with two 

other statistically significant parameters; “µ” and “σ”. 

𝑓(𝑥|𝜇, σ) =
1

√2.𝜋.𝜎2
e

−(
𝑥−𝜇

√2.𝜎
)

2

                                 (3) 
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The conclusion between the ILD data clusters and a pdf model for each cluster is correlated, and this 

correlation can be expressed as: 

1) Seven ILD data clusters are constituted by a combination of excitation and inhibition effects of the 

neuronal inputs, which are shown in Appendix - Fig. 8. The inputs effect on Cluster 1 shows an 

ipsilateral inhibition and contralateral excitation. In next window, this excitation shows domination 

from contralateral to ipsilateral, and the ILD data cluster shapes turn into a sigmoidally shaped 

function (in the windows of Cluster 2 and Cluster 3). The balanced excitation and inhibition inputs 

for ipsilateral and contralateral are to produce a peaked type of formation (in the windows of Cluster 

4 and Cluster 5). The plateau of a peaked type formation starts becoming flatter in Cluster 6 and 

turns out to be an insensitive type of ILD function in Cluster 7 this means that too strong of an 

excitation totally dominates both the ipsilateral and the contralateral. The transition from an 

Exponential through to a Sigmoidal then to a Peaked to an Insensitive type function can be expressed 

in a 1st order Gaussian or pdf type model with “statistically more informative” varying parameters. 

2) These two “µ” and “σ” parameters are varied to show seven models (from model 1 to model 7) that 

are compatible with seven ILD data clusters, in detail explained in the Appendix. 

The LSFLs are used for the parameters (“µ” and “σ”) of the pdf distribution, and their goodness of fits are 

examined by the coefficient variations of these models, to see if they are linearly distributed. The p1 and p2 

are within the 95% (C.L.) confidence limits. The variation of all “µ” values is shown to be more linear than 

that of the values produced from the “σ”, this is also confirmed with the comparison of goodness of fit; “SSE” 

with “RMSE” values are closer to “zero” and “R2” with “Adj. R2” values being closer to “1” (Table IV). 

The LSFL is used to test the linearity of the statistical parameters (“µ” and “σ”) within seven pdf models. 

Fig. 3. The results of ILD clustered data are presented in dashed-lines. The normal pdf distribution is used as 

a model, shown in solid-lines varied by the parameters of “µ” and “σ” (these two parameter variations are 

both examined for the linearity by LSFL. 
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The linearity tests results show that seven standard deviations of pdf models are not linearly distributed. On 

the other hand, seven “µ” values are linearly distributed for all seven pdf models, Fig. 3. The linear variation 

of seven “µ” parameters is significantly informative for the pdf type models variation. One of the 

“parameters” pdf “σ”, and the variation of the “σ” values change exponentially, which does not validate the 

linearity test of the models. The non-linearity variations of “σ” values in seven pdf models are found to be 

inconclusive for this work. The reasons for an inconclusive result was; (i) the linearity test was not based on 

only “µ” parameters, and (ii) The “σ” and “µ” parameters were both data dependent, meaning that these 

parameters (from a normal pdf in (3)) could also be expressed as part of a cluster where the coefficients (a1, 

b1, and c1) of the 1st order Gaussian function (2) are not data dependent. These coefficients are varied and 

only one out of the seven ILD data clusters were selected. 

The resulting 1st order Gaussian function is sufficient enough in serving as a seven clustered data model 

instead of using just normal pdf distributions. The only disadvantage of a 1st order Gaussian function is that 

it has three parameters when compared to a normal pdf distribution with two parameters. However, the 

three coefficient values (a1, b1, and c1) of a 1st order Gaussian function are all linear (Fig. 2), and this feature 

helps link the clustered-data variation. The Sigmoidal through to a Peaked to an Insensitive and others, 

which all together show seven ILD functions that can be modeled by a 1st order Gaussian function. The 

variations of the three coefficients of a Gaussian function (increasing in “a1” and “c1” values while 

decreasing its “b1” value) can be concluded in defining the ILD functions with their transitions (from 

Sigmoidal through Peaked to Insensitive). 

4. Discussion 

In this section, the importance of mathematical modelling was briefed with a few examples. A recent 

trend in machine learning applications mentioned with the rapid progression of recognized patterns based 

algorithm development.  This trend also refers “how the ILD patterns result that fits in the current 

understanding of mathematical modelling,” here. Investigation the reasons behind the biological neural 

network’s encoding mechanism shows the Gaussian type function, and the Gaussian type function hints the 

energy efficiency feature of the neuronal networks which is similar to the energy equilibrium of 128 years 

old Nernst’s equation. The use of Gaussian functions has already been explored for wireless communication 

systems, where energy consumption increases significantly with distance. 

4.1. Development of a Mathematical Modelling from Recognized Patterns  

In nature, patterns show distinctive formations that can be recognized by their outlines (i.e. the shape of 

2D or 3D objects). The configuration of such recognizable patterns is not only an emergent property of 

biological neural networks in the brain, but they can also be observed in nature. A good example of this is 

murmuration; a group of animals running away from a common predator displayed is a type of clustered 

pattern. This synchronized motion of animals is common among a flock of birds, school of fish, or a cloud of 

grasshoppers that can all be explained as herd behavior. Captivatingly, some of these crowd behavior 

models have already been expressed mathematically, as mentioned in [23]. The advantages of having the 

mathematical model of the system “in advance” can be beneficial (i.e. when a crop needs to be protected 

from the cloud of grasshoppers, or where the trade fishing becomes too competitive to catch fish). 

Naturally there are a few good explanations, which form these types of patterns; the observation of 

patterns and its variations may carry cues for the system with its information.  The information of patterns 

can therefore be a response characteristic of the system, where any fluctuation of the pattern is an 

indication of the changing steady state. For examples; birds fly in a “V” formation; this energy efficient 

behavior of a flock of birds is a pattern which helps conserve energy for each individual bird [24]. The flocks 

“total” energy efficient behavior can be mathematically deduced from the Bernoulli’s equation with 
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dimensional analysis [25]. Another example is the physiology of hearing organ and its sound localization 

capabilities are both closely linked to the statistics of naturally encountered binaural sounds [26]. Actually, 

the purpose of pattern recognition is to understand a way of representing an “event-actuated” perception 

statistically. 

4.2. Why Do We Need a Mathematical Model? 

The purpose of the math modelling can be underlined: 

(i) To better understand the functionality of the system or to use as a knowledge enhancer, 

(ii) To define a complex structure with a simplification using building blocks, and 

(iii) To develop a mathematical expression which can be plausibly implemented within the real world. 

Modelling is a powerful tool, and is capable in describing a system by mimicking its process; a system as 

simple as a mechanical or electrical process or even as complex as the human mind [27], human behavior 

[28], or a cluster of neuronal activity under stimulation as shown in this proceeding can be powerfully 

explained with the use of modelling. These specific activities can be observed as well as related to the 

patterns that can be recorded while under stimulus, for example in rats. These sequential patterns are the 

sign of activities occurring based on the stimulus. 

Brain object recognition is a recognition task that is related to the neuronal firing patterns; this object 

recognition test is also confirmed by a thousand images observed in the visual areas of monkeys [29]. 

Pattern recognition is a data processing procedure in mammalian brains; proving that perceptions such as 

vision, pain and hearing are encoded in order to bring meaning to the external world. In order to 

understand this mechanism and derive a model to present this system there are two ways. The first is a top 

down hierarchy while the other is the bottom up model used to represent the system. The top down 

methodology selects a suitable model to fit the data, which requires verification, simulation and validation 

steps, and is a fast approach. The Bottom up methodology requires more tedious work and a more 

comprehensive study to work with the data.  The advantages of the bottom-up modelling methodology 

(practiced here) are mainly that (i) can be used for many different types of data, and (ii) the collected data 

can be recorded from many different areas, which can display a functionally specific region of the brain. 

4.3. For Future Application 

A mathematical function, which is a result of the analysis of a waveforms “data”. These waveforms store 

important information that can be used to describe a network simulation. The response characteristic of a 

network model was similar “functionally” to the neuronal network (mentioned above). It is therefore 

possible to devise an electronic circuit from the described network for simulation, which can be utilized as 

an emulator. This similar hardware approach was also explored for simulation of a neuronal network [30]. 

The motivation of mathematical modelling studies has been explored in: 

(i) The Gaussian function related to modelling studies has already been explored; an estimation 

theory model in sound localization [31], for the decoding of sound positioning [32], has been better 

explained for a rat’s somatosensory cortex [33]. 

(ii) The importance of mathematical modelling studies are also emphasized in other applications: (a) 

An experiment on the behavior of animals in the investigation of dopamine responsive cells, [34], (b) The 

grid cell firing patterns explored; to build a mathematical model to observe the grid cells’ behavior [35], and 

(c) Modelling demand has drastically been increased in natural sciences which many companies are 

developing mathematical modelling toolboxes for [36]. 

(iii) It is not unusual to describe complicated system’s dynamics with simple mathematical models 

[37]; such as, The Mandelbrot set is a type of fractal geometry that can be defined as “Zn+1= (Zn)2 + c” [38], 

or the equation for intelligence is simple as “F = T ∇  Sτ” [39]. 
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The result of the ILD pattern analysis concludes that a meaningful mathematical model can be developed, 

and this model is as simple as a 1st order Gaussian function; it can be used to represent all varying ILD 

patterns by varying only the three coefficient values “a1”, “b1” and “c1” of a 1st order Gaussian function. 

4.4. What Is the Reason Behind the Gaussian Function? 

If the brain is considered to be a system then a simple building blocks are individual neurons with their 

stochastic behaviors [3]. The different number and types of individual neurons can be grouped to construct 

neuronal networks, and groups of these neural networks outline the functionally specific regions, and the 

intrinsic structure of many functionally specific regions may put together for an effective information 

processor pathway. The size, complexity, morphology even the capability these building block structures 

can be varied; yet the function ought to be an energy-efficient. 

Our brains operate with a functional efficiency [40]; a single action potential generation is based on the 

inside “Vin” and outside “Vout” of the potential differences in a nerve cell’s membrane and can be explained 

with the equilibrium of ions (Iinside) with (Ioutside) the concentration found by [41]. More than a century old 

Nernst's-equation which, defines the voltage differences “Vdifferences” of a cells membrane potential with a 

logarithmic function of the ions ratio across channels [42]. This equation (4) can also be rewritten as an 

exponential function (i.e. in the Eq.17.1 of [43]) with this equation being similar to a 1st order Gaussian 

function. The Nernst Equation can be reorganized with the parameters of “F” is Faraday’s constant,  “R” is 

the gas constant, “T” is absolute temperature (°K), and “Z” is the valence of the ion, where Z. ξ ≈ 25 mV at the 

room temperature. 

 

𝑉𝑖𝑛 –𝑉𝑜𝑢𝑡 = V𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 =  ξ ln
Ιout

Ιin
,  ∴

Ι𝑜𝑢𝑡

Ι𝑖𝑛
= 𝑒

{
𝑉𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠

𝜉  
}
 

 where, ξ =  
R.T

Z.F
 (4) 

 

The Nernst equation becomes Vi,o≈ (25mV/Z) × ln(Iout/Iin) at room temperature, and rewritten as Iout/Iin≈ 

e[V/(25 mV/Z)], [40] or a form of a 1st order Gaussian function as in Io,i = a.e[b.V/c], [43]. This equation is not 

different than the result of the linear relation of the ILD patterns; where, the function-parameters (“a”, “b”, 

and “c”) can be read as the physiological variation of the ILD patterns that are generated by the neural 

circuitry of the IC, (2). Using an over a century old Nernst's equation emphasizes the advantage of a 

mathematical model over a developed algorithm of the neural network model. 

4.5. The Reconstruction of ILD Patterns 

All ILD patterns can be mathematically reconstructed by the variation of the parameters of 1st order 

Gaussian function. This effective deduction was based on the reasons:  

4.5.1. Physiological aspects 

(i) ILD data were from the functionally specific region “ICc” of the rat’s brain; it refers the neural 

network can be classified data and can be expressed as a group of patterns, 

(ii) Due to the data collection procedure, the stimuli were systematically varied during the sound 

localization experiment, that signifies the response characteristic of the system the results also showed 

systematic variations, 

(iii) The nerve cell axon is either excitatory or inhibitory that refers the formation of ILD patterns are 

based on the interactions between excitation and inhibition in ICc, 

(iv) The brain’s energy efficiency mechanisms can be related to the reasons of the nerve cell’s 

stochastic behavior, or a Homeostatic regulation in the brain, or a Gaussian waveforms “i.e. ILD patterns” in 

this study, and 

(v) The Gaussian functions have already been used in the technological system/ device designs of 
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mobile technologies where the energy efficiency is the most important subject matter (such as; to 

minimizing the energy consumption for mobile devices [44], designing the energy-efficient wireless sensor 

networks architecture [45] and image transmission [46]). 

4.5.2. Curve fitting for the mathematical modelling 

(i) Seven types of ILD patterns are used as a master-template based on classified ILD data, 

(ii) ILD patterns visually inspected if there was a resemblance to “known” a non-discreet function; the 

result was the normal distribution with varying two parameters of pdf. This result was the initiation of the 

Gaussian type selection for a suitable curve fitting, 

(iii) A Gaussian function used as a curve fit for a single ILD pattern was not sufficient to bring up a 

mathematical model. Therefore, a seven set of coefficients from seven curve fitted functions that all were 

examined (for the linearity, etc.) for all seven ILD patterns. The linear variation of the coefficients (used in 

an order entry) that suggests the parameterized 1st order Gaussian function can only be used as a 

mathematical model. 

5. Conclusion 

Parameterized 1st order Gaussian equation can be used as a mathematical model for describing ILD 

patterns. In other word, the ILD patterns can be reconstructed by the systematically varying parameters 

“parameterized” of the 1st order Gaussian function. This conclusion was derived from two reasons: (a) 

Physiological aspects, and (b) Curve fitting. These are detailed in the Subsection 4.5. 

The information (i.e. ILD cues in sound localization) perceived from the sensory system to be encoded for 

the biologically “plausible” neural networks, as if mathematically discrete function. This encoded 

information (within the temporal and place principles) is conveyed through the functional regions of the 

auditory pathway in (ICc) the brain, wherein constructed waveforms “patterns”. The collection of these 

patterns can be functionally described as a mathematical model and this practical procedure proposed here 

with the intention to help the readers for their future applications in machine learning. 

Appendix 

Seven pdf distributions were chosen among 432 pdf plots, and only 252 windows (with varying μ and σ) 

can be observed in the G-Drive “https://drive.google.com/file/d/0B0duvNF-bLB8ME1CeWZIbkY1UTg”. The 

figures (Fig. 1, Fig. 2 and Fig. 3) can also be seen clearly in the G-Drive, the link can be accessed through the 

“https://drive.google.com/file/d/1t0-30s5HmAb64AeZsnrC6FiSeAUGy9gS”. 
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