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Abstract: The purpose of this research is to determine the frictional characteristics of human ocular 

surfaces. An ocular surface tribometer was developed to measure the normal forces, frictional forces, and 

velocities of the probe on human ocular surfaces simultaneously. In this research, the measurement on six 

trial subjects was performed with the developed ocular surface tribometer. In addition, a mathematical 

model was proposed to describe the frictional coefficient of the human ocular surface. The frictional 

characteristic curves were found by using the computational program employing BSG-Starcraft of PSO and 

LSM developed by the authors in the previous research. It was possible to classify the frictional 

characteristics of human ocular surfaces into three types. 

 
Key words: Dry eye, frictional characteristic, ocular surface tribometer, particle swarm optimization.  

 
 

1. Introduction 

In recent years, various researches on a dry eye syndrome have increased. The researches have shown 

that a dry eye syndrome is mainly caused by a deficiency of tear fluid and an excessive evaporation of the 

tear [1]. In dry eye patients, the tear fluid is deficient to separate the eyelid and ocular surfaces [2]. 

Moreover, the eyelid surface where the tear fluid is deficient could be harmed due to the friction between 

the eyelid and ocular surfaces during blinking [3]. In addition, the eyelid pressure during blinking may 

change the shape of cornea [4]. Thus, various instruments have been developed by researchers to measure 

the eyelid pressure on the ocular surface [5]–[7]. One of the instruments, the blepharo-tensiometer that 

uses a tactile pressure sensor for measuring eyelid pressure was developed by the authors [8]. 

In addition, in the previous research by the authors, the ocular surface tribometer was developed for 

measuring frictional coefficients of human ocular surfaces [9]. Then the computational program employing 

the genetic algorithm and the LSM for determining frictional characteristics of human ocular surfaces was 

developed. The ocular surface tribometer consists of the frictional coefficient measuring apparatus and the 

device to measure the moving velocity of the probe. However, the ocular surface tribometer has low 

accuracy in the measurement of frictional coefficients of human ocular surfaces because a strain gauge was 

used as the two-axis force sensor (TL701 Handy Rub Tester, Trinity Lab, Japan). Moreover, the data on 
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normal forces, frictional forces, and frictional coefficients measured by the previous ocular surface 

tribometer could not be synchronized completely with the data on rotational angle by the encoder since the 

apparatus for measuring normal forces, frictional forces, and frictional coefficients and the device for 

measuring the moving velocity of the probe work independently.  

Besides, there is an increase on application of optimization algorithms such as PSO (Particle Swarm 

Optimization) to solve optimization problems. Among many variants of PSO, the BSG (BattleStar 

Galatica)-Starcraft of PSO has been developed and evaluated to solve some optimization test functions [10]. 

In the previous research by the authors, the computational program employing BSG-Starcraft of PSO and 

LSM was developed to determine frictional characteristics of human ocular surface [11]. 

In the present research, the new ocular surface tribometer was developed in order to solve the problems 

of the previous ocular surface tribometer. The new ocular surface tribometer that uses an electrostatic 

capasitive sensor as a two-axis force sensor (Tech Alpha, Japan) was developed in order to increase the 

accuracy in measuring frictional coefficients. In addition, a new data logger also was developed. By using 

the new data logger, the data on normal forces, frictional forces, frictional coefficients, and data on 

rotational angle by the encoder were sampled synchronously. Then, the new ocular surface tribometer was 

used to measure the normal forces, frictional forces, and velocities of the probe on human ocular surfaces of 

test subjects simultaneously. Then the frictional characteristic curves of human ocular surfaces were 

calculated by using the computational program employing the BSG-Starcraft of PSO and the LSM developed 

by the authors in the previous research. 

2. Frictional Coefficients of Human Ocular Surface 

2.1. Development of Ocular Surface Tribometer for Measuring the Frictional 
Coefficients 

In the field of mechanical engineering, to identify the frictional coefficients on journal bearings, the 

Hersey Number is commonly applied. The Hersey Number [12] is shown as in (1). 

 

Hs=ηω/p            (1) 

 

where η is the viscosity of lubricating oil, ω the rotational speed of a shaft, and p the pressure of lubricating 

oil behind the location of the minimum separation between the bearing and the shaft. 

In this research, the frictional coefficient, µ of a human ocular surface is considered to be related to the 

viscosity, η of tear fluid, the velocity, Vn of nictation, and the palpebral pressure, P. Therefore, a new ocular surface 

tribometer capable of measuring the moving velocity, V of the probe, the normal force, N, and the frictional force, F 

was developed. 

Fig. 1 shows the moving directions of the probe in the ocular surface tribometer on the left eye. The probe 

is contacted on the human ocular surface by moving it in the Z direction. Then the probe is moved in the X 

direction to measure N, F, and V of the probe. 

 

                           
                  (a) Left side view                     (b) Front view 

Fig. 1. Moving directions of the probe in ocular surface tribometer on the left eye. 
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Fig. 2 shows the ocular surface tribometer consisting the frictional coefficient measuring apparatus and 

the device to measure the moving velocity of the probe. An electrostatic capacity type force sensor (Tech 

Alpha, Japan) was used as the two-axis force sensor ⑧. The frictional coefficient measuring apparatus was 

used to measure N and F acquired by the probe. The probe ⑮ is made of stainless steel and has a spherical 

ball of 3 mm diameter on its tip. The device to measure V of the probe consists of a frame to fix a face ①, an 

encoder ④, two pulleys ③, a belt ⑪, a camera ⑨, and Light Emitting Diodes (LEDs) ⑩. 

A new data logger which consists of hardware and software was developed. The hardware consists of a 

signal conditioner and a signal processor. The signal conditioner was used to change the voltages of the 

normal forces and the frictional forces. The voltages were adjusted to the input voltage range of the signal 

processor. The signal processor includes a micro-controller (Arduino Due) to convert the analog data of 

normal forces and frictional forces to the digital ones. In addition, the micro-controller was used to transfer 

the data on N, F, and rotational angle, θp of the pulleys measured with the encoder to a laptop-computer via 

serial communication. The laptop-computer was used to operate the data logger software developed in this 

research. The software in data logger was used to convert the angular velocity, ωp of the pulleys measured 

with the encoder to V of the probe connected to the belt to rotate the pulleys. 

 

  
(a) Total device (b) Two-axis force sensor 

system 

Fig. 2. Ocular surface tribometer consisting the frictional coefficient measuring apparatus and the device to 

measure the moving velocity of the probe. 

 

2.2. Mathematical Model for Frictional Coefficients 

A tear layer exists between the eyelid and the ocular surface in a normal eye. However, some areas of the 

eyelid and the ocular surface directly contact each other in a dry eye. Thus, when the eyelid and the ocular 

surface are fully separated by the tear layer, µ on a human ocular surface is considered to be within the 

range of fluid lubrication. While in the condition of the ocular surface is dry, µ on a human ocular surface is 

considered to be within the range of mixed lubrication.  

In this research, a new number, X was proposed to calculate µ on the human ocular surface as given in (2). 

 

X = η p1V p2/N p3          (2) 

 

where parameters, p1, p2, and p3 are arbitrary real numbers. Then by incorporating the proposed number, X, 

a mathematical model was proposed to describe µ of the human ocular surface as given in (3). 

 

μ = p4Xn-4+p5Xn-5+…+pn-1X+pn       (3) 

 

where parameters, p4, p5, …, and pn are arbitrary real numbers. In this paper, it is assumed that η is constant 
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and equal to 1, in other words p1 = 0. 

3. BSG-Starcraft of PSO 

3.1. Parameters of Frictional Characteristic Curve on Human Ocular Surface 

In this research, an optimization method was used in determining parameters, p1, …, pn in (2) and (3). 

Then, a computational program combining the BSG-Starcraft of PSO and the LSM developed by the authors 

in the previous research [11] was applied to achieve the optimization. The computational program was 

applied through six steps. 

In the first step, the positions, velocities, and inertia weights of all particles in the swarm were initialized. 

The position and velocity of particle i at iteration j in the n-dimensional search space were represented as 

xi
 j
 = (xi, 1

 j , xi, 2
 j ,…, xi, n

 j
) = (p1, p2, …, pn)  and vi

 j
= (vi, 1

 j
, vi, 2

 j ,…, vi, n
 j

) , respectively. The initial positions, xi
 0 

and velocities, vi
 0 of all particles were randomly generated within pre-defined ranges as expressed in (4) 

and (5). 

 

xi
 0 = xmin+rand (xmax - xmin)        (4) 

 

vi
 0 = vmin+rand (vmax - vmin)        (5) 

 

Here  xmin and xmax are the lower and upper bounds on x. While vmin and vmax are the lower and 

upper bounds on v. The inertia weight, w  j was calculated as in (6). 

 

w  j = wmax - (
wmax - wmin

jmax
) j        (6) 

 

where  wmin and wmax are the minimum and maximum inertia weights. In the second step, the objective 

function was evaluated. The objective function, Fi
 j
 of particle i at iteration j was given as in (7). 

Fi
 j
 = ∑ √(μi - μl)

2ne
l=1    (i =1 ~ ns)    (7) 

Here μl is the actual experimental value of frictional coefficient on the human ocular surface, ne the 

number of experimental values, and ns  the number of particles in a swarm. In this research, the 

BSG-Starcraft of PSO algorithm was applied to minimize the value of the objective function, Fi
 j
. 

In the third step, the personal best position of particle i, PBest, i and the best global position in the current 

swarm, GBest were determined. The PBest, i was the smallest value of the objective function, Fi
 j
 obtained 

by the particle i at all previous iterations. The smallest value of the objective function among PBest, i was 

determined as GBest. 

In the fourth step, the GBest was determined as the carrier, XCarrier. The XCarrier was used in each 

iteration to send some new particles called raptors with the probability 0.9. The position of raptor k at 

iteration j in the n-dimensional search space was represented as 

xRaptor k
  j

 = (xRaptor k, 1
  j , xRaptor k, 2

  j , …, xRaptor k, n
  j

). The objective function, FRaptor k
 j

 of raptor k at iteration j was 

evaluated by using the formula as given in (8). 

 

FRaptor k
  j

 = ∑ √(μk - μl)
2ne

l=1    (k =1 ~ nr)    (8) 
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Here nr are the number of raptors in each iteration.  

Fig. 3 shows the schematics of raptors exploring the space. If a raptor with better value of objective 

function than xCarrier reaches the better position, a jump vector, namely Jump is defined. Then, the swarm 

jumps to the new position by the translation of the vector Jump. Thus, the new position of xCarrier is now 

the raptor with the best position. Therefore, due to the new position of the swarm, the PBest, i and GBest are 

updated. 

In the fifth and sixth steps, the velocity and position of particle i were updated as in (9) and (10), 

respectively. 

 

vi
  j +1

 = w jvi
  j

 + c1r1 (PBest, i - xi
  j

) + c2r2 (GBest - xi
  j

)     (9) 

 

xi
  j +1

= xi
  j

 + vi
  j +1

         (10) 

 

Here c1 is the self-confidence factor and c2 the swarm confidence factor. The r1 and r2 were the 

random numbers uniformly distributed in the range (0, 1). 

Fig. 4 shows the updating velocity and position of a particle. As expressed in (9), the velocity, vi
  j

 of the 

particle i is updated by combining GBest and PBest, i with w j, c1, c2, r1, and r2. The position, xi
  j +1

 of the 

particle i in the next iteration is affected by the current velocity, vi
  j

 of the particle i, GBest and PBest, i.. 

 

 
Fig. 3. Schematics of raptors exploring the space. 

 

 
Fig. 4. Updating velocity and position of a particle. 

 

3.2. Parameter Setting of BSG-Starcraft of PSO  

In this research, the BSG-Starcraft of PSO was employed to determine parameters of frictional 

characteristic curve on the human ocular surface by minimizing the value of the objective function, Fi
 j
. 

Then the number of particles in a swarm, ns was set to 20. The minimum and the maximum of inertia 
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weights,  wmin and wmax were set to 0.4 and 0.9, respectively. While the self-confidence factor, c1 and the 

swarm confidence factor, c2 were set equal to 2. The maximum number of iterations, jmax was set to 200. 

In addition, the number of raptors in each iteration, nr was set to 20.  

4. Results 

4.1. Experimental Data Measured by Ocular Surface Tribometer 

In this research, the measurements were performed on cornea and bulbar conjunctiva of six healthy 

subjects (subject i, i = A, B, C, …, F) by using the developed ocular surface tribometer. For each subject i, the 

measurements on cornea were firstly conducted. The measurements on bulbar conjunctiva were secondly 

done. In the both measurements, N, F, and displacement, d were measured. 

In the previous research by the authors, the adoption rate of experimental data measured by the ocular 

surface tribometer for determining the frictional characteristics of human ocular surfaces was around 80%. 

In the present research, the 127 data were measured by the new ocular surface tribometer. It was possible 

to use 96% of the measurement data for determining the frictional characteristics of human ocular surfaces. 

The adoption rate of experimental data measured by the new ocular surface tribometer increased because 

the electrostatic capacitive sensor has the higher accuracy than the strain gauge. 

Fig. 5 shows the examples of cornea’s data measured by the ocular surface tribometer. Time history 

responses of N, F, and d were measured at the same time using the ocular surface tribometer. In this 

experiment, N were applied to the cornea within the range of 0.22 gf to 3.10 gf. Then, the average values of 

N and F, were calculated from each measured data. The displacements, d of the probe were measured by the 

encoder and controlled to be within the range of 1.12 mm to 4.90 mm. Results obtained for the 

measurements on the bulbar conjunctiva were similar to those of the cornea. 

 

     
       (a) Normal force         (b) Frictional force                (c) Displacement 

Fig. 5. Examples of cornea’s data measured by the ocular surface tribometer. 

 

Fig. 6 shows the examples of cornea’s results calculated by using the measured data. The measured N and 

F were used to calculate µ. The measured d of the probe was used to calculate V of the probe. Then, the 

average values of µ and V of the probe were calculated. In this experiment, the average values of µ varied 

within the range of 0.07 to 0.17. The average values of V of the probe varied within the range of 1.72 mm/s 

to 3.54 mm/s. The average values of µ and V of the probe were used to determine the frictional 

characteristics of human ocular surface. The calculated results on the bulbar conjunctiva were similar to 

those of the cornea.  

4.2. Frictional Characteristic Curves of Human Ocular Surface Determined by Using 
BSG-Starcraft of PSO and LSM 

In this research, the frictional characteristic curves of human ocular surface were calculated by using the 

BSG-Starcraft of PSO and LSM.  

Fig. 7 shows the example of frictional characteristic curve of cornea and bulbar conjunctiva in fluid 
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lubrication condition. The frictional characteristic curve is described based on the measured data 

obtained from the subject A. The parameters, p2 = 0.35 and p3 = 0.93 were obtained when the 

objection function value, Fi
 j
 = 0.096. As for the subject A, the frictional coefficients on both cornea and 

bulbar conjunctiva fall within the fluid lubrication where the eyelid and ocular surfaces are fully 

separated by the tear layer. Then the curve in the fluid lubrication shows an upward-sloping 

characteristic.  

 

       
    (a) Frictional coefficient               (b) Velocity of probe 

Fig. 6. Examples of cornea’s results calculated by using the measured data. 

 

 
Fig. 7. Example of frictional characteristic curve of cornea and bulbar conjunctiva in  fluid lubrication 

condition. 

 

 
Fig. 8. Example of frictional characteristic curve of cornea and bulbar conjunctiva in mixed lubrication 

condition. 

 

Fig. 8 shows the example of frictional characteristic curve of cornea and bulbar conjunctiva in mixed 

lubrication condition. The frictional characteristic curve is described based on the measured data obtained 

from the subject B. The parameters, p2 = 0.35 and p3 = 0.20 were obtained when the objection function 

value, Fi
 j
 = 0.122. As for the subject B, the frictional coefficients on both cornea and bulbar conjunctiva fall 

within the mixed lubrication where a part of the eyelid and ocular surfaces is supported by the tear layer, 
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and in the other part, the eyelid surface may be in contact with the ocular surface. Then the curve in the 

mixed lubrication shows a downward-sloping characteristic.  

 

 
Fig. 9. Example of frictional characteristic curve of cornea and bulbar conjunctiva in lubrication condition 

containing both mixed and fluid lubrications. 

 

Fig. 9 shows the example of frictional characteristic curve of cornea and bulbar conjunctiva in lubrication 

condition containing both mixed and fluid lubrications. The frictional characteristic curve is described 

based on the measured data obtained from the subject C. The parameters, p2 = 0.93 and p3 = 1.21 were 

obtained when the objection function value, Fi
 j
 = 0.110. As for the subject C, the concave upward curve was 

obtained as the frictional characteristic one. The frictional coefficients on the cornea fall within the fluid 

lubrication where the eyelid and the cornea are fully separated by the tear layer. Then the curve in the fluid 

lubrication shows an upward-sloping characteristic. The frictional coefficients on the bulbar conjunctiva fall 

within the mixed lubrication where a part of the eyelid and bulbar conjunctiva is supported by the tear layer, 

and in the other part, the eyelid surface may be in contact with the bulbar conjunctiva. Then the curve in the 

mixed lubrication shows a downward-sloping characteristic. 

5. Conclusion 

The summary of the results is shown below: 

(1) The new ocular surface tribometer for measuring frictional coefficients on human ocular surface was 

developed. 

(2) Frictional characteristic curves of the human ocular surfaces have been calculated by using the 

computational program employing the BSG-Starcraft of PSO and LSM developed by the authors in the 

previous research [11]. 

(3) The frictional characteristics of human ocular surfaces could be classified to three types: the fluid 

lubrication where the eyelid and ocular surfaces are fully separated by the tear layer, the mixed 

lubrication where a part of the eyelid and ocular surfaces is supported by the tear layer and in the 

other part, the eyelid surface may be in contact with the ocular surface, and the lubrication containing 

both the mixed and fluid lubrications. 
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