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Abstract: We have conducted sequential studies to develop promising systems that address nursing 

challenges, and have developed applied sensing systems to solve the difficulties faced to advanced support 

systems for physically challenged and elderly people. In this study, our main aim was to present the utilities 

of the immediate and distant measurement systems by presenting qualitative and quantitative timeline data 

from one user of a typical Japanese walking support System. We suggested a physical analysis system using 

four bar-shaped metal load cells, Arduino microcomputers, and set specialized integrating and amplifying 

circuit boards on the arm rest to obtain data of the added weight of users on the front point of the machine. 

Additionally, we developed a physical analysis system, which uses two video cameras to obtain visual data 

of a subject simulating using programs written in Visual C++ and OpenCV packages, including the libraries 

and header files. Finally, we presented the multiple output values of the physical measurements obtained 

from various viewpoints, and examined the characters of timeline data and their kinematic parameters. We 

believe these mixed methodologies could be of practical use in providing alternative supports and useful 

directions for developers and care managers to assess and treat users’ conditions. 
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1. Introduction 

A variety of system development techniques have been created and instituted across diverse fields 

including disability, rehabilitation, and sports [1]-[10]. Past scientific achievements include the execution of 

electric walking supporting systems (rollators); simple, non-electric systems; the tracking of characteristic 

points; and the drawing of stick pictures. However, limited research has examined added force on the 

walking supporting machine [11]-[21]. In addition, targeted achievements concerning living human bodies 

and non-living humanoid devices have been somewhat limited because of social and ethical issues. The aim 

of this study was to analyze added forces on one walking support system and visual data, using an OpenCV 

2.4.9-based C++ program to calculate the parameters of the user’s characteristic points when the subject 

used the walking support system to walk on a flat surface. Although neither human bodies nor walking 

support systems are simple structures, we propose using these values as references for measurements, and 

we thus evaluate the user’s medical condition and habituation to the equipment. As there are diverse 

wearable electronic systems [22]-[26], we accumulated timeline data from 18 points on the subject’s body 
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using 3D-coordinates, acceleration, and angular velocity using a Perception Neuron (PN) motion capture 

system, one of the most recent powerful tools for observing physically challenged people for many years.  

In the future, a combination of immediate and visual methods could not only improve users’ movements, 

but also revise nursing techniques with a combination of diverse robots [27]-[32]. Such systems could even 

save users from sudden or hidden diseases and injuries in outdoor and indoor settings. 

2. Theory 

2.1. Experimental Setup 

We have conducted a sequence of studies to develop systems that address a number of nursing challenges. 

The experimental setup is described below. First, we categorized various walking support systems used in 

the fields of nursing welfare, human engineering, car production, and household electrical products based 

on their form, physical intensities for users, main postures, and operation (manual or electric). The various 

walking support systems are available for purchase worldwide, and differ according to district and lifestyle. 

Following preliminary research using several different systems, we considered shape, weight, size, and 

above all, prevalence to select one typical Japanese walking support system, the Rollator KA-391 

(Paramount Bed Co., Ltd., Japan), for use in this study. The unit is 660 mm wide, 732 mm long, adjustable 

between 966–1,218 mm high, and weighs 12.5 kg. The shafts are made from aluminum, and the points 

where subjects put their elbows (on the elbow rest) are made of plastic. Subjects can grasp the handle 

anywhere with their non-dominant hand. Second, we examined the actions of 1) walking straight for several 

hundred meters at usual speed and 2) falling in four directions (forward, backward, to the right, and to the 

left), because these are common full-body movements. When simulating a fall, to prevent his body from 

suddenly falling away from the machine, the user was asked to grasp the handle with bar-shaped load cells 

(Weight Sensor (Load Cell) 0-50kg 114990100 (Seeed Studio Inc., U.S.)). These load cells are placed such 

that he could grasp them while resting his elbow bone on the other load cells. The load cells were connected 

to Arduino microcomputers (Arduino UNO (Arduino Inc., Italy)) and specialized integrating and amplifying 

circuit boards (HX711l load cell amplifier SEN-13879 (Spark Fun Inc., U.S.)) with common electrical 

connectors and lead lines connected to two small, light laptop PCs for gathering data in real time. We fixed 

one of the PCs against the main aluminum shaft of the walking support machine with wide, tough bands, 

and the other in the knapsack the subject wore on his back. We fixed the load cells at points ① and ② in 

Fig. 1-2, such that his elbows would rest on the two load cells ③ and ④ in Fig. 1-2. Additionally, the 

subject wore a peripheral, default harness, which attached him to the machine at the waist and hips to keep 

his body from suddenly falling away from the machine (Fig. 3). 

 

 
Fig. 1. Walking support system and sensing systems. 

① ② 
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Fig. 2. Walking support system and sensing systems. 

 

 
Fig. 3. Walking support system and subject. 

 

The user executed the aforementioned movements five times successively, with few-minutes intervals 

between each trial. However, it was difficult to know whether the characteristics and number of tasks, the 

experiment sets, time interval, and situation were appropriate. We selected one Japanese male subject with 

the appropriate body size and features. He was 172 cm tall and weighed 63 kg; the average Japanese elderly 

(60–64 years old) male is 167.8 cm tall and weighs 66.0 kg (Ministry of Health Labor and Welfare, Japan, 

2015) , and we judged that those values were close. Our subject was 38 years old at the time of the 

experiment. One of our main aims was to verify our systems and obtain physical data. According to a 

preliminary interview, the subject fulfilled the criteria of no serious diseases, peculiar habits, or prior 

relevant careers, such as being an expert in sports or martial arts. To collect fundamental information about 

the subject, we used a questionnaire with previously established reliability from the Japan Association of 

Industrial Health and other health organizations. Furthermore, we checked the subject’s level of fatigue 

after each trial, and we evaluated his fitness level, smoking habits, and the occurrence of backache to 

establish his physiological and medical condition. In line with similar studies in which researchers have 

measured the motion and position of the subject’s bones, but not the motion and position of his muscles. 

For the camera system setup, we selected two common, nonspecialized, medium-format digital video 

cameras of model HDR-PJ790V (SONY, Japan). We chose these more universal cameras rather than the 

specialized high-speed cameras used in the fields of human dynamics and sports sciences in consideration 

of the potential future uses of such measurement systems. The camera sampling rate was 30 fps (frames per 

① 

② 
④ 

③ 
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second), and the frame size was 1280×720 pixels (16:9), with standard mode settings. The distances from 

the fixed cameras to the subject, when the subject was static (not walking), were 3.0 meters from the side 

and 1.5 meters from the front (Fig. 4). After obtaining the visual data, we converted the files into AVI format. 

The frame size and frames per second (fps) of the visual data were uniformly converted to 320×240 pixels. 

This conversion was done to ensure compatibility with a Visual C++ based program and the OpenCV library 

and header files. Based on the findings of past studies, these settings are reasonable for use in the analyses 

conducted by general nursing wor kers and other social scientists, directors, and managers to obtain a time 

series of visual data for diverse analyses of indoor experiments. Although many existing studies use the 

visual data capturing library, header files, or program codes from OpenCV ver. 2.4.9 to obtain visual data, we 

lacked confidence in these methods because of their potential negative impact on recording accuracy. We 

thus used these elements only for the analyses, after the visual data were processed. This immediate 

load-cell based system and the non-immediate measurement methodology were low-cost and easy to set up 

compared to similar previously implemented systems. 

 

 
Fig. 4. Camera, walking support system, and subject set-up. 

 

We conducted our experiments on a flat surface at the National Institute of Science and Technology (AIST) 

and consolidated the other experimental field settings as much as possible. We also ensured that the 

subject’s clothes were appropriate for the physical demands of the experiment and for the visual data 

analysis. The subject wore a black jumper, casual pants, and shoes, similar to the casual, generic fashions of 

Japan. The clothing was thin and tight to minimize the chances of the sensor nodes sliding. The background 

walls and floor of the space were a neutral (not tinted) white color, and one white door was located on the 

right side of the wall. The white soles of the shoes did not substantially affect the visual analysis. We 

confirmed the adequacy of the color contrast using computer program-based processes. As the clothing 

contained no protruding items or accessories, it was appropriate for the experiments. We conducted visual 

analyses by calculating the differences between two successive frames of the visual data.. 

2.2. Data Analysis Methods 

We analyzed the visual data using original programs written in Visual C++, including the OpenCV library 

and header files. This section explains the theories underlying our image analyses. We used Shi-Tomasi’s 

method and the function cvGoodFeaturesToTrack in the OpenCV library to execute an automatic search for 

the characteristic points in selected pictures. Although the Harris method can be used to change parameters, 

we did not use it in this study for reasons discussed below. The Shi-Tomasi and Harris methods are 

mathematically similar. When focusing on the characteristic points that are easy to distinguish from nearby 

pixels and slightly shifting the targeted picture in the analysis area, it is possible to detect and record the 

points where the sum of the squared difference (SSD) becomes larger than at other points. The SSD is 

defined as shown in (1) and (2), when shifting the picture by a sufficiently small ∆v in the window W, where 

the center is point p. 

International Journal of Bioscience, Biochemistry and Bioinformatics

71 Volume 8, Number 2, April 2018



  

𝑆𝑆𝐷 = 𝑆(𝑝) =  ∑ (𝐼(𝑞) −  𝐼(𝑞 + ∆𝑣))
2𝑛

q∈W                           (1) 

 
 

𝑆(𝑝) =  𝑋𝑞 ∈ 𝑊(𝐼(𝑞) −   𝐼(𝑞 +  𝛥𝑣))2                          (2) 
 

Furthermore, to execute a Taylor development and primary approximation about the pixels of the shifted 

picture, I(q + ∆v) can be expressed as shown in (3), using I(q)’s partial differentials with respect to x and y 

(Ix(q) and Iy(q), respectively). 

 

𝐼(𝑞 + ∆𝑣) ≒  𝐼(𝑞) + [𝐼𝑥(𝑞)・𝐼𝑦(𝑞)]∆𝑣                           (3) 

 

These two equations can be combined so that S(p) is expressed as shown in (4). 

 

𝑆(𝑝) = ∆𝑣T  [
∑ 𝐼𝑥

2
𝑊 ∑ 𝐼𝑥 𝐼𝑦𝑊

∑ 𝐼𝑥 𝐼𝑦𝑊 ∑ 𝐼𝑦
2

𝑊

] ∆𝑣 = ∆𝑣T𝐻(𝑝)∆𝑣                    (4) 

 
The matrix H(p) presents the features of the luminance distribution around point p. In the theories of 

Shi-Tomasi, the feature value M from the characteristic value of matrix in (4) is defined as in (5), and is used 

for detecting the feature points. 

 

𝑀 = 𝑚𝑖𝑛(𝜆1,  𝜆2)                                     (5) 
 

By contrast, using the theory of Harris, we define the characteristic value of the matrix as in (6), as λ1 and 

λ2, with κ as a parameter. When both λ1 and λ2 are sufficiently large, the appropriate feature points are 

defined as one. Then, the Harris operator can detect the specific points that make the value of M in (6) 

sufficiently large. 

 

𝑀 = 𝜆1・ 𝜆2 − 𝜅(𝜆1 +  𝜆2)2 = 𝑑𝑒𝑡(𝐻) − 𝜅・𝑡𝑟𝑎𝑐𝑒2(𝐻)                   (6) 
 

We used the Shi-Tomasi method in this study because corner detection is related to its precision and 

burden (time and effort), whereas, with the Harris operator, the program simply judges the corners from 

the balance between the value of M and threshold κ. In almost all cases, the value of κ must be obtained by 

performing a sufficient number of experiments. We used the Kanade method and optical flow to execute 

automatic and manual searching for characteristic points in selected pictures. These are powerful and 

well-established methods in this scientific field. The outline of the procedure is as follows: 1) Determine the 

optical flow vectors using the least squares method, 2) identify the differences between the real values and 

the estimated solutions, and 3) use the estimated solutions to the real values using the hill climbing method. 

The flow of the Kanade method involves creating a smoothing filter to cover (or wrap) pictures H and I, 

pruning the pixels, and making the new pictures H1 and I1, such that the resolution is halved (the number of 

pixels is quartered and the pixel size is doubled). The procedure is repeated to make H2, I2, H3, I3 ... Hn, In. 

The “pyramids of pictures” are developed based on H and I until the pixel size in these pictures becomes 

larger than the maximum “travel distance”. As was the case in prior processing, the approximate solutions 

of travel distance are set to u = 0 and v = 0, and the rank of picture, i is set to n. We calculate each value 

based on the aforementioned methods as a loop of processions. Next, we calculate the value of Δu and Δv for 

Hi and Ii, the values of the travel distance ((u, v) = (u′+ Δu, v′ + Δv)) for each pixel, and the approximate 

values of travel distance (u′, v′) for the picture one rank higher (Hi−1, Ii−1) about the resolution using the 

methods below. The pixel-points (2u, 2v) are set (this picture has (x/2 × y/2) pixels, where x and y are both 
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odd numbers), and the approximate travel distance is I = (u′, v′). Based on the other pixels, we define the 

average values of travel as (u′, v′) for only the odd-numbered pixels along the four sides (upper, lower, 

right, and left sides). In short, it is a twin linear complement. Next, we subtract one from the current i 

number (in the program code, i = i - 1) and repeat the procedure until the value of i reaches zero. We set the 

values of u and v based on u′ = 2u and v′ = 2v, and the values of Δu and Δv based on u″ = 2(u′ + 2Δu) 

and v″ = 2(v′ + 2Δv), and we repeat the sequences from i = n to i = 0 in the program, while decreasing the 

value of i by one in each iteration. In Step 4), using the theory of motion template, we successively update 

the motion history image and process the obtained visual data for various motion analyses and object 

tracking tasks using a “moving silhouette” contained in OpenCV. First, we used a function named 

updateMotionHistory from the C++ version. By estimating and indicating following arguments [1]-[4], these 

functions can be handled flexibly using the following arguments: 1) silhouette—a silhouette mask that has 

non-zero pixels where the motion occurs; 2) mhi—a motion history image, which is updated by the function 

(single-channel, 32-bit floating-point); 3) timestamp—the current time in milliseconds or other units; and 4) 

duration—the maximal duration of the tracked motion in the same units as timestamp. The function 

updates the motion history image as follows: 

 

      (7) 

 

Equation (7) shows that the mhi pixels where motion occurs are set to the current timestamp, whereas 

the pixels where the motion last happened a long time ago are cleared. The function, with two additional 

important functions—calcMotionGradient and calcGlobalOrientation—implements a motion template 

technique. We selected and executed a measurement and observed the added forces on load cells on the 

machine, and then automatically set and located the characteristic points. Next, we analyzed each timeline’s 

numerical data using significant statistical methodologies. Using a common, mid-range, digital camera and 

the latest OpenCV libraries, we obtained visual data and formatted them for the next procedure. Then, we 

used our original program to automatically set 24 characteristic points, followed the location of the 

characteristic points through time, and analyzed later at the later time. 

3. Results 

The numerical results of this study were analyzed and discussed based on the findings of previous studies. 

To assess the subject’s movements when he was walking, and to demonstrate the methodological utilities, 

we calculated and output the averaged timeline data of five trials for each indicator. To examine the subject 

when falling, we calculated the average data after lining up the peak points of the graphs. Figs. 5 show the 

averaged timeline data from four load cells [33]. Figs. 6 show bar charts showing the contrast in the values 

of added forces on four load cells. Fig. 7 shows one example of the visual data obtained from the cameras 

and the 24 characteristic points automatically drawn by the camera. However, realistically speaking, subtle 

time-delays typically occur in the drawing speed of the characteristic points in the small window of the 

Visual C++ environment. Nevertheless, when computing the characteristic points, a delay was not observed. 

Fig. 8 shows the average timeline coordinate data (about the x and y axis) of the 24 characteristic points 

from visual data analysis. We suppose that these findings indicate that the systems used are appropriate for 

our Visual C++ environment for AVI styled video data. Another program was then used to indicate, mark, 

and erase the characteristic points both automatically and manually (by clicking on them with the mouse). 

After marking 24 points automatically, we traced them. The features and accuracy of the set of 

characteristic points were input automatically, and we accumulated sequential timeline data for the x- and 
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y- coordinates of each point in two dimensions. Those timeline data appeared to indicate the subject’s 

dynamism and their motion characteristics. However, other elements (e.g., biomechanical forces) showed 

the characteristics of the subject’s movements, according to their physical attributes. 

 

 
Fig. 5. Timeline chart (spline interpolation was applied) of the added force on the load cells for the walking 

subject. 

 

 
Fig. 6. Bar chart showing the contrast in the values of added forces on four load cells. 

 

 

Fig. 7. Twenty-four characteristic points drawn automatically on the visual data. 

International Journal of Bioscience, Biochemistry and Bioinformatics

74 Volume 8, Number 2, April 2018



  

 
Fig. 8. The average timeline data of the coordinates of 24 automatically-set characteristic points on the 

subject while he was falling to his right, captured by the front camera. 
 

4. Discussion 

As mentioned above, Fig. 5 shows the added forces on four load cells to be smoothly curving lines. Those 

data are in the common range for this industrial field. However, for the data presented in Fig. 5, there was 

not enough previous concrete data because of the facilities, shape, and lightness of the walking supporting 

system, so we had difficulty commenting on those data. In Fig. 6, we contrasted the added force data from 

trials where one of four wheels rose off the floor and those where it did not based on the observation of the 

experiment operator. Fig. 8 shows the 24 automatically-set characteristic points on the subject’s video when 

he was falling to his right and left sides, captured by the front cameras. We found clear evidence of the raw 

data curves changing in relation to the previously defined load cells’ data and automatically-set 

characteristic points. However, it is difficult to interpret those numerical features because of the 

methodological limitations and the complex forms of the curves. Nevertheless, we consider that the 

proposed sensing methodologies, viewpoints, and concepts could be used in practical caregiving and 

physical training fields. The data sets shown in Figs. 5–8 could be used to check the stability of the walking 

support system and the suitability of the system’s settings concerning, for instance, weight-balance, size, 

and the user’s muscles. As seen in Fig. 8, we were able to measure the changes in the 24 curves when the 

subject was falling. This seems to be a meaningful accumulation of data from the PN system. 

5. Conclusion 

In this study, we proposed measurement and analysis methods for use with physically challenged and 

elderly people, using a physical analysis system of four bar-shaped metal load cells, Arduino 

microcomputers, and circuit boards, including amplifiers, integrated into the arm rest of a walking support 

system. By obtaining data of added weight on the front point of the walking machine and characteristic 

values of distant visual data from OpenCV-based program, we estimated those systems’ utilities and various 

physical indicators were promising for future prospects. We also confirmed and reconsidered various 

measurement and performance limitations of these extremely low-cost systems. The noteworthy point is 
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that, even with these limitations, we obtained meaningful results and the consequent benefits, specifically 

related to users’ falling, from the study. In future, at research institutes, academic institutions, retirement 

homes, and hospitals, those results could assist researchers, physically handicapped persons, and care 

workers to overcome difficulties in grasping subtle changes and obtaining comprehensive conditions of 

human bodies and systems. Furthermore, future studies will determine those systems’ validity, durability, 

precision, and social impact. Ideally, diverse subsequent studies should aim to obtain a greater variety of 

data from a larger number of subjects, and focus on additional forces targeting other ages, races, and 

movements to facilitate comparisons with our data in this study, considering not only the supreme 

complexity of the human body’s structure and differences from individual to individual, but also a diversity 

of analysis methodologies, specific experimental conditions and spaces. 
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