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Abstract: A protein and a ligand have a process of recognizing each other when they are remote before 

approaching for binding. In this process, there should be a local portion corresponding to a target of the 

recognition (a recognition spot) on the protein molecular surface. In this paper, we proposed a new 

biclustering algorithm BISERS for predicting recognition spots on protein molecular surfaces, in which a 

portion of the molecular surface of a query protein that frequently shows the similarity to other specific 

proteins binding to the similar ligand is extracted by biclustering. In BISERS, the similarity between rows as 

well as the similarity between columns is introduced into the evaluation function for updating the 

biclusters. In addition, the random sampling is applied to the process of exclusive selection of the column 

for reducing the computational cost effectively. Experimental results for 60 proteins show the effectiveness 

of our BISERS algorithm. 
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1. Introduction 

Since protein is one of the important biological molecules for life phenomenon, understanding the 

functions of proteins is fundamental to biomedical science. Proteins often show their functions by binding 

to other compounds (ligands) on protein molecular surfaces. Since hotspot residues play an important role 

on binding process, so far, many computational methods for predicting the hotspots have been proposed 

[1]-[4]. On the other hand, a protein and a ligand have a process of recognizing each other when they are 

remote before approaching for binding. In this process, there should be a local portion corresponding to a 

target of the recognition (a recognition spot), which is not necessarily the same as a hotspot, on the protein 

molecular surface. 

We have proposed a method of predicting a protein recognition spot based on the idea that the 

recognition spots observed from the proteins binding to similar compounds have some frequently shared 

features [5]. This method consists of three steps. The first step is extraction of feature points from protein 

molecular surfaces. In this process, feature points are extracted based on curvature-based approach [6] in 

the form of point feature histograms [7] with physical properties such as electrostatic potential and 

hydrophobicity. In the second step, structures of proteins, namely sets of feature points located on the 3D 

space, are compared and a list of matched feature points is derived from the results of pattern matching 

between a query protein, which is one whose recognition spot is unknown, and each of the reference 
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proteins, which are proteins whose binding ligands have been analyzed. A matched point matrix, which is a 

binary matrix that shows correspondences between feature points of the query protein and the reference 

proteins, is generated by aggregating the lists of matched feature points for all of reference proteins. In the 

final step, the recognition spot is extracted by biclustering of the matched point matrix. In this process, we 

have to consider the similarity between columns, since columns in the matched point matrix correspond to 

reference proteins, which can be classified by prior knowledge. In addition, the exclusive selection of 

column is required, because more than one columns correspond to the same reference protein. In other 

words, the bicluster that is composed of columns from the same reference protein is meaningless. Therefore, 

we have proposed a new biclustering algorithm BISES ((BIclustering based on Similarity and Exclusive 

Selection of column) [5], in which the similarity between columns and the exclusive selection of a column 

are considered. 

However, our BISES has the following two drawbacks. The first is that the feature points located distantly 

each other are included in a bicluster generated by BISES. In general, the recognition spot seldom consists 

of distantly located portions. The second is the computational issue. In BISES, the concept of the group of 

columns is introduced and one column is selected from each group in updating the bicluster. Although only 

the combination of selected columns with the highest evaluation value is proceeded to the next step in the 

greedy manner, the number of combination becomes huge as the size of the data set scales up, which 

requires large computational resources. 

In this paper, we propose a new biclustering algorithm BISERS (BIclustering based on Similarity and 

Exclusive Random Selection of column), which is a modified version of BISES. In BISERS, the similarity 

between rows, which correspond to feature points in the query protein, as well as the similarity between 

columns is introduced into the evaluation function for updating the biclusters. In addition, the random 

sampling is applied to the process of exclusive selection of the column for reducing the computational cost 

effectively. 

The rest of this paper is organized as follows. Section 2 briefly describes the method for predicting the 

protein recognition spots and gives an example of the matched point matrix that is a target of biclustering. 

In section 3, we present the algorithm BISERS. Section 4 gives experimental results and discussions. 

2. Overview of Method for Recognition Spots Prediction 

Fig. 1 shows a general flow of a method for predicting recognition spots. The first step is extraction of 

feature points from a protein molecular surface represented as a set of polygon data consisting of the points 

in 3D space along with physical properties such as hydrophobicity and electrostatic potential. Fig. 2 

illustrates an example of the original protein molecular surface and a set of feature points extracted from it. 

 

 
Fig. 1. General flow. 
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Fig. 2. Examples of extracted feature points. 

 

The second step is matching feature points between a query protein and each of reference proteins. In 

this step, a set of feature points of the query protein and a set of feature points of the reference protein are 

given, then a list of corresponding feature points in 3D space between a subset from the query feature 

points and a subset from the reference feature points is generated. An example of the result of matching is 

shown in Fig. 3, where the numbers are IDs of the feature points. In this figure, more than one 

correspondences are shown as 'TOP x' in descending order of the number of corresponding feature points. 

Since we have many reference proteins, a matched point matrix is generated as a final result of this step by 

composing of all of the list. Fig. 4 shows an example of the matched point matrix, in which '1' indicates that 

there is a correspondence between a feature point in the query and the reference proteins. 

In the final step, important feature points are extracted as a bicluster. In other words, feature points in the 

query protein that have common correspondences to the feature points from the specific reference proteins 

are significant and regarded as a candidate of the recognition spot. 

 

 
Fig. 3. An example of matching results of feature points. 

 

 
Fig. 4. An example of matched point matrix. 
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In this paper, we focus on the final step and propose a method of generating an appropriate bicluster 

from a matched point matrix. 

3. Biclustering Algorithm with Exclusive Random Selection of Columns 

3.1. BISES 

The matched point matrix has the following characteristics.  

 Each column represents a reference protein, which can be classified based on various viewpoints.  

 Each row corresponds to a feature point in a query protein, which means that the row has spatial 

information in 3D space.  

 One or more columns correspond to the same reference protein. 

BISES, a previous version of biclustering algorithm we have proposed, is based on the algorithm PDNS 

(Pattern-Driven Neighborhood Search) proposed by Ayadi et al. [8], in which biclusters are evaluated by 

correlations of rows and columns and are incrementally updated, namely adding or removing rows and 

columns, by neighborhood search. BISES introduces the inter-column similarity and the exclusive selection 

from 'group of columns' in order to deal with the first and the last points mentioned above, but does not 

consider second point. In addition, BISES encounters computational problem derived from combinatorial 

explosion for exclusive selection of a column. 

3.2. BISERS 

3.2.1. Evaluation function 

To cope with the above-mentioned problems of BISES, we propose a new biclustering algorithm BISERS, 

which introduces the inter-row similarity as well as inter-column similarity. A row in the matched point 

matrix corresponds to a feature point that has coordinate values in 3D space. Since the feature points 

composing recognition spots tend to be closely located, biclusters that include locally arranged feature 

points should be obtain high evaluation values. Therefore, we define the inter-row similarity 𝑆𝐼𝑀𝑟(𝑖, 𝑗) 

based on the distance in 3D space between feature points as follow. 

 

𝑆𝐼𝑀𝑟(𝑖, 𝑗) =
𝐷(𝑖,𝑗)

max𝑖,𝑗(𝐷(𝑖,𝑗))
,                                     (1) 

 

where 𝐷(𝑖, 𝑗) is the distance in 3D space between two feature points pi and pj associated with rows indices 

i and j in the matched point matrix. On the other hand, each column represents a reference protein. We 

evaluate the similarity between columns based on the similarity between ligands that the corresponding 

reference proteins bind to. We use the ligand similarity that has been presented in COMPLIG algorithm 

proposed by Saito et al. [9] for evaluating inter-column similarity 𝑆𝐼𝑀𝑐(𝑖, 𝑗) as follows. 

 

𝑆𝐼𝑀𝑐(𝑖, 𝑗) =
𝐴𝑡𝑜𝑚𝑀𝑁+𝐵𝑜𝑛𝑑𝑀𝑁

𝑚𝑎𝑥(𝐴𝑡𝑜𝑚𝑀+𝐵𝑜𝑛𝑑𝑀,𝐴𝑡𝑜𝑚𝑁+𝐵𝑜𝑛𝑑𝑁)
,                         (2) 

 

where 𝐴𝑡𝑜𝑚𝑀 and 𝐴𝑡𝑜𝑚𝑁 are the numbers of atoms in ligands M and N respectively, and 𝐵𝑜𝑛𝑑𝑀 and 

𝐵𝑜𝑛𝑑𝑁 are the numbers of bonds in ligands M and N respectively. 𝐴𝑡𝑜𝑚𝑀𝑁 and 𝐵𝑜𝑛𝑑𝑀𝑁 are the numbers 

of matched atoms and matched bonds that are calculated by COMPLIG. 

In PDNS algorithm [8], the bicluster B(I, J) (I is a set of rows and J is a set of columns included in the 

bicluster) is evaluated by Average Spearman’s Rho (ASR) defined as follows. 

 

𝐴𝑆𝑅(𝐵) = 2 max (
∑ ∑ 𝜌𝑖𝑗𝑗∈𝐼,𝑗≥𝑖+1𝑖∈𝐼

|𝐼|(|𝐼|−1)
,

∑ ∑ 𝜌𝑘𝑙𝑙∈𝐽,𝑙≥𝑘+1𝑘∈𝐽

|𝐽|(|𝐽|−1)
),                      (3) 
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where 𝜌𝑖𝑗(𝑖 ≠ 𝑗) is the Spearman's rank correlation between the rows indices i and j and 𝜌𝑘𝑙(𝑘 ≠ 𝑙) is the 

Spearman's rank correlation between the columns indices k and l. In BISERS, since the bicluster that 

includes many rows with high inter-row similarity or many columns with high inter-column similarity is 

expected to be generated, the modified evaluation function ASR-S (Average Spearman’s Rho with Similarity), 

in which weighted correlation values of rows and columns are introduced into ASR, is defined as follows.  

 

ASR-S(𝐵) =
∑ ∑ 𝜌𝑖𝑗𝑆𝐼𝑀𝑟(𝑖,𝑗)𝑗∈𝐼,𝑗≥𝑖+1𝑖∈𝐼

|𝐼|(|𝐼|−1)
∙

∑ ∑ 𝜌𝑘𝑙𝑙∈𝐽,𝑙≥𝑘+1 𝑆𝐼𝑀𝑐(𝑘,𝑙)𝑘∈𝐽

|𝐽|(|𝐽|−1)
.                   (4) 

 

3.2.2. Efficient exclusive selection of column 

As a result of updating the current bicluster in terms of the column, the updated bicluster might include 

more than one columns generated from the same reference protein. Since such a bicluster is meaningless, 

the columns derived from the same protein are grouped and one column at most has to be selected from the 

group and combined with other columns. In other words, multiple combinations of selected columns have 

to be considered. For each of them, rows are updated and the value of ASR-S is evaluated. Ideally, the 

bicluster with the highest ASR-S value is chosen from the all combinations for the next updating step, and 

these processes are iterated. In this iteration process, however, combinatorial explosion is serious, which 

prevents practical execution.  

Therefore, in BISERS, only one column is randomly selected from each group without enumerating all 

combinations in order to generate an updated bicluster. Instead of considering exhaustive combinations, 

this random sampling process is repeated to get various biclusters. After each generated bicluster is 

updated in terms of rows, the best bicluster with the highest ASR-S value is proceeded to the next step. The 

number of random sampling S is defined as follows. 

 

𝑆 =  𝑆0 ∑ (𝑐𝑖 − 1) + 1,𝑛
𝑖=1                                   (5) 

 

where n is the number of groups, ci is the number of columns in group i, and S0 is a constant value. This 

process is illustrated in Fig. 5 and the algorithm of BISERS is described in Fig. 6. 

 

 
Fig. 5. Process for updating biclusters. 

4. Experimental Results 

4.1. Data Set 
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We made experiment with data set including 60 proteins shown in Table 1, four types of proteins binding 

to each of 15 types of ligands in order to confirm the effectiveness of BISERS. In this table, protein is 

specified with four letter PDB-ID with one letter chain ID and the number in the parentheses indicates the 

number of feature points on the molecular surface.  

 

 
Fig. 6. Algorithm of BISERS. 

 

Table 1. Data Set for Experiments 

 
 

 
Fig. 7. Comparison between all combination and sampling. 

 

4.2. Effectiveness of Random Sampling 
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First, we confirm the effectiveness of random sampling for the exclusive selection of columns from the 

viewpoint of the execution time and the accuracy of the results. The accuracy of the results is evaluated by 

calculating precision, which is the rate of extracted feature points that correspond to residues known to 

associate with binding in the Protein Data Bank (PDB) [10]. If the residue that is the closest to the extracted 

feature point is consistent with the residue in actual binding site specified in the PDB data, we judge that 

the feature point is extracted as the actual binding successfully.  

BISERS was compared with the method without random sampling, namely all combinations of exclusive 

selection of columns from each group. Since the latter method takes much execution time for the original 

dataset mentioned above, we used subsets for this experiment. Fig. 7 and Table 2 show the average 

precision and calculation time based on ten times of trials for each method. In this table, the average 

number of the extracted feature points is also shown. While we can observe no significant differences in 

terms of the precision as well as the number of extracted feature points between two methods, the 

computational cost of the proposed method with random sampling is extremely reduced, which implies the 

effectiveness of the proposed method. 

 
Table 2. All Combination vs. Random Sampling 

 
 

Table 3. Comparison with Other Biclustering Methods 

 
 

4.3. Comparison with Other Biclustering Methods 

A query protein is selected out of 60 proteins in the data set and the rest are treated as reference proteins. 

We prepare two types of matched point matrix from the results of matching feature points. One is the 

matrix consisting of only TOP 1 column for each of the reference proteins. The other consists of not only 

TOP 1 but also TOP 2 and 3 columns. Bimax [11], BiBit [12], PDNS [8], BISES [5] and BISERS are applied to 

the former matrix, which requires no exclusive selection of a column. BISES and BISERS are applied to the 

latter matrix. In BISERS, the initial bicluster B0 has four rows and four columns at least, and other 

parameters are 𝛼 = 𝛽 = 0.6, 𝑌 = 𝑍 = 10, 𝛾 = 30 and S0 = 100. 

The average precision and the average size of the generated bicluster for 60 query proteins are shown in 

Table 3. The size of the bicluster is defined as the product of the number of the feature points and the 

number of reference proteins in the bicluster. For the matched point matrix containing only TOP 1 columns, 

BISERS shows the highest average precision, which tells that BISERS considering both the inter-row 

similarity and the inter-column similarity is effective than some existing biclustering methods. In addition, 

BISERS considering the exclusive selection from TOP 1, 2, and 3 columns gives the highest precision, which 

suggests the use of multiple matching results is very significant for predicting the recognition spot from the 

matched point matrices. 

5. Conclusions 
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This paper proposed BISERS, an efficient biclustering method for extracting important feature points 

from the matched point matrices to predict recognition sites on a protein molecular surface. Experimentally, 

we showed that the random sampling for the exclusive selection of column in BISERS reduces the 

computational cost drastically without sacrificing the prediction accuracy. In addition, we clarified the 

effectiveness of both the inter-row similarity and the inter-column similarity.  

In this paper, we evaluated the prediction results by comparing with the known residues related to 

binding. However, the recognition spots do not always correspond to the binding residues. Therefore, in 

future work, we will evaluate the extracted feature points by experiments in vitro such as alanine 

substitution cooperating with a wet laboratory. 
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