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Abstract: Developing a computational method to observe cell behaviors can help to understand the 

expected outcome of a drug treatment even before doing the wet-lab experiments. The main goal of this 

research is computing the effects of a drug treatment in the signaling level for a better understanding of 

cellular responses after a drug treatment. The proposed algorithm can work on various biological networks 

to quantitatively evaluate the effects of a drug treatment in the cell by using gene expression data. The 

method was applied on the integrated KEGG signaling pathway and the most effected proteins were 

identified after the application of 14 different drugs on lymphoma cells. The results showed that the most 

affected proteins are not the direct target proteins of the given drugs. Indeed, the protein activities in the 

distant parts of signaling pathways are highly changed upon drug treatments. The literature validation 

showed that some of the proteins, which are commonly effected by the treatment of several drugs, have 

cancer related cellular activities as well. 
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1. Introduction 

The human genome contains approximately 21,000 genes. At any given moment, for different tissues, 

some combinations of these genes are active and others are inactive. Scientists can answer this question for 

any cell sample or tissue by analyzing gene expression profiles which a microarray analysis technique. 

Microarray analysis can help to determine genome wide behaviors of genes under different experimental 

conditions such as oxidative stress, drug treatment, disease treatment etc. These experiments generate data 

for thousands of genes across multiple experimental conditions, so the statistical analysis of these data is 

curial to understand cellular mechanisms under different conditions [1]. Pathway-based analysis is fairly 

new perspective to interpret such large amount of gene expression profiles in the cellular signaling and 

metabolic levels [2]. 

Pathways are collections of genes and proteins that collaboratively perform a well-defined biological task. 

For example, proteins that work to synthesize metabolites within a cell are grouped into various metabolic 

pathways. Such biological pathway data is freely accessible in the last years. Pathway data sets also cover 

various types of cell signaling networks in which a group of genes work collaboratively for controlling 

cellular behavior as a response to an external perturbation signal. Therefore, integration of the graphical 

topology of signaling networks and microarray experimental data can explain how a drug treatment (a type 

of perturbation for the cell) changes cell behavior in the molecular level [3]. Traditional genome-wide 

microarray experiments reveal lists of the effected genes that are assumed to be a response of cells in the 
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genomic level. However, the analysis of only a list of effected genes cannot provide a fully understanding of 

the molecular basis of cellular processes. Hence, new algorithms are necessary to overcome this problem. A 

recent study proposed a score flow algorithm to quantitatively visualize cell responses in the signaling 

pathways [4]. The algorithm traverses a signaling pathway and calculates an activity score of each biological 

process attached to the pathway. In this study, we adapted this score flow algorithm on a large signaling 

network to evaluate effects of different drug treatments on the lymphoma cancer cell lines. The algorithm 

found out specific genes that are mostly affected due to the given drug in the cancer cells. Therefore, the 

proposed method might be beneficial for a better understanding of cellular responses under various 

perturbations applied on the cells.  

2. Material and Methods 

2.1. Data  

2.1.1. Microarray data 

There are various technologies to measure cell response in the genomic level. Microarray experiments 

aim to measure mRNA levels of genes upon a specific condition. After statistical analysis of microarray 

experiments, the expression levels of genes are measured in terms of increase or decrease in the amount of 

mRNA compared the control samples. We used a public microarray experiment B-cell lymphoma cancer 

cells were treated with 14 different drugs (Table 1) to observe their effects on the cancer cells [5]. In this 

dataset, every gene has 3 expression measurements for both drug-treated and control samples. In order to 

compute one measurement for both drug-treated and control samples, we took the median of 3 samples for 

each condition. So, both drug-treated and control samples are represented by only one measurement that 

can be provided as the input score of the gene. Then we translated each gene symbol to the corresponding 

gene identifier. We combined the score of a gene, which has multiple samples in the experiment, by taking 

the median values of this gene. Finally, for each gene, a single drug-treated and control expression value is 

provided to the algorithm. 

2.1.2. Pathway data 

Pathway Commons is free pathway information about different taxonomy [6]. It has an online interface 

that enables researchers to examine lots of information about biological pathways from different sources. 

Pathway Commons has a downloadable format for specific pathway data and provides a web service so 

everyone can use queries and access all data. A pathway includes two elements: node and edge. Source node 

represents a protein or drug; the target node shows a protein. The edge represents the type of biological 

relation or reaction between source and target nodes [6]. The goal of our study is to detect the genes are 

effected after a drug treatment. Therefore, we just chose “interacts-with” and “consumption-controlled-by” 

edge types covered in KEGG pathways that were downloaded from Pathway Commons database. 

2.1.3. Drug targets 

A drug target is a protein or enzyme, which is affected by the designed drug, and its original function in 

the cell is changed or corrupted after binding of the given drug its binding pocket. For example, the known 

targets of “Aclacinomycin A” drug are TOP1, TOP2A, and TOP2B proteins. Drug targets were derived from 

screens using cell culture or whole organisms and phenotypic or molecular readouts. Discovery of the direct 

target(s)of a drug is often the most challenging and time-consuming step of the drug development process 

[7]. In this project, we utilized the STITCH database for finding the targets of 14 drugs. STITCH is a 

searchable database that coordinates data obtained from metabolic pathways, crystal structures and 

drug–target connections [8]. Text mining and chemical structure comparability is utilized to predict 

relations between chemicals. Each protein-interaction can be followed back to the first information sources. 

It contains interactions for between 300,000 little atoms and 2.6 million proteins from 1,133 organisms. 
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Total number of known targets of each drug in our dataset is listed in Table 1. 

2.2. Pre-processing of Pathways 

We applied a processing on the original KEGG pathways to transform its topology into a tree structure.  

For this purpose, we used a well-known graph traversal algorithm: Breadth First Search (BFS). For a specific 

drug A, the pathway is transformed into its BFS tree. In this transformation the first interactors of drug A - 

that are known targets of A - are placed into the first level of the BFS tree. Then the next interactors of these 

proteins are placed to the second level, and so on. This transformation continues till no protein left. An 

example transformation of input pathway for “Aclacinomycin A” is shown in Fig. 1. As summary, each drug 

has its own network that is transformed from the larger signaling pathway by only using the known targets 

of this drug and their children nodes in the pathway. 

Total Number of Edges, nodes and drug targets are listed in the “# of Edges”, “# of Nodes” and “# of Drug 

Targets” columns, respectively. After transformation of pathways by using BFS algorithm, the depth of each 

drug network is given in the “# of Levels” column. 

 
Table 1. The Details of Each Drug Network  

Drug Name # of Edges # of Nodes # of Levels # of Drug Targets 

Aclacinomycin A 13979 4791 12 3 

Mitomycin C 251979 12955 8 18 

Rapamycin 81717 13003 7 128 

Doxorubicin hydrochloride 118752 12875 7 108 

H-7 Dihydrochloride 59644 4430 11 2 

Geldanamycin 116033 12826 9 21 

Methotrexate 274265 13011 8 33 

Vincristine 263037 11558 11 7 

Blebbistatin 55838 5690 11 6 

Monastrol 94305 8039 11 2 

Camptothecin 148146 12991 7 20 

Trichostatin A 139873 11581 10 44 

Etoposide 131129 13034 8 63 

Cycloheximide 116875 12797 10 86 

 

After transformation of the input pathway into a drug tree (i.e., network), the edges were removed which 

connect genes in the same level or to the upper levels. After this edge removal process, single nodes, which 

have no incoming / outgoing edges were also removed. By applying these operations, potential cycles in the 

tree were eliminated. In Fig. 1, red edges and nodes were deleted to prevent such cycles in final drug tree. 

After the transformation and cycle removal stages, the network content (total number of edges, nodes, 

levels, drug targets) for each drug is listed in Table 1. 

2.3. Score Flow Algorithm 

The algorithm works iteratively and computes the score of the proteins in a level-wise manner. The initial 

scores of proteins are provided by the microarray experiment of each drug. According to BFS algorithm, 

children nodes are connected with their parent nodes. For each iteration of the algorithm, the proteins in 

the network are processed in level order, i.e., the proteins in the level i are processed before the proteins in 

the level i+1. The output-score of a protein-node is the summation of its input score (microarray experiment) 

and the weights of all incoming edges to that node. Topologically in a tree, a parent node transfers its 
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output-score to its children by partitioning its output-score between each child equally. Then this 

partitioned score is assigned as the weight of each edge, which connects the parent and a child node. The 

pseudo-code of this algorithm is given in Table 2.  

 

    
Fig. 1. Transformed network for AclacinomycinA drug. The red nodes and edges were deleted to prevent 

potential cycles in the original pathway. 

 
Table 2. Pseudo Code for the Score Flow Algorithm 

Score: indicates initial score of each node provided by microarray file 

outScore: contains out-score of each node 

marray: indicates self-score of each node provided by microarray file 

outAdj(x): out-adjacency list of node x.   

ElementCount(x): Number of edges from x node 

All(x): List of all proteins in the network 

Levelization information V0,...,Vl-1 is obtained by running the BFS algorithm 

Initialization: 

  For each vertex x in All (x) do 

       If marray(x) contains then 

   Score(x) = marray (x) 

         outscore(x) = marray (x) 

       else 

  Score(x)=0 

  outscore(x) = 0 

Score Computation: 

  For each level = 0,...,l-1 do 

      For each vertex x in Vi do  

          For each vertex y in outAdj{x} do y 

    outscore(y) = outscore(y)+ (outscore(x)/ElementCount(x)) 

 

3. Results 

We applied the score flow algorithm for 14 drugs separately. One detailed example for Aclacinomycin A 

drug is given in the Fig. 2 that shows the score calculation between the first, second, third, and fourth levels 

of Aclacinomycin A drug network. Aclacinomycin A has three know protein targets (TOP1, TOP2A, TOP2B) 

that are in the second level of the drug network (tree). The drug itself does not transfer a score to its 
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children that’s why the edge weights are set to zero for the edges connecting first and second levels. For 

example, TOP2B protein in the second level has an input score of 8.48, the weights of all incoming edges to 

this protein are zero. The output score of a protein is the summation of its input score (gene expression) 

and the weights of all incoming edges to this protein. So, the output-score of TOP2B will become 8.48 as 

well. This output-score is partitioned between its children (in total 32); each child of TOP2B will get a score 

of 0.33 that is set as the incoming edge weight of each child of TOP2B. This score flowing scheme is applied 

until reaching the deepest level of the drug network. After running of the score flow algorithm with this 

manner for each drug separately, the final output-scores of all proteins were recorded. The effect of a drug 

treatment on a protein in the network was identified based of difference between its initial microarray 

score and the final output-score computed by the score flow algorithm. The proteins with highest difference 

in their scores are selected as the most affected ones and listed in Table 3. The most affected proteins are 

not the direct target proteins of the given drugs, since they placed in the lower levels, most commonly in the 

3rd level, of the tree. This result was also found in recent studies [9], [10]. These proteins have activities in 

the distant parts of signaling pathways and showed the most remarkable reactions in this pathway after the 

application of drug treatments. When we analyzed these proteins, some of them were found to be in 

common between different drugs. For example, COX7A2 is identified as the highly effected protein in the 

drug network of Aclacinomycin A, H-7 Dihydrochloride, Methotrexate, and Mitomycin C drugs. Similarly, 

NFE2L1 is identified in the drug networks of Methotrexate and Mitomycin C. USP15 is also highly influenced 

protein in the drug networks of Camptothecin and Etoposide. 

 

 
Fig. 2. Score calculations for the “Aclacinomycin A” drug between first five levels. 

 

We performed a literature search about the highly affected proteins observed for several drug 

treatments. A previous study showed that the dys-regulation NFE2L1 protein might lead tumor [11]. 

Another study also suggested that NFE2L1 expression is related to the cell survival under stress condition 

[12]. A recent study found that USP15 protein regulates the TGF-β pathway and USP15 has an important 
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role in glioblastoma cancer [13]. These proteins, which are highly effected due to more than one drug 

treatment in our dataset, appear to have some roles in different cell activities related with the cancer 

development. As a summary, such previous studies in literature also support our results found by the score 

flow algorithm that might help a better interpretation of molecular responses of a cell after a drug 

treatment. 

For each drug, three proteins with the highest score change (given in the “Difference” column) were 

chosen as the highly affected proteins. 

 
Table 3. The Most Affected Three Proteins for All 14 Drugs 

Drug Name Protein Name Initial Score Final Score Difference Level 
Aclacinomycin A ZRANB2 9,45 71,99 62,55 3 
Aclacinomycin A COX7A2 11,33 73,02 61,69 6 
Aclacinomycin A ECH1 9,50 70,26 60,76 6 
Blebbistatin TAF1 5,44 133,08 127,64 3 
Blebbistatin USP7 8,30 96,49 88,19 3 
Blebbistatin YME1L1 10,07 88,60 78,53 3 
Camptothecin USP15 5,70 225,42 219,72 3 
Camptothecin TEX10 6,97 155,05 148,08 3 
Camptothecin TFPI2 3,65 124,86 121,21 4 
Cycloheximide YEATS4 9,28 227,75 218,47 3 
Cycloheximide ZBTB7C 6,10 207,20 201,10 3 
Cycloheximide WDR61 8,43 171,72 163,29 3 
Doxorubicin hydrochloride ZCCHC11 5,15 258,38 253,23 3 
Doxorubicin hydrochloride VSIG8 3,70 190,53 186,83 3 
Doxorubicin hydrochloride ZNFX1 9,96 173,33 163,37 3 
Etoposide USP15 6,04 345,46 339,42 3 
Etoposide WDR26 8,96 180,13 171,17 3 
Etoposide SMURF2 4,46 153,33 148,87 3 
Geldanamycin TK1 6,39 218,23 211,84 3 
Geldanamycin ZNF346 6,03 156,38 150,36 3 
Geldanamycin TALDO1 8,69 152,95 144,26 3 
H-7 Dihydrochloride COX7A2 11,39 120,69 109,30 6 
H-7 Dihydrochloride ZNF30 5,80 83,15 77,35 4 
H-7 Dihydrochloride ZNRF4 4,15 81,37 77,22 4 
Methotrexate YARS 9,80 142,33 132,53 3 
Methotrexate NFE2L1 7,16 139,13 131,97 3 
Methotrexate COX7A2 11,02 115,07 104,05 4 
Mitomycin C ZMPSTE24 9,97 109,39 99,42 3 
Mitomycin C COX7A2 11,07 105,53 94,46 4 
Mitomycin C NFE2L1 6,94 100,78 93,84 3 
Monastrol RXFP1 3,82 133,42 129,61 4 
Monastrol SIAH2 11,40 122,16 110,76 4 
Monastrol TMEM223 8,45 115,43 106,98 4 
Rapamycin RCC1L 6,01 172,69 166,68 3 
Rapamycin TRIP6 6,75 150,61 143,86 3 
Rapamycin ZFP36 10,53 147,42 136,89 3 
Trichostatin A YTHDF3 7,86 236,42 228,57 3 
Trichostatin A YARS2 8,58 182,77 174,19 3 
Trichostatin A UBE2NL 4,21 168,68 164,48 3 
Vincristine PSMB10 0,00 131,70 131,70 4 
Vincristine SBDS 10,92 129,93 119,01 4 
Vincristine MRPL52 9,60 125,57 115,98 4 

 

4. Conclusion 

Traditional analysis of microarray experiments should integrate more information from the molecular 

signaling levels to have a better understanding of cellular responses. Therefore, signaling pathway and 

interaction network analysis became more attractive to give a new perspective for the classic analysis of 

gene expression data [14]-[16]. New algorithms have started to highlight important regulator proteins and 
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cellular processes in pathways; such results had not been found by applying naive differentially expression 

analysis [9], [17]-[20]. 

In this study, we applied a score flow algorithm on an integrated KEGG signaling pathway and showed the 

molecular effects of different drug treatments applied on lymphoma cancer cells. The algorithm highlighted 

specific proteins that are mostly affected due to the given drug. Some of these proteins were also found in 

other studies and they work on different cancer related cell activities. Therefore, the proposed method 

might be useful to understand cellular responses under various experimental conditions applied on the 

cells. We will continue this study with the literature analysis of top-10 mostly affected proteins for 14 drugs. 

We believe that such analysis might bring more insights to understand the cellular effects of these drugs 

applied on lymphoma cancer cells. This method might help to predict the synergistic behaviors of drug 

combinations in the molecular signaling level. As a future work, a visual tool for this method will be 

developed to open its usage for biologists and pharmaceutical developers. 
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