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Abstract: A mathematical model of Zika virus is studied in this paper. Zika is caused by Zika virus, a 

flavivirus related to yellow fever, dengue. In 1952, first outbreak occurred in Uganda. In 1962, an epidemic 

was recognized as the first time in Thailand. In this study, we consider the transmission cycle between two 

population groups: human and mosquito. Using standard dynamical modeling method, the stability 

conditions of our model is considered by Routh-Hurwitz criteria. The numerical simulations are shown to 

support the analytical results. 
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1. Introduction 

On 6 July 2016, World Health Organization (since 2007) reported evidence of zika virus from 65 

countries [1]. There are 61 countries reported mosquito-borne zika virus transmission. Guinea-Bissau is the 

last country where there is the report of mosquito-borne zika virus [1], [2]. Zika virus is caused by a virus 

transmitted by Aedes mosquitoes, Family flavivirus, related to yellow fever, dengue [3]. In 1947, Zika virus is 

initially found in monkey of Uganda. In 1952, Zika virus was found in human [4]-[7]. 

 

 
Fig. 1. Life cycle of zika [7]-[9]. 

 
In 1952, an epidemic was recognized as the first time in Thailand. The first case is the traveler, a female 

from Canadian. Between 21 January to 4 February, Thailand confirmed zika virus disease in a traveler. 
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Human can be infected by mosquito–borne from the Aedes genus. This is the same mosquito that transmits 

dengue, chikungunya and yellow fever [10]. In 2016, Gao et al. [4], studied mathematical model of zika virus 

as mosquito-borne disease. They considered sexual transmission, biting rate and mortality rate of mosquito. 

They used sensitivity analysis to analyze the basic reproductive number (R0). Kucharski et al. [11] use a 

mathematical model of vector-borne infections, the transmission dynamical of zika virus in island 

population and examined the transmission dynamical of zika virus on six archipelagos in Frence in 2013-14. 

Bichare et al. [12] identified the impact of short term mobility between two idealized interconnected 

communities, using a Lagrangina mode land show simulations of short term mobility. In 2011, Naowawat, et 

al. [13], studied dynamical model for determining human susceptible to dengue fever. The basic 

reproductive number is explained as follows: R0<1, the disease-free state is local stable. The endemic state 

is local stable for R0 > 1. In this paper, we consider the transmission of zika virus. We divided the human 

population into susceptible, exposed, infectious and recovered classes (SEIR models). Mosquito population 

is separated into susceptible, exposed and infectious classes (SEI model). Using standard dynamical 

modeling method, the stability of model is determined by using Routh-Hurwitzcriteria. The Threshold 

parameter is found to separate the different behaviors of two steady states. The numerical simulations are 

shown to support the analytical results.  

2. Mathematical Model 

In our model, we consider the transmission of zika virus between two population, human population and 

mosquito population. The human population is divided into four sub-groups: susceptible, exposed, infected 

and recovered. The mosquito is divided into three sub-groups: susceptible, exposed and infected. The 

variables and parameters in our equations are described as follows: 

hS  is the size of susceptible human populations, 

hE  is the size of exposed human population, 

hI  is the size of infected human population, 

hR  is the size of recovered human population, 

vS  is the size of susceptible mosquito population, 

vE  is the size of exposed mosquito population, 

vI  is the size of infected mosquito population, 

B  is the birth rate of human population, 

vd  is the natural death rate of human populations, 

  is the biting rate of mosquito population, 

h  is the rate at which mosquito to human Zika is contracted, 

hF  is the incubation period of Zika virus in human, 

  is the recovery rate of human populations, 

hN is the number of human populations, 

m  is the number of other animals that the mosquito can feed on 

A  is the recruitment rate of mosquitoes 

vd  is the natural death rate of mosquito 

v  is the rate at which human to mosquito Zika is contracted, 

vF  is the incubation period of Zika virus in mosquito, 

The diagram of our dynamical systems can be described by following Fig. 2: 

The dynamical rate of each population group is described by following equations. 
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For human: 
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For mosquitoes: 

 

v v v h
v v

h

dS S I
A d S

dt N m


  


                                       (5) 

 

( )v v v h
v v v

h

dE S I
F d E

dt N m


  


                                    (6) 

 

v
v v v v

dI
F E d I

dt
                                            (7) 

 
where h h h h hN S E I R     and v v v vN S E I    

We can be normalize our equations (1)-(7) by introducing the new variables: 
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Then we have the dynamical equations of the reduced equations as follows: 
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with the condition 1h h h hs e i r     and 1v v vs e i    

3. Analysis of Mathematical Model 

3.1 Analytical Solutions 

After we formulate the dynamical equations, the next step is to find the steady states of our equations. 

The standard dynamical modeling method is used for analysis of our model, a disease free steady state and 
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an endemic steady state are obtained. We set the right hand side of equations (8) to zero, then we obtain the 

steady states: 

i) Disease free steady state: * * * * *
0 ( , , , , ) (1,0,0,1,0)h h h v vE s e i s i   

ii) Endemic steady state: * * * * *
1 ( , , , , )h h h v vE s e i s i  where 
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By using standard dynamic modeling method, the local stability of each steady state is defined of all 

eigenvalues. If all eigenvalues for each steady state produce the negative real part, we can conclude that 

steady state is local stability [14]. The eigenvalues are the solutions of the characteristic equation 
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where 

iE
J is the Jacobian matrix; 0,1i  and I is the identity matrix. 

 

 
Fig.2 flowchart of the model. 

 
Disease free steady state, the characteristic equation is * * * * *
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The characteristic equation of the above Jacobian matrix is 
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We can see all eigenvalues have negative real parts. We use Routh-Hurwitz criteria [15]. Where R0<1 
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Therefore, we can conclude that the endemic steady state is local stability for R0>1 and the disease free 

steady state is local stability R0<1. 

3.2 Numerical Solutions 

The values of parameter in the model are shown in Table 1. 

 
Table 1. Values of Parameter 

parameter Values Source 
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Fig. 3. Time series solution of infected human and infected mosquito. 
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Fig. 4. Time series solution of susceptible human, exposed human, infected human, susceptible mosquito 

and infected mosquito on endemic steady state, the solutions converge to 

(0.0277,0.0002,0.0008,0.9999,0.0001) where R0=2.8557. 

 

4. Conclusions 

In this study, we constructed the dynamical transmission model of Zika virus. The model has two steady 

state, disease free steady and endemic steady state. The basic reproductive number [16], [17] is denoted by 

R0 where 
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Fig. 2 is time series solution of infected human and infected mosquito, where R0<1. And Fig. 3 is time 

series solution of susceptible human, exposed human, infected human, susceptible mosquito and infected 
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mosquito on endemic steady state, the solutions converge to (0.0277,0.0002,0.0008, 0.9999,0.0001) where 

R0=2.8557. 

 

 
(a)                                     (b) 

 
(c) 

Fig. 5. Numerical solution of our dynamical equations. where R0>1. 
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