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Abstract: In this work, an optimal framework for tumor radiotherapy is investigated based on Kinetic 

Theory of Active Particle (KTAP) and Gene-Environment Network (GEN) model. The inner mechanism and 

the dynamic kinetics of radiotherapy are presented through complicated mutual interactions among 

molecular particles and acute Ion Radiation (IR) cofactors, including stochastic DNA damage generation, 

repair, and switch-like Ataxia Telangiectasia Mutated (ATM) activation, periodical oscillation of P53 

network, as well as alternative phase of cell cycle arrest and apoptosis. The simulations can illustrate the 

outcomes of radiotherapy under different IR circumstances, including tumor cell mass degradation, toxin 

accumulation, and cell activity during the first and second phase of radiotherapy. Especially, an optimal 

strategy of radiotherapy is analyzed under different strength of IR circumstances. 
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1. Introduction 

Cancer, like many other serious diseases, results from a complex interplay of genetic and environmental 

risk factors [1], [2]. As one kind of the main tumor therapies, radiotherapy is a comprehensive method, and 

plays a major role in the cancer treatment. Radiotherapy acts via the induction of Double Strand Breaks 

(DSBs) into DNA, and then triggers inner cellular self-defense mechanism to induce apoptosis of cancerous 

cells via programmed cell death [1], [3]. It is important to study the potential genetic and environmental 

risk factors together in order to understand the mechanisms of underlying aetiology. 

The main factor leading to success in clinical radiotherapy is radiation dose. Low doses are ineffective, 

whereas if it is possible to give a very large radiation dose then, in principle, any tumor can be (locally) 

controlled, but it will bring unavoidable damage to the normal cells adjacent to the tumor [1], [4]. Currently, 

some combined approaches of information science, control theory, and system biology are invoking new 

ideas on the investigation of complicated mechanisms of bio-system at single cell level [5]. Some theoretical 

methods have been proposed to investigate cellular self-defensive mechanism under genome stress, such as 

Gene Regulatory Network (GRN) models [6]. In addition, Gene-Environment Network (GEN) model, a novel 

mathematical framework, has been widely investigated by using the kinetic theory of active particle (KTAP) 

[7]-[9]. KTAP can model the overall bio-system by evolution equations corresponding to the dynamics of all 

elements within different subsystems [9]. GEN can describe not only the stochastic interactions between 

genes and environmental cofactors at molecular level, but also the systematic dynamics of integrated 

system in response to environmental perturbations [9], [10]. GEN model is widely used in different research 
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areas, e.g., cellular self-repair kinetics under acute IR [11], as well as cellular fate decision by gene cofactors 

[12], [13]. Especially, KTAP has been applied to some areas in social and life sciences, e.g. social behavior of 

interacting individuals [14], as well as multi-cellular system and tumor-immune system competition [15], 

[16].   

To investigate the simulation of the tumor radiotherapy mechanism further, we propose a hybrid model 

based on KTAP framework and GEN method. In the following paragraphs, the second part presents the 

mathematical framework for the mutual interactions among active particles at molecular level, and the 

dynamic kinetics of cellular response at systematical level. The third part illustrates the dynamic outcomes 

of the molecular interactions under acute IR cofactors, including the kinetics of stochastic DNA damage 

generation, DNA repair, and switch-like Ataxia-Telangiectasia-Mutated (ATM) activation; periodical 

oscillation of P53 network; and alternative phase of cell cycle arrest and apoptosis. The fourth part predicts 

the outcome of radiotherapy by selecting some indicators, and thus analyzes how to find an optimal therapy 

strategy by comparing the outcomes of radiotherapy under different IR time in effective IR range. 

2. Methods 

2.1. Overview of the Hybrid Model 

As shown in Fig. 1, the hybrid model is composed of three subsystems: DNA damage transferring and 

ATM activation, P53 network oscillation, and tumor cell cycle arrest and apoptosis. In terms of the KTAP 

framework and GEN model, we deal that all of three subsystems consist of active molecular particles with 

different microscopic discrete states. Therefore, the mutual interactions between molecular particles and 

environmental co-factors can be presented at molecular level, which may modify either the state or the 

number of molecular in each subpopulation by proliferation/ destruction phenomena [12], [16]. Especially, 

the dynamic kinetics of the hybrid model can be dealt as results of mutual interactions among correlated 

molecular particles in different subsystems and outer environmental cofactors. In this method, some vital 

genes and their mutual interactions with environmental cofactors are involved. Due to the complicated 

mechanisms of radiotherapy, this hybrid model just provides a platform for investigating the simulations of 

clinical radiotherapy kinetics theoretically. Meanwhile, the detailed mathematical formulations are omitted 

due to the page limitation. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The scheme of the hybrid model for tumor radiotherapy.  

 

It is composed of three correlated subsystems: DNA damage transferring and ATM activation, P53 

network oscillation, and tumor cell arrest & tumor cell apoptosis. Each subsystem includes active molecular 

particles of several populations with different discrete states. 
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2.2. DNA Damage Transferring and ATM Activation 

In this model, the first subsystem shown in Fig. 2 tries to present the stochastic kinetics of DNA damage 

generation, repair and transfer, as well as ATM activation under radiotherapy. As acute IR perturbation is 

applied into a tumor cell, DSB, a typical form of DNA damage, occurs stochastically. Providing cellular 

self-repair mechanism is available, some repair enzymes can be quickly recruited to bind into the nascent 

DNA ends, then the DSB-protein Complexes (DSBCs) are formed [17]. As a sensor of genome stress, ATM 

kinase is very sensitive for these fixed DSBCs, thereafter, the switch-like kinetics of ATM activation is 

triggered through intermolecular phosphorylation [18], under mutual interactions with damage signals 

transferred from DSBCs synthesis. In the stochastic DSBs generation process, we consider the fact that 

different numbers of DSBs are generated along with different IR dose domains, and then deal that the 

number of resulting DSBs induced per IR dose within each time scale obeys the principle of Poisson random 

distribution, whose average is proportional to the radiation dose [1], [16]. Generally, most of the resulting 

DSBs can be fixed by cellular self-repair mechanism. During DNA damage repair process, the kinetics of RP 

translation is prompted through mutual interactions of intact DSBs with repair mRNA. For repairable DNA 

damage during the first phase of radiotherapy, the available RP is quickly recruited to the damage sites, and 

then synthesize DSBC after combining into the resulting DSB [19]. In this module, the corrected repair part 

of DSBC (rDSBC) is dealt as main signal source to trigger switch-like ATM activation. However, for 

un-repairable DNA damage during the second phase of radiotherapy, the intact DSBs remain and increase 

dramatically in cell, which can seriously weaken genome stability and cellular viability [20]. Therefore, we 

deal that the total concentration of intact DSBs and mis-repaired part of DSBC (mDSBC) as cellular toxins 

generated during and after tumor radiotherapy, and as one indicator of the outcomes of tumor radiotherapy 

[7], [21].  

Meantime, in response to positive interaction with DSBC particle transferred from DSB repair process, 

ATM dimer (ATMd) converts into inactive ATM monomer (ATMm), and then transforms into active ATM 

monomer (ATM*) [20], [21]. In fact, ATM activation is a reversible kinetics, i.e., ATMm can convert into 

ATMd, and ATM* can transform into ATMm reversibly. Meanwhile, we deal that the total concentration of 

ATM including ATMd, ATMm and ATM* is constant, because it mainly undergoes posttranslational 

modifications after DNA damage. In addition, ATM dimers are predominant in unstressed cells, as the 

dimerization rate of ATM is much larger than its undimerization rate [21]. 

2.3. P53 Network Subsystem 

P53-MDM2 negative feedback loop is important to trigger downstream genes, and then regulate a series 

of cellular mechanism under radiotherapy, such as cell cycle arrest and cell apoptosis etc. As an important 

tumor suppressor, active P53 (P53*) is very low in unstressed cell. However, to eliminate lethal genome 

damage or deregulated proliferation, the level of P53* can increase quickly in some minutes upon DNA 

damage transferring in response to external perturbation cofactors, while the first cellular apoptotic event 

occurs in a few hours in some cell types [20], [21].   

As shown in Fig. 3, we mainly deal the P53-MDM2 negative feedback loop as a kernel part in the P53 

network subsystem. Within DNA damage signal transferring from upstream ATM activation, the kinetics of 

P53 phosphorylation is prompted by positive interaction with ATM* molecular [20]. In addition, the 

dynamics of MDM2 degradation is accelerated by negative interaction with ATM* particle as well. Meantime, 

the expression of MDM2 is triggered by positive interaction with P53* molecular further, whereas, the 

concentration of P53* can be depressed by MDM2, a P53-specific ligase and antagonist of P53, in order to 

avoid the over-expression of P53 [18]. Thereafter, the dynamic equilibrium of P53-MDM2 feedback loop will 

be impaired by ATM-dependent phosphorylation of P53 and MDM2. As a result, some periodical oscillations 
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occur between P53 and MDM2 as expected [7], [20]. 

2.4. Tumor Therapy Subsystem 

P53 and its cofactors, e.g., P21 and Bax are vital for cell fate decision, especially for the outcomes of 

radiotherapy [13]. In the tumor therapy subsystem, as shown in Fig. 4, we mainly consider the 

P21-dependent cell cycle arrest and Bax-dependent apoptosis signal pathway. In terms of the extent of DNA 

damage, the P53-dependent signal pathway can make a reliable decision between survival and cell 

apoptosis. During the first phase of radiotherapy, the active P53 sustains a moderate level upon repairable 

DNA damage. Under positive interaction with low level of P53* molecular particles, P21-dependent signal 

pathway can be initiated directly, and then the damaged cell undergoes a transient cell cycle arrest period. 

As a result, the kinetics of DNA damage repair is prompted, and then tumor cell proliferation is blocked 

temporarily [13], [17]. On the other hand, for irreparable DNA damage in the second phase of radiotherapy, 

Bax-dependent cell apoptosis pathway can be evoked alternatively by positive interaction with high level of 

P53* particles [5], [17], [22]. Meanwhile, we deal that tumor cell can be degraded directly by 

Bax-dependent signal pathways, although some other intermediate steps, e.g., CytoC release and Casp3 

activation, are also necessary for regulating cell apoptosis mechanism [17], [22].   

3. Impletentation 

To reveal the dynamic kinetics of tumor radiotherapy, a series of cellular activities are illustrated through 

MATLAB simulation platform, including stochastic kinetics of DNA damage generation, repair and transfer; 

switch-like ATM activation; oscillations of P53-MDM2 feedback loop; alternative activation of P21, 

Bax-dependent cell cycle arrest and cell apoptosis signal pathway. Furthermore, the outcomes of tumor 

radiotherapy are analyzed by introducing some indicators such as, the number of RP available, toxins, 

tumor cell mass, cellular activity as well. Then, an optimal radiotherapy strategy is detected from different 

IR perturbation circumstances.  

DNA damage transfer and ATM activation. In this simulation, the initial number of resulting DSBs per 

time scale is dealt as proportional number generated by Poisson random function with a mean of 35x, in 

which x is the strength of IR dose [5], [6]. First, we apply IR=3Gy as an example from these radiotherapy 

strategies above. As shown in Fig. 5, the resulting DSBs occur stochastically under external interactions with 

constant 3Gy IR cofactor (Fig. 5). Due to fewer DSBs generated under lower IR, the number of synthesized 

rDSBC keeps increasing with enough RP (Fig. 5) available around DNA damage sites. Meanwhile, the 

accumulated toxins (Fig. 5) which mainly include mDSBC, increase slowly in a tumor cell. In response to 

DNA damage transferring from rDSBC, the switch-like ATM is activated from inactive ATM monomer (ATMm) 

(Fig. 5), and phosphorylated ATM monomer (ATM*) (Fig. 5) rapidly rises to a high plateau after about 300 

time-scales, and then keeps a dynamic equilibrium versus continuous radiation time. 

Oscillations of P53 network subsystem. The periodic oscillations occurred in P53-MDM2 negative 

feedback loop are important clues to investigate the inner mechanism of tumor radiotherapy [5], [22]. 

Within damage signal transferring from switch-like ATM activation, the dynamic pulses between P53 and 

MDM2 are initiated, and the number of these pulses is mainly determined by the duration of ATM activation 

process. In this part, we take IR=23Gy as another therapy strategy, and illustrate the dynamic oscillations 

between P53 and MDM2. As shown in Fig. 6, the saturated P53 mRNA provides continuous signal resource 

to trigger P53-MDM2 oscillator (Fig. 6). Upon both positive interaction with ATM* and negative interaction 

with MDM2, P53 is activated quickly from P53, and keeps high level with periodic pulses (Fig. 6). Meanwhile, 

upon the positive interaction with activated P53 (P53*) and negative interaction with ATM* molecule, 

MDM2 is translated from MDM2 mRNA, and owns similar periodic pulses with P53* (Fig. 6). These 

oscillations between P53 and MDM2 have similar periods of about 400 time-scales with different phases 
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and swings, and the first pulse is slightly higher than the second one, and then tends to disappeared after 

about 1400 time-scale (Fig. 6), as ATM* signal is vanished with the limited cellular self-repair capability in 

response to much more intensive IR dose and longer therapy time. 

Outcomes of cell cycle arrest & apoptosis. In this part, we apply IR=43Gy of radiotherapy into a tumor 

cell. As shown in Fig. 7, in response to repairable DNA damage during the first phase of radiotherapy, P21 is 

activated from P21 mRNA, and kept saturation state for about 150 time-scale, after positive interaction with 

relative low level P53* (Fig. 7). On the contrary, in response to un-repairable DNA damage, Bax is activated 

from Bax mRNA after positive interaction with relative high level P53*, and then decreases and tends to 

zero slowly after reaching a concentration climax (Fig. 7). Suppose that tumor cell mass can be directly 

degraded by Bax-dependent signal pathway, under continuous radiation time of 43Gy therapy strategy, 

tumor cell mass keeps increasing slowly and tends to equilibrium constant (Fig. 7); meanwhile, the activity 

of tumor cell keeps decreasing and tends to zero, because more toxins are accumulated in the cell.  These 

simulations above denote that the outcome of radiotherapy under IR=43Gy circumstance is not encouraging, 

because a lot of accumulated toxins can seriously decrease genome stability and cell activity, especially, the 

tumor cell cannot be degraded efficiently during the second phase of this therapy strategy. 

Moreover, the results of cell cycle arrest and apoptosis kinetics under different IR circumstances are 

listed in Table 4, we can see that, as IR gets bigger, the maximal value of P21 keeps decreasing, whereas, the 

maximal value of Bax keeps increasing, and then sharply decreases after IR overtakes 33Gy. Especially, 

under IR=33Gy, both the minimal and maximal value of tumor cell mass gets the smallest one in all six IR 

strategies. These analyses suggest that an optimal therapy strategy is available near 33Gy IR, in which 

tumor cell can be eliminated efficiently. Otherwise, the outcomes of radiotherapy are not encouraging if the 

strength of IR is too low or too high, because the mechanism of cell apoptosis cannot be initiated during the 

second phase of radiotherapy. 

Optimal strategy for tumor therapy. Generally, the radiation time and the strength of IR dose are 

important for outcomes of radiotherapy. In this part, we take some primary elements from the integrated 

OFTR model, and then roughly analyze the results of radiotherapy under different therapy circumstances, in 

order to find an optimal strategy with smaller tumor cell mass and fewer toxins remained, as well as 

stronger cell activity during and after radiotherapy. 

In our simulations, we apply different IR range from 24 to 42Gy into a tumor cell, respectively. The 

selected and summarized results are illustrated in Fig. 8. For IR=28, 32, 36, and 40Gy, as shown in Fig. 8, the 

period of ATM activation and P53 network oscillation gets shorter when IR becomes stronger. Meanwhile, 

the first phase of radiotherapy, i.e., cell cycle arrest triggered by P21-dependent signal pathway, becomes 

shorter and weaker; on the contrary, the second phase of therapy, i.e., cell apoptosis induced by 

Bax-dependent signal pathway, gets longer and stronger, and dominates the main therapy process. As a 

result, tumor cell mass can be degraded more efficiently during the second phase of radiotherapy. However, 

due to the increasing toxins remained, the activity of tumor cell keeps decreasing versus continuous therapy 

time under different IR strategies.     

4. Conclusions 

In this work, the hybrid model for radiotherapy with three subsystems is proposed by using KTAP 

framework and GEN. Our method can successfully exhibit a series of dynamic kinetics of tumor 

radiotherapy from molecular to systematic levels, including the stochastic process of DSB generation and 

repair, switch-like ATM activation, periodic oscillations of P53-MDM2 negative feedback loop, alternative 

kinetics of both P21-dependent cell cycle arrest and Bax-dependent cell apoptosis signal pathways. The 

simulation results show the proposed model can be effectively used to explore the inner mechanism of 
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tumor radiotherapy from molecular to systematic level, and then further provide some useful clues and 

advices on designing more efficient radiotherapy strategy in theory. 
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