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Abstract: Functional electrical stimulation (FES) is an effective tool for rehabilitation. However the 

decrease of induced muscle contraction is one of the limitations of using FES in clinical therapy. The 

purpose of this study is to improve the evoked tension by periodical shifting of stimulating pair of electrode 

on the same muscle. We applied the time shifting stimulation (TSS) to biceps brachii to validate its effect. 

Two pairs of surface electrodes were placed over biceps brachii’s motor point. Motor point moves 

depending on muscle contraction, so the electrode pairs were set to stimulate the motor point in elbow 

flexion posture and extension posture respectively. TSS changed the stimulating pair of electrode 

periodically from the distal pair to the proximal pair with 0.5 seconds offset. For comparison, simultaneous 

stimulation (SS) that stimulated two pairs of electrodes at the same time was conducted. The improvement 

of maintenance of muscle contraction was assessed by the angle of motion induced by FES. Ten healthy 

male subjects performed in both TSS and SS experiments in which 180 contractions were induced by FES in 

15 minutes. 1 week rest was taken between the stimulation methods. As a result, TSS realized significantly 

larger angle of motion than SS. The effect of TSS on angle of motion maintained for 15 minutes. The results 

suggest that TSS may cause less fatigue than SS. The effectiveness of TSS can be contributed by stimulating 

motor point periodically. Because motor point moves from distal position to proximal position in response 

to the muscle contraction, TSS may apply stimulation to motor point effectively. 
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1. Introduction 

Functional Electrical Stimulation (FES) is an effective therapeutic tool for patients who suffer from 

strokes or spinal cord injuries [1]. FES is used as a rehabilitation method that induces muscle contractions 

to help restore motor function. FES can assist limb motion with applying alternating current stimulation. 

Non-invasive FES provides stimulation from surface electrode placed on the skin, so it is relatively easy to 

apply to a clinical therapy for safety. In order to use FES for a dynamic exercise such as walking and cycling, 

multi-channel FES are used as an effective rehabilitation tool for support the more difficult rehabilitation 

task [2]. Multi-channel FES can activate different coordination group of muscles so patient can train various 

motions involving multi degree of freedom.  
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However, one of the biggest limitations of non-invasive FES is that it rapid decreases the muscle 

contraction and weakens muscle response [3]. The limitation can decrease the angular torque or angle of 

motion induced by the stimulation. The decrease of the maintenance of muscle contraction leads to a 

difficulty of continuing rehabilitation for enough time and the restoration of motor function may delay. 

Various methods have been studied to avoid reducing the strength of muscle contraction [4], [5]. It is 

suggested that when stimulation is applied to a motor point, less current is required to elicit the muscle 

contraction. A motor point locates where motor branch of a nerve enters muscle belly [6]. The electrical 

stimulation to motor point excites motor axon so that all muscle fibers connected to the motor axon 

contract. Currently Nguyen et al., have shown that a method using multichannel FES called Spatially 

Distributed Sequential Stimulation (SDSS) is effective in keeping muscle torque [4]. SDSS has three or four 

active electrodes which are placed on different muscle groups and one reference electrode. The stimulation 

electrode is shifted periodically among these three or four active electrodes in order to prolong the muscle 

contraction of each muscle group. These studies applied FES to quadriceps [7] or triceps surae [4] that 

several muscle groups share a common function like knee extension or planter flexion. However there are 

many muscle groups that only one muscle group is involved in a limb motion such as elbow extension or 

flexion or ankle dorsiflexion. SDSS is difficult to apply to such muscle groups, which limits the applications 

of SDSS. 

Our objective is to develop a method that can improve the resistance of reducing the contraction during 

elbow flexion. Only one muscle, biceps brachii, has a motor point [8] contributes to elbow flexion. 

Our method is the periodic shifting of active and reference electrodes from the distal part of the biceps to 

the proximal part. This method is called time shifting stimulation (TSS) (see Fig. 1). To investigate the effect 

of the TSS, we compare it with another method called simultaneous stimulation (SS) (see Fig. 1) in which 

stimulation from two channels applied simultaneously. 

Various studies on the reduction of muscle contraction by FES assessed muscle response with angular 

torque. However in present study, we investigated the influence on the maintenance of muscle contraction 

with angle of motion because in clinical rehabilitation, passive range of motion is one of the important 

indexes to assess the motor recovery [9]. 

 

 
Fig. 1. Schematic representation of TSS and SS. 

 

Electrode pairs were placed vertical to the muscle fiber. Stimulation timing of each channel is shown 

below the electrode placement. Stimulation in channel 2 is delayed 0.5 second in TSS. Stimulation timing in 

both channels of SS is same. Stimulation duration is 1 second. The wave shape of stimulation voltage is 

shown in Fig. 2. 

2. Methods and Materials 

2.1. Subjects 
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10 healthy male subjects in their 20’s were recruited. The study was approved by the ethical committee at 

The University of Electro-Communications. Each subject signed a written informed consent before the 

experiment.  

2.2. Device 

Elbow angle (𝜃 in Fig. 3) was measured using an electro-goniometer with a sampling frequency of 10 Hz 

(Model SG150 twin-axis goniometer; Biometric Ltd., Ladysmith, VA). A programmable 4-ch constant voltage 

FES stimulator (System Instruments Co., Ltd.) was used to apply electrical stimulation. Stimulation 

parameters and ON/OFF control signal of stimulator would send from PC1 (see Fig. 3). FES stimulation and 

measurement of elbow angle were synchronized. 

2.3. Stimulation 

Self-adhesive circular electrodes (radius: 5 cm) were placed over the motor point of the biceps. 

Stimulation was alternating current with 2000 Hz carrier frequency (pulse width: 500 μs) modulated at 

100 Hz (duty cycle: 50%). The burst modulated alternating current stimulation was suggested to induce 

muscle strength with less discomfort [10]. Stimulation intensity was adjusted based on the angle of motion 

generated by FES. Stimulation intensity was set to the minimum voltage which was able to rotate elbow 

angle more than 30 degrees of motion from the initial position. 

 

Before the experiment, the positions of the motor point were searched for with a pen electrode [4] when 

the arm was flexed and extended. Two pairs of stimulation electrodes were placed over the two positions. 

 

 
Fig. 2. Stimulation shape in TSS and SS. 

 

 
Fig. 3. Schematic diagram of the experimental environment. 
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2.5. Task 

Each subject made his/her arm perform elbow flexion by FES on the transverse plane (range of motion: 

98.2-71.3 (degree)) and returned his/her arm to full extension position voluntarily in one set (see Fig. 3). 

One trial consisted of continuous 180 sets of exercise (15 minutes). In the first trial SS was applied to the 

subject and in the second trial, TSS was applied. The first trial and second trial was separated by 1 week to 

allow the subjects to have enough rest.  

2.6. Data Analysis 

The mean peak angle of motion of certain length of data (180 contractions or 18 contractions) was 

averaged across the 10 subjects. a paired t-test was performed. The statistical significance was accepted if 

𝑝 ≤ 0.05. Data depicted as a bar graph with mean ±standard deviation. 

3. Result 

Fig. 4 (a) shows the time series data for the elbow angle of a representative subject. The elbow angle 

induced by SS continued to go up and down but the elbow angle induced by TSS constantly maintained at a 

high level for 15 minutes.  

The angle positions in the first 90 contractions are shown in Fig. 4 (b). Each point indicates the peak 

angle of motion in one contraction. In the first 90 seconds, difference between the maximum angle of 

motion and minimum angle of motion was 39.2 degree at SS and 8.8 degree at TSS. The reduction of angle of 

motion of TSS was much less than that of SS.  

 

 
Fig. 4. Elbow angle of one representative subject (Blue: SS, Red: TSS). (a) Time series data of peak angle of 

motion induced by FES with 180 contractions (15 minutes). Blue: SS, Red: TSS. (b) Peak elbow angle of the 

representative subject in first 18 contractions (90 seconds). Each point is shown peak angle of motion in 

one contraction. 

 

Fig. 5 (a) shows the mean peak angular position for 15 minutes averaged across 10 participants. Paired 

t-test was used on the average angle of motion data of the 10 subjects to compare the effect of SS and TSS on 

maintaining angular position. According to Fig. 5 (a), TSS induced a wider range of elbow angle than SS 

significantly (𝑝 ≤ 0.05).  

Although most subjects’ time series data of angle of motion in SS was shown a tendency similar to the 

representative subject shown in Fig. 4, there were three subjects whose time series data of angle of motion 

in SS was relatively stable. Time series data of TSS was also stable in the two subjects whose time series 

data in SS was stable. Only one subject out of ten had an opposite effect of TSS that resulted in less angle of 

motion than SS. 
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Fig. 5(b) and Fig. 5(c) show the average peak elbow angle of contractions in the first and the last 90 

seconds. The average elbow angle with TSS in both the first and the last 90 seconds is significantly larger 

than with SS. Thus it is shown that the effect of TSS maintains significantly. 

These results suggest TSS is more effective in maintaining larger angle of motion induced by FES than SS. 

 

 
Fig. 5. Average elbow angle of ten subjects (𝑝 ≤ 0.05) (Blue: SS, Red: TSS). (a) The Mean angle of motion of 

180 contractions (15 minutes) was averaged across the 10 subjects. (b) Mean angle of motion of first 18 

contractions (90 seconds) was averaged across ten subjects. (c) Mean angle of motion of last 18 

contractions (90 seconds) was averaged across ten subjects. 

4. Discussion 

In this study, the effect of TSS on keeping muscle contraction was demonstrated by a wide angle of motion 

in 10 healthy subjects.  

The two pairs of electrode were placed over the motor point position when arm was extended and flexed. 

Stimulation was shifted from the distal pair of electrodes to the proximal pair based on the fact that elbow 

muscle contraction makes the motor point to move from distal position to proximal position during elbow 

flexion. We assume that TSS may stimulate over the motor point effectively. According to the study, we 

hypothesize that time shifting of the stimulation electrode in response to motor point movement may be 

effective in maintaining muscle contraction. However the improvement of the maintenance of angle of 

motion was not consistent in all the subjects. We developed FES system in which pairs of stimulation 

electrodes can be shifted with limb motion. The muscle length and limb angle show a linear correlation [11]. 

The movement of motor point can be tracked with feedback from angular position. As a future work we will 

develop closed-loop FES system with angle feedback and improve the effect of the maintenance of angle of 

motion. 

The opposite effect of TSS in only one subject out of ten may occur when the two pairs of electrodes were 

so close that the output current from both pairs of electrode is overlapped. In the previous study [4], the 

effect of SDSS was shown despite an overlap of stimulation. However the length of pair of electrodes 

becomes much closer in applying stimulation to biceps. In this case, the size of electrode for TSS needs to be 

optimized in case of current overlapping. 

In this study, the effect of TSS was assessed by the results of ten able-bodied subjects. TSS may also be 

applicable in rehabilitation of paralyzed patients whose fatigue resistance weaker than healthy people [12].  

5. Conclusion 
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The effect of TSS in maintaining muscle contraction was validated by an experiment of 10 healthy 

subjects. TSS can be applied to muscle groups with a single muscle group activation related to one limb 

motion, to which SDSS may not be applicable. The experimental results suggested that TSS in response to 

motor point movement could have an influence on maintaining muscle contraction. We are working on 

developing multi-channel FES which can change the stimulation electrode in response to angular position 

and will conduct further study as future work. 
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