

Nelson Enrique Vera-Parra1, Ruben Javier Medina-Daza2, Cristian Alejandro Rojas-Quintero1

1 GICOGE Research Group, Distrital University Francisco José de Caldas, Carrera 7 No. 40B – 53, Bogotá D.C.,
Colombia.
2 NIDE-GEFEM Research Group, Distrital University Francisco José de Caldas, Carrera 7 No. 40B – 53, Bogotá
D.C., Colombia.

* Corresponding author. Tel.: +5713239300; email: nelsonenriquevera@gmail.com
Manuscript submitted December 1, 2016; accepted April 6, 2016.

Abstract: In this paper an assessment of several de-novo genomic assembler tools based on de Bruijn graph

is made, with the purpose to measure the impact of the use of disk partitioning techniques regarding the

computational requirements and generate a framework for bioinformatics researchers to let them identify

advantages, disadvantages, bottlenecks and challenges of the assemblers using those techniques.

Assessed assemblers using disk partitioning techniques were: Minia and EPGA, the assessed assemblers

that do not use disk partitioning were: ABySS and SOAPDenovo2. The parameters measured were the

following: occupied space in RAM, processing time, parallelization and disk read and write access. A dataset

was used with 36,504,800 short reads corresponding to 14th human chromosome. The assessment was

made for two kmers size: 31 and 55. The results obtained were the following: The tools based on disk

partitioning techniques showed the less RAM use. The tools with more I/O transfer intensity were the ones

using disk partitioning techniques. The techniques that achieved more parallelization were the ones using

disk partitioning.

Key words: Assemblers, assembly, bioinformatics, kmer count, minimizers.

1. Introduction

The rapid fall of sequencing costs since the arrival of the next generation sequencing (NGS) allowed the

possibility to sequence complete genomes of different organisms with the aim to ease the study of their

genes. One of the main problems and challenges is in the de-novo assembly stage [1], [2], in this stage short

reads are used (between 100bp and 500bp) from machines with Illumina or Roche 454 technology and

are assembled in contigs and metacontigs in such a way that as a result a complete assembled genome is

obtained without need to count with a reference genome. For the assembly of small genomes, such as the

bacterial genome assembly, these tools has good performance and most of the time require a little

computation time. However as the genome size increases (eg the chromosome of a mammal) the computing

requirements increases to perform this process [3].

Computational intensity required to perform an assembly without a reference genome (de-novo) has

been addressed in the last decade using techniques based on De Brujin graphs [4]. Actually, the most used

genomic assemblers are based on this approach, such as Velvet [5], ALLPATHS [6], ABySS [7], SOAPdenovo2

[8], MINIA [9].

International Journal of Bioscience, Biochemistry and Bioinformatics

59 Volume 6, Number 2, April 2016

doi: 10.17706/ijbbb.2016.6.2.59-67

Disk Partition Techniques Assesment and Analysis
Applied to Genomic Assemblers Based on Bruijn Graphs

Despite the remarkable results in the reduction of computing time for the assemblers based on De Bruijn,

one of the aspects where high demand is still present is the memory use, mainly due the generation, storage

and an kmer analysis and the graph representation. To mitigate these high memory requirement presented,

in the last 5 years there have been assembler implementations that use disk partitioning techniques in

some of its stages. Below is described the main techniques of disk partitioning used in the genomic

assembly.

1.1. Kmers Distribution through a Hash Function

DSK [10] uses this method to make kmers partitioning in disk. To make the kmers disk partitioning is

necessary to calculate the number of kmers, the number of iterations (ni) to cycle through the kmers and

the number of partitions (np) to be created in disk. To make this calculation it must have input parameters

such as the maximum memory use M (bits) and the kmer size k.

The hash function used in this algorithm is a function (h) that maps a kmer to a numeric value between [0

and H] where H is a big integer (2^64).

For each iteration, kmers (m) are taken one by one from the sequence. For each kmer the hash is

calculated and the module operation is executed against the numer of iterations (h(m) mod ni), if the result

of this operation is equal to the number of the actual iteration (i) the kmer is written to a file Dj where j is

h(m)/ni mod np.

This method reduce significantly reduces the use of RAM in the kmers counting stage because it is not

necessary to load all the kmers in memory. However, it may be the case that the kmers are not evenly

distributed across all partitions.

1.2. Minimizers

The concept of minimizers was introduced for the first time in 2004 [11] with the purpose of facilitate the

comparison of sequences because the method seed-and-extend is usually used for this task, this method

requires a seed catalog that could take large amount of memory in the case of mammalian genomes or large

proteins. To reduce the necessary space is required to save less kmers. The proposed method in [11] consist

in choosing a representative kmer from a group of adyacent kmers such that different strings of text Ti and

Tj have the same representative kmer if they share a large subsequence. A minimizer is a sub-chain (fixed

these as the left and right minimizers of u, respectively. They therefore perform in-memory l-mer counting

to obtain a sorted frequency table of all l-mers. This step requires an array of 64|Σ| l bits to store the count

of each l-mer in 64 bits, which is negligible memory overhead for small values of l (8 MB for l = 10). Each

l-mer is then mapped to its rank in the frequency array, to create a total ordering of minimizers .

In previous works such as Assemblathon 1[13] Assemblathon 2 [14], and Genome Assembly

Gold-Standard Evaluations (GAGE) [15] performance tests were conducted to the assemblers regarding to

their results, that is, the number of generated contigs and their statistics. However in these works few

mentions or none about the variables such as read/write operations, the RAM use and the parallelization of

these assemblers. Moreover, some of the performance assessments available focus in the general

performance analysis without focusing on each of its stages.

In this paper is proposed to assess several genomic assemblers based on De Bruijn graphs in order to

International Journal of Bioscience, Biochemistry and Bioinformatics

60 Volume 6, Number 2, April 2016

size less than k) of a kmer with less lexicographical weight. However in a recent paper [12] the

lexicographical weight is replaced by the frequence of the possible minimizers allowing to distribute more

evenly the kmers on partitions.

In the case of assembly, inBCALM [12] the l-minimizer of a string u is the smallest l-mer that is a

sub-string of u (assuming there is a total ordering of the strings, e.g. lexicographical). They define Lmin(u)

(respectively, Rmin(u)) to be the l-minimizer of the (k − 1)-prefix (respectively suffix) of u. They refer to

compare the computational demand of those that use disk partitioning techniques with respect to those

that do not use them. For each assessed tool the data related to writing and reading, main memory use

(RAM), paralellization (number and percentage of used processors) and processing time is measured with

the purpose to verify which tools and which stages has major computational requirements.

2. Materials and Methods

2.1. Datasets

The dataset used to this assessment corresponds to 64587949 short reads (101bp), paired-end of the

14th Homo Sapiens chromosome.

2.2. Computational Equipment

The computer where this assessment was in place has the following described characteristics: Operating

System: Debian Wheezy (AMD64). Processor: Intel(R) Xeon(R) cpu E7450 @ 2,40GHz, 24 cores. RAM:

64GB. Hard Disk: 160GB HDD.

The tools to evaluate are assemblers based on de bruijn graphs that use only short paired-end reads for

contigs determination. Assemblers were chosen in such a way that there was diversity of kmercounting

algorithms and the graph representation structures in memory, additionally as a selection criterion was

taken the major use during the last decade and its lastest version was published in the year were thar

assesment was performed (2015). The tools to evaluate were grouped according to the use or not of disk

partitioning techniques. Note that assemblers such as ALL-PATHS-LG were not included in this assessment

because it requires long fragments as additional to the short fragments to be executed.

2.3.1. Assessed assemblers that does not use disk partitioning techniques

ABySS: Is a de novo parallel assembler for paired sequences, specifically designed for short reads.

Roughly the algorithm used by this tool has the following stages: First, without using the paired-end

information, contigs are extended until either they cannot be unambiguously extended or come to a blunt

end due to a lack of coverage. In the second step the paired-end information is used to resolve ambiguities

and merge contigs [7]. ABySS is implemented in C++ and use the Openmpi library (in some of its stages)

with the purpose to allow the comunication bewteen several computer nodes and ease its execution on a

cluster. Additionally ABySS use the google-sparsehash library to decrease the RAM requirement in the

kmers counting.

SOAPdenovo2: Is a novel short-read assembly method that can build a de novo draft assembly for the

human-sized genomes. This algorithm has the following steps: De Bruijn Graph (DBG) construction, contig

assembly, paired-end (PE) reads mapping, scaffold construction, and gap closure. SOAPdenovo2 is

implemented in C++ and for some of its processing stages use several threads.

2.3.2. Assessed assemblers that use disk partitioning techniques

Minia: Is a short-read assembler based on a de Bruijn graph, capable of assembling a human genome on a

desktop computer in a day. The output of Minia is a set of contigs. The main stages for the Minia algorithm

are: kmer counting, graph construction and the cycle or simplification of it. For the kmer counting stage,

Minia uses DSK that use the distribution on disk of kmers method through a hash function with the purpose

to reduce the RAM memory use. Minia is implemented on C++. Note that as opposed to Abyss, Minia does

not use the available paired-end information, this means that it does not create metacontigs.

EPGA2: Is an genomic assembler oriented to efficient memory use. To accomplish this purpose it uses

BLESS [16] for error correction in the reads, the kmers distribution in disk method through the hash

International Journal of Bioscience, Biochemistry and Bioinformatics

61 Volume 6, Number 2, April 2016

2.3. Assessed Assemblers

function with the use of DSK [10] for the kmer counting stage and the minimizers method through BCALM

[12] for node simplification in the De Bruijn graph. Once the nodes are simplified and contigs generated

EPGA2 joins the contigs in parallel [17].

3. Results

The Fig. 1 and the Fig. 2 show the RAM use a peak for each assembler and its stages, for parameters k=31

and k=55 respectively.

Fig. 1. RAM use peaks for each tool (k=31).

Fig. 2. RAM use peaks for each tool (k=55).

The Fig. 3 and Fig. 4 show the CPU usage number peak and average for each assembler and its stages for

parameters k=31 and k=55 respectively.

International Journal of Bioscience, Biochemistry and Bioinformatics

62 Volume 6, Number 2, April 2016

Fig. 3. CPUs use peaks for each tool (k=31).

Fig. 4. CPUs use peaks and averages for each tool (k=55).

International Journal of Bioscience, Biochemistry and Bioinformatics

63 Volume 6, Number 2, April 2016

Fig. 5. Peaks and average I/O transfer for each tool (k=55).

The Fig. 5 and Fig. 6 show the peak and average I/O transfer for each assembler’s stages and its stages for

the parameter k=31 and k=55 respectively.

Fig. 7. Execution time of each tool (k=31).

Fig. 8. Execution time of each tool (k=55).

International Journal of Bioscience, Biochemistry and Bioinformatics

64 Volume 6, Number 2, April 2016

Fig. 6. Peaks and average I/O transfer for each tool (k=55).

Fig. 7 and Fig. 8 show the execution time used by each stage for each assembler for the parameters k=31

and k=55 respectively.

4. Conclusions.

Regarding the RAM use it can be concluded that for the counting kmers stage the tools with the less RAM

use were the ones using disk partitioning techniques through a hash function, for example, Minia and

EPGA2 using DSK. The tool with the less RAM use in the contigs generation stage was EPGA, since it makes

use of disk partitioning by minimizers technique (selected by frequency) in the stage of contigs generation

(BCALM).

Regarding the I/O transfer it was noted that the tools that use disk partitioning techniques had the

highest average of transfer in the counting kmer stage. Additionaly for the contigs generation stage the tool

with the highest average I/O transfer was EPGA, because of the use of BCALM to simply nodes in the graph.

As for paralellization it can be noted that the tools that use disk partitioning have greater paralellization

in the counting kmers stage.

Regarding the execution time, the tools that use disk partitioning took the less execution time in the

counting kmers stage, however in the metacontigs generation stage EPGA required a greater amount of

time.

Acknowledgments

Work done in collaboration with High Performance Computational Center (CECAD) - Distrital University

Francisco José de Caldas, Bogotá D.C., Colombia (http://cecad.udistrital.edu.co) and Genetics Institute -

National University (IGUN), Colombia, (http://www.genetica.unal.edu.co).

References

[1] Miller, J. R., Koren, S., & Sutton, G. (2010). Assembly algorithms for next-generation sequencing data.

Genomics, 95(6), 315-327.

[2] Vera-Parra N., Perez-Castillo, J., & Rojas-Quintero, C. (2015). Performance assessment for main stages in

genomic and transcriptomic data processing based upon reads from illumina sequencing technologies.

International Journal of Applied Engineering Research (IJAER), 34670-34674.

[3] Zhang, W., Chen, J., Yang, Y., Tang, Y., Shang, J., & Shen, B. (2011). A practical comparison of de novo

genome assembly software tools for next-generation sequencing technologies. PloS one, 6(3), e17915.

[4] Pevzner, P. A., Tang, H., & Waterman, M. S. (2001). An Eulerian path approach to DNA fragment

assembly. Proceedings of the National Academy of Sciences, Vol. 98, No. 17, pp. 9748-9753.

[5] Zerbino, D. R., & Birney, E. (2008). Velvet: Algorithms for de novo short read assembly using de Bruijn

graphs. Genome research, 18(5), 821-829.

[6] Butler, J., MacCallum, I., Kleber, M., Shlyakhter, I. A., Belmonte, M. K., Lander, E. S., & Jaffe, D. B. (2008).

ALLPATHS: De nsdovo assembly of whole-genome shotgun microreads. Genome research, 18(5),

810-820

[7] Simpson, J. T., Wong, K., Jackman, S. D., Schein, J. E., Jones, S. J., & Birol, I. (2009). ABySS: A parallel

assembler for short read sequence data. Genome Research, 19(6), 1117-1123.

[8] Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., & Wang, J. (2012). SOAPdenovo2: An empirically

improved memory-efficient short-read de novo assembler. Gigascience, 1(1), 18.

[9] Chikhi, R., & Rizk, G. (2013). Space-efficient and exact de Bruijn graph representation based on a bloom

filter. Algorithms for Molecular Biology, 8(22), 1.

[10] Rizk, G., Lavenier, D., & Chikhi, R. (2013). DSK: k-mer counting with very low memory usage.

International Journal of Bioscience, Biochemistry and Bioinformatics

65 Volume 6, Number 2, April 2016

http://www.ripublication.com/ijaer10/ijaerv10n14_131.pdf
http://www.ripublication.com/ijaer10/ijaerv10n14_131.pdf
http://www.ripublication.com/ijaer10/ijaerv10n14_131.pdf

Bioinformatics, btt020.

[11] Roberts, M., Hayes, W., Hunt, B. R., Mount, S. M., & Yorke, J. A. (2004). Reducing storage requirements for

biological sequence comparison. Bioinformatics, 20(18), 3363-3369.

[12] Chikhi, R., Limasset, A., Jackman, S., Simpson, J. T., & Medvedev, P. (2014, January). On the

representation of de Bruijn graphs. Research in Computational Molecular Biology, 35-55.

[13] Earl, D., Bradnam, K., John, J. S., Darling, A., Lin, D., Fass, J., & Xie, Y. (2011). Assemblathon 1: A

competitive assessment of de novo short read assembly methods. Genome Research, 21(12),

2224-2241.

[14] Bradnam, K. R., Fass, J. N., Alexandrov, A., Baranay, P., Bechner, M., Birol, I., & MacCallum, I. (2013).

Assemblathon 2: Evaluating de novo methods of genome assembly in three vertebrate species.

GigaScience, 2(1), 1-31.

[15] Salzberg, S. L., Phillippy, A. M., Zimin, A., Puiu, D., Magoc, T., Koren, S., & Yorke, J. A. (2012). GAGE: A

critical evaluation of genome assemblies and assembly algorithms. Genome research, 22(3), 557-567.

[16] Heo, Y., Wu, X. L., Chen, D., Ma, J., & Hwu, W. M. (2014). BLESS: Bloom filter-based error correction

solution for high-throughput sequencing reads. Bioinformatics, 30(12), 1354-1362.

[17] Luo, J., Wang, J., Li, W., Zhang, Z., Wu, F. X., Li, M., & Pan, Y. (2015). EPGA2: Memory-efficient de novo

assembler. Bioinformatics, 31(24), 3988-3990.

Cristian Alejandro Rojas Quintero was born in Bogota, Colombia in March 1992. He is

systems engineer from District University Francisco José de Caldas (UDFJC) (2015). He is

also a master student in information science and communications at UDFJC.

He is research assistant at UDJFC, working for research center and scientific

development (CIDC). Some of his publications includes: Biopython Basic: Practice Manual

(Bogotá, Colombia: District University Editorial, 2014), The immunotranscriptome of the

Caribbean reef-building coral Pseudodiploria strigosa (Germany: Inmunogenetics, 2015), Rna-seq Ud: Una

Plataforma Bioinformática Para Análisis Rna-seq (Braga, Portugal: Atas da 10º Conferência Ibérica Sistemas

E Tecnologias De Informação). He is currently researching in genome assembly processes and

heterogeneous computing.

Nelson Enrique Vera Parra was born in Ibagué, Colombia in December 1979. He

received his master in information science and communications from District University

Francisco José de Caldas (UDFJC), Bogotá, Colombia in 2008. He is electronic engineer

from the South Colombian University, Neiva, Colombia from 2002. He is also PhD. student

in UDFJC.

 He is currently a titular professor at UDFJC, working for the Faculty of Engineering

(Electronic Engineering). Some of his publication includes: Biopython Basic: Practice Manual (Bogotá,

Colombia: District University Editorial, 2014) , Optimización del preprocesamiento de lecturas de

secuenciación de nueva generación (Bogotá, Colombia: Redes De Ingeniería, 2014), The

immunotranscriptome of the Caribbean reef-building coral Pseudodiploria strigosa (Germany,

Inmunogenetics, 2015).He is currently researching in genome assembly processes and heterogeneous

computing.

International Journal of Bioscience, Biochemistry and Bioinformatics

66 Volume 6, Number 2, April 2016

Rubén Medina Javier Daza was born in Bogota, Colombia in March 1979. He is a PhD in

computer Science with emphasis in geographic information systems (GIS). He received

his master’s degree in GIS from UPSAM (Spain) in 2008 and also a master’s in

teleinformatics from District University Francisco José de Caldas (UDFJC), Bogotá,

Colombia in 2002. Other degrees include specialist in software engineering (1997),

specialist in GIS (2005) and mathematics from UDFJC (1995).

He is currently a titular professor at UDFJC, working for the Faculty of Engineering (Geodesy and

Cadastral Engineering) and for the master of science in information and communications program. Some of

his publications includes: Implementing Fast-Haar Wavelet transform on original Ikonos images to perform

image fusion: qualitative assessment (Medellín, Colombia: Antioquia University Editorial, 2014), Aplicativo

Web para la Fusión de Imágenes Satelitales (Oporto, Portugal: Risti - Revista Ibérica De Sistemas E

Tecnologias De Informação, 2013), Matemáticas especiales. Una aplicación de la transformada de Fourier

en el análisis de imágene (Bogotá, Colombia: District University Editorial, 2013). He is currently researching

in mathematical computing.

International Journal of Bioscience, Biochemistry and Bioinformatics

67 Volume 6, Number 2, April 2016

