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Abstract: Gene Regulatory Network (GRN) plays an important role to understand the interactions and 

dependencies of genes in different conditions from gene expression data. An information theoretic GRN 

method first computes dependency matrix from the given gene expression dataset using an entropy 

estimator and then infer network using individual inference method. A number of prominent methods use 

Mutual Information (MI) and its variants for dependency measure because MI is an efficient approach to 

detect nonlinear dependencies. But MI does not work well for continuous multivariate variables. In this 

paper, we have investigated the recently proposed association detector method Maximal Information 

Coefficient (MIC), instead of MI, in inferring GRN. It is reported that MIC can detect effectively most forms of 

statistical dependence between pairs of variables. We have integrated MIC with two prominent MI based 

GRN inference methods Minimal Redundancy Network and Context Likelihood of Relatedness. The 

experimental studies on DREAM3 Yeast data, SynTReN generated synthetic data and SOS E. Coli real gene 

expression data revealed that inferred network with MIC based proposed methods outperformed their 

counter MI based standard methods in most of the cases, especially for large sized problem.   

 
Key words: Gene regulatory network, mutual information, maximal information coefficient, nonlinear 
dependence. 

 
 

1. Introduction 

Inferring Gene Regulatory Network (GNR) is the reverse engineering approach to uncover the dynamic 

and intertwined nature of gene regulation in cellular systems. Tremendous amounts of gene expression 

data are available now-a-days due to modern high throughput technologies that helps to explore underlying 

regulatory mechanism of cellular systems [1], [2]. GNR inference is still a challenging task due to 

combinatorial nature of the problem as well as the poor information content in the data [3] and remains an 

open challenge in the field of System Biology. DREAM (Dialog for Reverse Engineering Assessments and 

Methods), a community based effort, offers various challenges [4]-[6] to develop noble GNR inference 

techniques that attracts research communities to develop distinct methods using DREAM’s data. 

A number of approaches have been investigated to infer GRNs from gene expression data with the aim of 

improving the network inference accuracy and scalability [7]. Basically, the methods can be categorized into 

two types: model based approaches and information theoretic approaches [8]. In a model based approach 
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nonlinear differential equations are used to express the chemical reaction of transcription, translation and 

other cellular processes. Parameters involved in nonlinear differential equations represent the regulation 

strengths of the regulators and a method estimates the parameter values. Representative algorithms in this 

category include multiple linear regression [9]-[12], singular value decomposition method [13], [14], 

network component analysis [15], [16], linear programming [17], particle swarm optimization [18] and 

immune algorithm [19]. 

In the information theoretic approach, the network is inferred through measuring the dependences or 

causalities between transcription factors and target genes [17]. A number of prominent methods in this 

category use Mutual Information (MI) and its variants because MI is an efficient approach to detect 

nonlinear dependencies that is the most vital thing to detect the regulatory mechanism. The popular 

methods based on MI are Relevance Network [20], MRNET [21], CLR [22], MRNETB [23], ARACNE [24], 

PCA-CMI [25], NARROMI [26], PCA-CMI and MIT Score [27] etc. Even though the MI is quite popular, it has 

some limitations. For example, MI evaluation usually involves the probability or density estimator which is 

challenging, especially for multivariate variables. The MI estimation is not also so easy when the variables 

are continuous; the commonly used strategy is discretize the data first and then estimate the MI from the 

discretized data [28]. Furthermore, MI fails to distinguish indirect regulators from direct ones and tends to 

overestimate the number of regulators targeting the gene [26].  

In this work, we have investigated Maximal Information Coefficient (MIC) [29], the recently proposed 

association detector method, in inferring GRN. MIC is a measure of two-variable dependence that designed 

specifically for rapid exploration of many-dimensional datasets. It is reported that MIC can detect some rare 

associations as well as critical characteristics between data and may use as a good alternative of MI. To 

identify the effectiveness of MIC in GRN inference, we have incorporated it into MRNET and CLR, two 

popular GRN methods. The experimental studies on DREAM3 Yeast data, generated Synthetic data and Real 

Gene Expression data revealed that proposed MIC based methods outperformed their counter standard 

methods in most of the cases, especially for large sized problem.  

Most recently, MIC have been incorporated with clustering strategy for GRN inference and identified 

effectiveness of MIC in GRN inference [30]. In the method, the genes with maximum similarity are grouped 

into same clusters and the interaction between two genes with different clusters is calculated using the 

weight of interaction between their corresponding medoids. In this study, MIC is used instead of MI for 

dependency matrix calculation in MRNET and CLR. The proposed method seems relatively simple and 

straight forward with respect to the clustering based one.  

The rest of the paper is organized as follows. Section 2 first gives brief description of MI and MIC for 

better understanding and then explains MIC based two proposed GRN inference methods. Section 3 is for 

experimental studies: gives description of benchmark data and presents outcomes of the proposed method 

comparing with the counter standard methods on the data. At last, Section 4 gives a brief conclusion of this 

study with some future directions of works that open from it.  

2. Maximal Information Coefficient and Its Integration to GRN 

The aim of this study is to investigate MIC, instead of MI, for dependency measure in GRN inference. This 

section first briefly explains MI and MIC to make the paper self-contained and then presents proposed GRN 

inference methods incorporating MIC. 

 Mutual Information (MI) 2.1.

MI is a measuring tool of mutual dependencies between two variables and is defined as 

𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦) 𝑙𝑜𝑔 (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑥∈𝑋𝑦∈𝑌

,                                                               (1) 
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where X and Y are discrete variables; p(x) and p(y) are the marginal probabilities distribution; and p(x,y) is 

the joint probability function of X , Y [31]. For continuous random variables, the MI is  

𝐼(𝑋, 𝑌) = ∫ ∫ 𝑝(𝑥, 𝑦) 𝑙𝑜𝑔 (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑥

 .
𝑦

                                                        (2) 

Here p(x, y) is the joint probability density function of X and Y; and p(x) and p(y) are the marginal 

probability density functions of X and Y, respectively.  

MI measures the shared information of these two variables and determines the contribution of knowing 

one of these variables reduces the uncertainty of others. If the variables are independent, there is no effect 

to reducing the uncertainty then I(X, Y) = 0; on the other hand, if there is a relation then I(X, Y)>0.  

 Maximal Information Coefficient (MIC) 2.2.

MIC is the recently proposed dependency measure approach based on the idea that if a relationship exists 

between two variables then a grid can be drawn on the scatterplot of the variables partitioning the data to 

encapsulate the relationship [29]. To calculate MIC, a characteristics matrix is considered which is 

populated with the maximum mutual information gains for different particular sizes. The maximum of 

value the characteristic matrix is considered as the Maximal Information Coefficient, i.e., MIC. 

If D is a set of ordered pairs x and y, the values may partitioned into grids with cells. For a grid G, D|G 

means the probability distribution made by the Data D of the cells of G. The maximum information gain for 

all the grids sized of x, y can be represented as  

 𝐼∗ (𝐷, 𝑥, 𝑦) = 𝑚𝑎𝑥𝐺𝐼(𝐷|𝐺),                                                                           (3) 

where I(𝐷|𝐺) denotes the mutual information of 𝐷|𝐺 . Finally, MIC is the maximum value of the normalized 

form characteristic matrixes with Eq. 3 and may express as  

𝑀𝐼𝐶(𝐷) = 𝑚𝑎𝑥
𝐼∗ (𝐷, 𝑥, 𝑦)

𝑙𝑜𝑔2𝑚𝑖𝑛 {𝑥, 𝑦}
𝑥𝑦<𝐵(|𝐷|)

  ,                                                               (4) 

where B is a growing function satisfying B(n) = O(n).  

MIC has two properties, Generality and Equitability. Generality means the capability of detecting different 

association with sufficient sample size to all functional relationships [32]. Equitability means to give similar 

scores for equally noisy relationships of different types. The detail description of MIC is available in [29] 

and [32].  

It is reported that MIC is a good alternative for any other correlation measure methods like Mutual 

Information, Maximal Coefficient and Distance Correlation. Since MIC can detect some rare associations and 

critical characteristics in data and easily applicable for continuous multi variable [29], incorporation of MIC 

in GRN inference might improve GRN performance. The coming section will explain proposed MIC based 

GRN methods where MIC is used instead of MI.   

 Integration of MIC with MRNET and CLR 2.3.

Minimal Redundancy Network (MRNET) [21] and Context Likelihood of Relatedness (CLR) [22] are two 

popular GRN methods based on MI. Both the methods compute dependency matrix from the given gene 

expression data using MI and infer network using their individual inference method. MRNET [21] infers a 

network by using Maximum Relevance/Minimum Redundancy (MRMR) feature selection procedure. MRMR 

selects a set of variables that both have high MI with the target variable (maximum relevance) and are low 
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MI between them (minimum redundancy). MRMR returns a score according to each target gene and MRNET 

considers network deleting all edges whose score lies below a given threshold. On the other hand, CLR first 

calculates MI of each pair of genes and then derives a score from the empirical distribution of the calculated 

MI for all the gene pairs. The method considers a link between genes when the calculated score exceeds a 

given threshold. Finally, quality of an inferred network is measured comparing with the given true network 

[23]. The detail descriptions of MRNET and CLR are available in [21] and [22], respectively. 

To integrate MIC with MRNET and CLR, MIC is used instead of MI as an entropy estimator to get the 

dependency matrix. Using MIC as dependency calculation in MRNET and CLR hereafter call MRNET-MIC 

and CLR-MIC, respectively. Algorithm 1 and Algorithm 2 present major steps of proposed MRNET-MIC and 

CLR-MIC, respectively. Algorithm 1 uses MRNET for network inference (Step 3) using Dependency Matrix 

(DM) that calculated using MIC (Step 2). Standard MRNET uses MI to produce the DM; therefore, uses of MI 

instead of MIC in Step 2 will turn Algorithm 1 as standard MRNET. To validate Inferred Network (IN), it first 

generates Confusion Matrix (CM) comparing IN with given True Network (TN). Then, receiver operator 

characteristic (ROC) and precision-recall (PR) curves are drawn (Step 4.b); and ROC and PR areas are 

calculated (Step 4.c) from the CM to evaluate a method. Algorithm 2 is differ from Algorithm 1 in only 

network inference stage (Step 3): Algorithm 2 uses CLR for network inference, whereas Algorithm 1 uses 

MRNET. Similar to Algorithm 1, Algorithm 2 will be standard CLR if MI is used instead of MIC in Step 2.  

3. Experimental Studies 

This section first explains the benchmark data that used in this study, experimental setup and validation 

methods. Then, performance of MIC based proposed GRN inference methods on the benchmark data is 

presented comparing with their counter MI based standard methods. 

 Datasets 3.1.

Algorithm 1: MRNET-MIC Algorithm 

Input:  Gene Expression Dataset D, True 
Network TN 

Output:  Inferred Network, ROC curve, PR 
curve, ROC area, PR area 

 

1. Load data 

2. Compute Dependency Matrix, DM = 

MIC(D) // Use MIC  

3. Generate Inferred Network, IN = 

MRNET(DM) // Use MRNET  

4. Validate IN comparing with TN 

a. Generate Confusion Matrix (CM) 

b. Draw ROC curve and PR curve from 

CM 

c. Calculate ROC area and PR area 

from CM 

 

Algorithm 2: CLR-MIC Algorithm 

Input:  Gene Expression Dataset D, True 
Network TN 

Output:  Inferred Network, ROC curve, PR 
curve, ROC area, PR area 
 

1. Load data 

2. Calculate Dependency Matrix, DM = 

MIC(D) // Use MIC  

3. Generate Inferred Network, IN = 

CLR(DM) // Use CLR  

4. Validate IN comparing with TN 

a. Generate Confusion Matrix (CM)  

b. Draw ROC curve and PR curve 

from CM 

c. Calculate ROC area and PR area 

from CM 
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In this study, both synthetic and real gene expression benchmark data are considered. The gene 

expression data is available in a two dimensional matrix form in which each column represents an 

individual gene and each row represents the expression level of all genes within an experiment. Table 1 

shows the brief description of the datasets which shows a considerable variety in the number of types, gene 

number, sample size; and thus provides a suitable experimental test bed. Yeast datasets (with 10, 50 and 

100 genes) contain noise free synthetic data from DREAM3 challenge [4]-[6]. We employed SynTReN 

(Synthetic Transcriptional Regulatory Networks) [33] network generator to generate synthetic data. 

SynTReN is well accepted software to create synthetic transcriptional regulatory network and to generate 

respective simulated data from the source network with different level of noise. We have generated three 

datasets SynTReN1, SynTReN2 and SynTReN3 based on Escherichia Coli (i.e., E. Coli) source with biological 

and experimental noise levels of 0.1, 0.2 and 0.3, respectively. On the other hand, the SOS data is the 

well-known SOS DNA repair network dataset of real E. Coli [34]. The selected datasets are popular for GRN 

inference and are employed in many exiting studies as benchmark [4]-[6], [35], [36].  

 Experimental Setup and Validation Method 3.2.

We followed a common general experimental setup that does not favor any particular method. We 

implemented the methods and simulated the results in R language, the well-known open source statistical 

analysis tool. We employed minevra & minet packages in R for GRN inference; the packages are freely 

available in the site of [37] and [38]. The performance evaluated by receiver operator characteristic (ROC) 

curve and precision-recall (PR) curve. In general, ROC curve is a graphical tool for depicting true hit rate 

along the vertical axis (the number of target events correctly classified as targets) as compared to false 

alarm rate along the horizontal axis (the number of target events incorrectly classified as non-targets). In 

GRN inference evaluation, the ROC curve is created by plotting the fraction of true positive rate (i.e., true 

positives out of the total actual positives) vs. false positive rate (i.e., the fraction of false positives out of the 

total actual negatives), at various threshold settings. The following equations are used to calculate true 

positive rate (TPR) and false positive rate (FPR). 

𝑇𝑃𝑅 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄                                                                                (5) 

𝐹𝑃𝑅 = 𝐹𝑃 (𝐹𝑃 + 𝑇𝑁)⁄                                                                               (6) 

Here TP=True Positive (i.e., links are correctly identified), FP=False Positive (i.e., identified links are not 

correct), TN=True Negative (i.e., correctly identified that there is no links between genes), FN=False 

Negative (i.e., failed to identify links between genes). TPR is also known as sensitivity or recall in machine 

learning. The areas under ROC curve are then calculated. 

Table 1. Benchmark Datasets for GRN Inference 

Dataset Origin Data Type Genes Samples 

Yeast10 

DREAM3 
challenge 

Synthetic noise free 10 10 

Yeast50 Synthetic noise free 50 50 

Yeast100 Synthetic noise free 100 100 

SynTReN1 
SynTReN 
network 

generator 

Synthetic with noise level 0.1 200 100 

SynTReN2 Synthetic with noise level 0.2 200 100 

SynTReN3 Synthetic with noise level 0.3 200 100 

SOS Real E. Coli  Real Gene Expression Data 9 9 
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We also evaluated the methods based on Precision – Recall (PR) curve. The PR curve is recommended to 

be an alternative to the ROC curves [39]. Precision (also called positive predictive value) is the fraction of 

retrieved instances that are relevant, while recall (also known as sensitivity) is the fraction of relevant 

instances that are retrieved. The equation to calculate Precision and Recall are as follows.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃 / (𝑇𝑃 + 𝐹𝑃)                                                                      (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃 / (𝑇𝑃 + 𝐹𝑁)                                                                        (8) 

The areas under PR curve are then calculated. It is notable that higher values of ROC and PR areas 

indicate better proficiency of a method.  

 Results and Discussion 3.3.

This section evaluates performance of MIC based proposed GRN inference methods (i.e., MRNET-MIC and 

CLR-MIC) with standard MRNET and CLR methods (may call MRNET-MI and CLR-MI) on the basis of ROC 

and PR curves for the datasets of Table 1. Tables 2-4 present ROC and PR areas of the methods for the 

datasets. On the other hand, ROC and PR curves are presented in Figs. 1-3 for three selected datasets from 

different types. In a table, better result between a proposed MIC based method and the corresponding MI 

based standard method indicated with italic type. The result with bold face type represents the best 

outcome among the four methods. In addition, effect of MIC is presented for better understanding as a rate 

of improvement with respect to the standard MI based method. A positive (+) sign indicates proposed MIC 

method outperformed standard MI based method; whereas negative (-) sign means MIC was not effective 

for the problem.  

3.3.1. Evaluation on DREAM3 challenge yeast data 

Table 2 compares ROC areas and PR areas between MIC and MI based MRNET and CLR on Yeast datasets 

with size 10, 50 and 100. Since ROC and PR curves are found almost similar characteristics for the methods 

in three Yeast datasets (i.e., Yeast10, Yeast50 and Yeast100), curves for only Yeast50 dataset are presented 

in Fig. 1. It is observed from the figure that a MIC based method is competitive to standard MI based method 

for both MRNET and CLR. Therefore, ROC area and PR area are also found competitive for both MI and MIC 

based methods. MIC is shown to improve CLR slightly for Yeast10 dataset only; 3.05 % and 14.19 % in ROC 

and PR areas, respectively. On the other hand, MRNET-MIC is found inferior to standard MRNET for all three 

problems. DREAM3’s Yeast data is a synthetic data and contains few genes as well as few samples; 

competitive performance of MIC is acceptable because MIC is reported well for high dimension data. 

Table 2. The ROC Areas and the PR Areas of Different Methods on DREAM3 Yeast Datasets 
with Size 10, 50 and 100 

Method MRNET MRNET-MIC Effect of MIC CLR CLR-MIC Effect of MIC  

ROC area       

Yeast10 0.6444 0.4719 - 26.77 % 0.5731 0.5906 + 3.05 % 

Yeast50 0.5239 0.5111 - 2.45 % 0.5353 0.5261 - 1.72 % 

Yeast100 0.5557 0.5312 - 4.42 % 0.5513 0.5459 - 0.98 % 

PR area           

Yeast10 0.3220 0.1829 - 43.18 % 0.2671 0.3050 + 14.19 % 

Yeast50 0.0799 0.0608 - 23.81 % 0.0800 0.0654 - 18.26 % 

Yeast100 0.0421 0.0363 - 13.90 % 0.0410 0.0408 - 0.49 % 
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3.3.2. Evaluation on synthetic data from SynTReN 

Table 3 compares ROC areas and PR areas between MIC and MI based MRNET and CLR on SynTReN 

generated datasets. Since ROC and PR curves are found almost similar characteristics for the methods in 

three synthetic datasets (i.e., SynTReN1, SynTReN2 and SynTReN3), curves for only SynTReN2 dataset are 

presented in Fig. 2. According to the figure, both MRNET-MIC and CLR-MIC are shown to outperform their 

counter standard MRNET and CLR methods, respectively and clearly identifies the effectiveness of MIC in 

GRN inference from the datasets. Consequently, MIC is found to improve ROC area and PR area values 

significantly (as seen in Table 3) for both MRNET and CLR methods in all three datasets. As an example, for 

SynTReN1 dataset the ROC area values for standard MRNET and CLR are 0.6515 and 0.4471, respectively. 

For the same dataset, the proposed MRNET-MIC and CLR-MIC are shown ROC area values of 0.8142 and 

0.5750, respectively. Thus, improvements of MRNET and CLR due to MIC were 24.97% and 28.96%, 

respectively. Again, On the basis of PR area for SynTReN1, MIC based proposed MRNET-MIC and CLR-MIC 

also outperformed their counter standard MI based methods. Similar proficiency of MIC in GRN inference 

are also found for SynTReN2 and SynTReN3 datasets. Among the four methods, proposed MRNET-MIC is 

found as the best GRN inference method for all three SynTReN generated datasets. It is notable that the 

generated datasets are based on E. Coli source and gene size is 200. Therefore, for such large number of 

genes, performance improvement with MIC is logical and justify the proficiency of MIC. Moreover, the 

performance improvement for the synthetic data is more acceptable to validate a method because in this 

 

  
(a) ROC curve 

 

  
(b) PR curve 

Fig. 1. The performance of different methods on DREAM3 challenge Yeast dataset with size 50. 
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case true network is defined whereas network structure is unknown for most of the real phenomena [40]. 

Finally, the performance of proposed MRNET-MIC on SynTReN generated data clearly revealed the 

effectiveness of MIC in network inference.  
 

3.3.3. Evaluation on SOS E. coli real gene expression data 

It is interesting to observe the effectiveness of the proposed MIC based methods on the real gene 

expression data. The SOS data is the well-known real SOS DNA repair network dataset in E. Coli [34] and is 

Table 3. The ROC Areas and the PR Areas of Different Methods on SynTReN Generated Datasets with Size 
200 for Noise Levels 0.1, 0.2 and 0.3. 

Method MRNET MRNET-MIC Effect of MIC CLR CLR-MIC Effect of MIC  

ROC area       

SynTReN1 0.6515 0.8142 + 24.97 % 0.4471 0.5750 + 28.60 % 

SynTReN2 0.6478 0.7958 + 22.85 % 0.4471 0.5373 + 20.16 % 

SynTReN3 0.6467 0.7839 + 21.21 % 0.4471 0.5556 + 24.26 % 

PR area             

SynTReN1 0.1045 0.3772  + 261.07 % 0.0159 0.0242 + 52.35 % 

SynTReN2 0.0998 0.3507  + 251.49 % 0.0159 0.0197 + 23.83 % 

SynTReN3 0.1054 0.3556  + 237.24 % 0.0159 0.0218 + 37.24 % 

 

  
(a) ROC curve 

 

  
(b) PR curve 

Fig. 2. The performance of different methods on SynTReN generated synthetic SynTReN2 dataset with 
size 200. 
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used in many GRN inference studies up to now [35], [36]. Fig. 3 presents ROC and PR curves of the proposed 

MRNET-MIC and CLR-MIC methods in comparison with the standard MRNET and CLR with MI, respectively, 

on SOS dataset. According to the figure, at lower FP rate values MRNET-MIC is inferior to standard MRNET 

but competitive at the higher values. Similar scenario is also found in PR curve. On the other hand, proposed 

CLR-MIC is shown to outperform its counter standard CLR in most of the cases. Table 4 compares the ROC 

areas and the PR areas for both proposed and standard methods for the SOS dataset. Although 

incorporation of MIC in MRNET did not improve its performance, MIC was found to improve CLR 

performance at significant level. As an example, the ROC and PR area values for standard CLR are 0.4937 

and 0.6089, respectively. On the other hand, using MIC the proposed CLR-MIC achieved ROC and PR area 

values 0.6086 (i.e., improved 23.27%) and 0.6877 (i.e., improved 12.94%), respectively. Among the four 

methods, the proposed CLR-MIC is significantly better than any other methods on the basis of ROC and PR 

areas. SOS data is very small in size heaving only nine samples for nine genes. Therefore, ineffectiveness of 

MIC in MRNET is logical. At the same time, achievement of significantly better outcome with proposed 

CLR-MIC is interesting. It also indicates the chance of getting better result with MIC for real gene expression 

data regardless the size.   

Fig. 4 shows the pictorial representation of inferred networks through different methods as well as the 

true network assumed behind the SOS data. In the figure, connection between two genes indicates relation 

in their activities. C3Net [41] is used to plot a network from regulatory values of its inferred network in 

which non-zero values are considered as connection. Fig. 4 identifies difference in network inference due to 

 

  
(a) ROC Curve 

  
  (b) PR Curve 

Fig. 3. The performance of different methods on SOS real gene expression data of E. Coli. 
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the use of MIC and MI as dependency matrix calculation. Although the use of MIC in MRNET did not improve 

its performance as of ROC and PR areas, some modification in inferred network are found interesting. As an 

example, there is a link between G7 (i.e., Gene 7) and G8 (i.e., Gene 8) in the true network (Fig. 4(a)) and the 

proposed MRNET-MIC identified it truly (Fig. 4(b)) that was missed by standard MRNET (Fig. 4(b)). On the 

other hand, the false connection between G6 and G8 in network of MRNET was rectified in MRNET-MIC. 

MIC employment in CLR is also found affirmative on the basis of several gene to gene connections. CLR-MIC 

(Fig. 4(e)) identified true connection between G3 and G4 that was missed in standard CLR (Fig. 4(d)). In the 

true network, G8 only connected with G7 but CLR inferred five connections with G8. The proposed CLR-MIC 

reduced the number into three.  

 

 
(a) True network 

 

  
(b) Inferred network with standard MRNET 

 

(c) Inferred network with MRNET-MIC 

  
(d) Inferred network with standard CLR (e) Inferred network with CLR-MIC 

 

 

Fig. 4. Pictorial representation of inferred networks through different methods as well as the true 

network for E. Coli SOS data with 9 genes. 
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Table 5 compares summary of connections of inferred networks presented in Fig. 4 for better 

evaluation of the networks comparing with the true network of SOS data. There are 24 connections in the 

true network from 36 possible connections for nine genes. Total connections in the inferred network by 

MRNET is 20; but the connections matched with the true network (i.e., TP) are only 11 and remaining nine 

connections are not available in the true network (i.e., FP). MRNET correctly identified that there is no links 

between genes (i.e., TN) for only three cases out of 12 cases of true network but failed to identify 13 true 

links (i.e., FN). With MIC, inferred network of proposed MRNET-MIC seems better than that of MRNET: true 

values (i.e., TP= 13 and TN= 7) are more and false values (i.e., FP= 9 and FN= 11) are less than the 

corresponding values for standard MRNET network. In comparison to MRNET, CLR inferred network shows 

same TP (i.e., 11) and FN (i.e., 13) values but is better than MRNET with more TN and less FP values. On the 

other hand, proposed CLR-MIC inferred network outperformed that of CLR: both true connection values 

(i.e., TP and TN) are more and false connection values (i.e., FP and FN) are less than the corresponding 

values of standard CLR inferred network. At a glance, the proposed CLR-MIC inferred network is more alike 

to the true network than other three methods showing the highest TP value (i.e., 14) and the lowest FN 

value (i.e., 10). 

4. Conclusion 

Dependency Matrix (DM) calculation is a common step in any information theoretic method of Gene 

Regulatory Network (GRN) inference. A number of prominent methods use Mutual Information (MI) 

technique for DM calculation. MI is popular for measuring nonlinear dependencies but the recently 

proposed association detector method Maximal Information Coefficient (MIC) is shown to perform better 

than MI in several aspects. In this study, MIC has been investigated for GRN inference and verified the 

effectiveness of it.  

MIC integrated with two prominent information theoretic GRN methods (i.e., MRNET and CLR) and 

proposed MRNET-MIC and CLR-MIC. In a proposed method MIC is used for DM calculation instead of MI of 

its standard form. The outcomes of proposed methods were evaluated and compared with their counter 

standard methods for DREAM3 Yeast data, generated Synthetic data and SOS real gene expression data. The 

performance of the methods were measured on the basis of ROC curve, PR curve, ROC area and PR area. A 

MIC based proposed method was shown competitive performance with its standard MI based method for 

Yeast dataset that is small sized synthetic noise free data. On the other hand for E. Coli based SynTReN 

generated data with 200 genes, each of MRNET-MIC and CLR-MIC always outperformed its counter MI 

Table 4. The ROC Areas and the PR Areas of Different Methods on SOS Dataset of E. Coli. 

Method MRNET MRNET-MIC Effect of MIC CLR CLR-MIC Effect of MIC 

ROC area         

SOS  0.4722 0.3510 - 25.67 % 0.4937 0.6086 + 23.27 % 

PR area         

SOS 0.6224 0.4809 - 22.74 % 0.6089 0.6877 + 12.94 % 

Table 5. Summary of Inferred Connections through MRNET, MRNET-MIC, CLR and CLR-MIC 
Comparing with the True Network for SOS E. Coli 

Connection Status True Network MRNET MRNET-MIC CLR CLR- MIC 
True Positive (TP) 24 11 13 11 14 

True Negative (TN) 12 3 7 5 7 

False Positive (FP) - 9 5 7 5 

False Negative (FN) - 13 11 13 10 
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based standard method MRNET-MI and CLR-MI, respectively. Among the four tested methods, proposed 

MRNET-MIC was shown significant result in GRN inference for such large datasets. More interestingly, 

proposed CLR-MIC was shown the best suited method for SOS real gene expression data although its size is 

very small. Finally, the experimental results reveal that MIC is a good choice for GRN inference. 

A potential future direction is also opened from this study. In this study MIC is incorporated with two 

popular GRN methods; and MIC incorporation with other information theoretic methods [24]-[27], [35] 

may give better performance that remain as future study. Moreover, an alternate version of MIC, Generalized 

MIC (GMIC) [32], might also be interesting to use in GRN inference. 
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