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Abstract: In sequence analysis, quantifying characteristics of a genomic region is helpful to identify 

functions of the region, and many computational measures have been proposed. Purity measure is a 

computational measure, and its potential to characterize horizontally transferred genes has been shown in 

the literatures. However, in the previous studies, only repeating regions were studied, and also the 

statistical property of purity values, evaluation values of the measure, has not been uncovered. In this paper, 

we propose a generative model for k-mers and evaluate the accuracy of distributions of purity values 

predicted by the probabilistic model. We train the model for each of 14 bacterial genomes, and our analysis 

shows that our model predicts the distributions successfully for six genome sequences. It is also shown that 

our model makes better predictions for shorter k-mers. 
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1. Introduction 

Sequence analysis is a widely used approach for understanding genomes. Traditional methods such as 

sequence alignments and hidden Markov Models have been successfully applied to this end [1]. For 

identifying functions of regions of a genome sequence, existing studies have also employed the 

characteristics of regions and proposed many computational measures for quantifying the characteristics. 

One of the approaches to quantify characteristics of genomic regions is to use biological knowledge, and 

there exist many methods based on various domain knowledge [2]-[4]. Another approach focuses on the 

compositional characteristics of a sequence and does not need any domain knowledge. This approach 

includes nucleotide-level composition [5], di-nucleotide abundance [6], probability [7] and complexity [8], 

[9]. 

Purity measure [10] is another compositional measure, which was proposed in the field of text mining for 

finding unusual regions of an input string. It has been shown [11] that this measure certainly characterize 

genes such as mobile elements, phages, RNAs and transposons which can be considered as horizontally transferred 

genes [12]-[14] as well as existing measures [15]-[17]. Since horizontal gene transfer is considered as one 

of the primary reasons of bacterial genetic diversity [18], finding such genes could lead to evidences of the 
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hypothesis. 

However, in the previous studies of purity measure, only repeating regions, which appear at least twice in 

an entire sequence, were examined with the measure. Moreover, the statistical property of the evaluation 

values of the measure, that we call purity values, has not been uncovered. Thus, currently, there is no 

definitive way to discriminate regions of horizontal transferred genes from others using purity values. 

Revealing statistical properties of purity values would enable us, for example, to decide a threshold of 

purity values for the discrimination in an objective fashion. 

In this paper, we aim to find out statistical properties of purity values. To this end, we propose a 

generative model for k-mers and evaluate the accuracy of distributions of purity values predicted by the 

model. Making histograms of the purity values, we have found that they form a bell curve-like distribution. 

Then we propose a probabilistic model for k-mers based on a binomial model. We trained our model for 

each of 14 bacterial genome sequences that we chose, and evaluate the accuracies of predicted distributions 

of purity values comparing them to the observed distributions. 

2. Method 

First we explain the definition of purity measure before proposing a probabilistic model for its evaluation 
values. 

 Purity Measure 2.1.

Given a string T and a substring x of T, purity measure quantifies how many substrings of x appear the 

same number of times as x. In other words, how many substrings of x appear only as substrings of x in T. 

Obviously, most substrings of x are much shorter than x, and such substrings are considered to appear more 

frequently than x in T. Hence, we could consider x is unusual if most substrings of x appear only as parts of x. 

Yamada et al. [10] proposed three different definitions of purity measure called probability, entropy and 

difference. In this study, we only use the probability definition as with the previous study [11]. We call the 

measure based on the definition just purity measure in the rest of this paper. 

Formally the purity measure is defined as follows. Let N be the set of non-negative integers. Let 𝛴 be a 

finite set of characters. We call 𝛴 an alphabet. We denote a set of finite sequences of zero or more 

characters by 𝛴∗ and call its element a string. The length of a string 𝑥 ∈ 𝛴∗ is denoted by |𝑥|. For a string 

𝑥 = 𝑎1𝑎2 … 𝑎𝑛 ∈ 𝛴∗ of length n, the i-th character 𝑎𝑖 of x is denoted by 𝑥[𝑖] for a positive integer i, and a 

contiguous part 𝑎𝑖 … 𝑎𝑗  of x is denoted by 𝑥[𝑖 ∶ 𝑗] for positive integers i and j such that 𝑖 ≤ 𝑗 and called a 

substring of x. 

For a string 𝑥 ∈ 𝛴∗, 𝑠𝑢𝑏(𝑥) is defined as follows: 

 

𝑠𝑢𝑏(𝑥) = {〈𝑖, 𝑗〉 ∈ N2 | 1 ≤ 𝑖 ≤ 𝑗 ≤ |𝑥|}. 

 

For a string 𝑇 and a string 𝑥 ∈ 𝛴∗, we define 𝑝𝑜𝑠𝑇(𝑥) as follows: 

 

𝑝𝑜𝑠𝑇(𝑥) = {〈𝑖, 𝑗〉 ∈ 𝑠𝑢𝑏(𝑇) | 𝑇[𝑖: 𝑗] = 𝑥}. 

 

For a string 𝑇 and a string 𝑥 ∈ 𝛴∗, 𝑓𝑟𝑒𝑞𝑇(𝑥) is defined as 𝑓𝑟𝑒𝑞𝑇(𝑥) = |𝑝𝑜𝑠𝑇(𝑥)|. Intuitively, 𝑠𝑢𝑏(𝑥) 

represents a set of the all substrings of 𝑥, 𝑝𝑜𝑠𝑇(𝑥) is a set of occurrences of x in T, and 𝑓𝑟𝑒𝑞𝑇(𝑥) is the 

frequency of x in T. 

Definition 1.   Given an input string T and a substring 𝑥 = 𝑇[𝑖: 𝑗] of T, the purity value of x on T is 

defined as follows: 
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𝑝𝑢𝑟𝑖𝑡𝑦𝑇(𝑥) =
|{〈𝑘, 𝑙〉 ∈ 𝑠𝑢𝑏(𝑥) | 𝑓𝑟𝑒𝑞𝑇(𝑥[𝑘: 𝑙]) = 𝑓𝑟𝑒𝑞𝑇(𝑥)}|

|𝑠𝑢𝑏(𝑥)|
 

 

This definition of the purity measure quantifies a characteristic of x in T as the fraction of the substrings 

of x that only appear as parts of x in T. 

The definition requires us to compute the frequencies of a target string 𝑥 and its substrings. Employing 

a naïve way, that is to search a genome sequence for these substrings and to count their occurrences, can 

easily become impractical when we try to evaluate many regions of a sequence. Special data structures such 

as suffix trees and suffix arrays provide efficient algorithms that can solve this problem [19], and we can 

construct a practical algorithm to compute purity values. 

 Probabilistic Model 2.2.

In this section, we discuss the distribution of purity values. Since purity values highly depend on the 

length of a target substring, we focus only on fixed-length substrings of length k, which are called k-mers, in 

this paper. We have found that distributions of the purity values of k-mers form bell curve-like distributions 

which are slightly different from Gaussian distributions. Hence, we propose a probabilistic model of purity 

values on top of binomial models rather than Gaussian models based on the observations. 

Suppose we are given an input string T and an integer k, where 0 ≤ 𝑘 ≤ |𝑇|. Let x be a substring of T such 

that 1 ≤ |𝑥| ≤ 𝑘, and let y be a substring of T such that |𝑦| = 𝑘. We call x a specific substring of y if and only 

if x appears only as a part of y in T. Now, the purity value of the substring y can be described as the ratio of 

specific substrings of y to all the substrings of y. Since a k-mer always has 𝑛 = 𝑘(𝑘 + 1)/2 substrings, a 

distribution of purity values of k-mers depends only on the number of specific substrings of every k-mer. 

Our basic idea is to regard a k-mer as a set of n independent substrings. Let’s suppose we randomly 

choose every element of such a set from either specific substrings or non-specific ones. Assuming choice 

probability 𝑝 for a specific substring and (1 − 𝑝) for a non-specific substring, a final number 𝑋 of specific 

substrings in an assembled set follows a binomial distribution 𝐵(𝑛, 𝑝), and the probability that the 

number becomes 𝑙 is written as Pr[𝑋 = 𝑙] = (𝑛
𝑙
)𝑝𝑙(1 − 𝑝)𝑛−𝑙. Let 𝑍 a k-mer chosen from a sequence 

randomly. The probability that 𝑍’s purity value 𝑝𝑢𝑟𝑖𝑡𝑦𝑇(𝑍) is equal to 𝑞 is written as follows: 

Pr[𝑝𝑢𝑟𝑖𝑡𝑦𝑇(𝑍) = 𝑞] = Pr[𝑋 = 𝑛𝑞] = (
𝑛

𝑛𝑞
) 𝑝𝑛𝑞(1 − 𝑝)𝑛−𝑛𝑞. 

Then, given a set of purity values {𝑞𝑖} of k-mers, we can determine the parameter 𝑝 by maximum 

likelihood estimation as follows: 

�̂� = argmax𝑝 ∏ Pr[𝑝𝑢𝑟𝑖𝑡𝑦𝑇(𝑍) = 𝑞𝑖] =
∑ 𝑞𝑖𝑖

∑ 1𝑖
𝑖

. 

Furthermore, we replace the parameter 𝑝 with another variable 𝑚 to make the model parameter more 

intuitive. As a longer substring has more possibility to be a specific substring of some other substrings, we 

assume that every substring of any k-mers whose length is longer than m is a specific substring of the k-mer. 

Therefore, we can denote 𝑝 = (𝑘 − 𝑚)(𝑘 − 𝑚 + 1) / 𝑘(𝑘 + 1). Solving the equation for 𝑚, we finally 

obtain an optimal parameter value �̂� as 

�̂� = 𝑘 +
1

2
−

1

2
√1 + 8𝑛

∑ 𝑞𝑖𝑖

∑ 1𝑖
. 

Finally, our probabilistic model only has a single parameter 𝑚. We can train our model for a genome 

sequence by giving a set of purity values of k-mers included by the sequence. 
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3. Result and Discussion 

We train our probabilistic model for various bacterial genomes with four different lengths of k-mers. 

Table 1 shows 14 bacterial genome sequences for which our model is trained. We chose the genomes from 

popular ones so that both gram-positive and gram-negative genomes, and sequences with various lengths 

and G+C contents are included. We only use a single strand of a genome sequence which is included in a 

GenBank file retrieved from NCBI’s RefSeq database [20]. We tried 𝑘 = 30, 50, 70, 90 for the lengths of 

k-mers. 

 

Table 1. Bacterial Genome Sequences Used in Our Analysis 

Accession No.  Length  Organism 

NC_000117.1  1,042,519   Chlamydia trachomatis D/UW-3/CX 

NC_000911.1  3,573,470   Synechocystis sp. PCC 6803 

NC_000913.2  4,639,675   Escherichia coli str. K-12 substr. MG1655 

NC_000962.2  4,411,532   Mycobacterium tuberculosis H37Rv 

NC_000964.3  4,215,606   Bacillus subtilis subsp. subtilis str. 168 

NC_002695.1  5,498,450   Escherichia coli O157:H7 str. Sakai 

NC_002946.2  2,153,922   Neisseria gonorrhoeae FA 1090 

NC_003228.3  5,205,140   Bacteroides fragilis NCTC 9343 

NC_007517.1  3,997,420   Geobacter metallireducens GS-15 

NC_008261.1  3,256,683   Clostridium perfringens ATCC 13124 

NC_009882.1  1,257,710   Rickettsia rickettsii str. ‘Sheila Smith’ 

NC_010572.1  8,545,929   Streptomyces griseus subsp. griseus NBRC 13350 

NC_012973.1  1,576,758   Helicobacter pylori B38 

NC_015431.1  1,153,998   Mycoplasma mycoides subsp. capri LC str. 95010 

 

 
Fig. 1. Relationships between �̂� and genome. 

 

For Each Sequence, an accession number in NCBI’s RefSeq database, sequence length and organism name 

are shown. 

Fig. 1 shows the parameter values of �̂� obtained by training for every combination of genome and value 

of k. In the figure, we cannot see clear relationship between �̂� and 𝑘. To see the relationship from a 

different perspective, we made another plot shown in Fig. 2. This figure shows the same for every 

combination of sequence length and value of k. However, there is still no clear relationship in the figure. For 
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the most genome sequences, it seems that �̂� depends on genomes more than on the lengths of k-mers, and 

thus we could use the same model for prediction of the purity distribution regardless of k for some cases. 

In Fig. 3, for every genome sequence, a plot of observed distribution and theoretical one of purity values 

of 30-mers is shown. It is shown in the figures that our model successfully predicts the distributions of six 

genomes, NC_000117.1, NC_000911.1, NC_000913.2, NC_000964.3, NC_002695.1, and NC_003228.3, out of 

14 genomes. For the rest of sequences, although mean values of purity values are predicted well, variance of 

the distributions are very different from those of theoretical ones. 

 

 
Fig. 2. Relationships between �̂� and sequence length. 

 
Fig. 3. Predicted distributions (red lines) and observed distributions (black areas) of purity values for 

30-mers of every genome sequence. We can see that relatively good predictions are made on genomes of 

NC_000117.1, NC_000911.1, NC_000913.2, NC_000964.3, NC_002695.1, and NC_003228.3. These accession 

numbers are emphasized in the above figure. 

 

We also emphasized the names of genomes which look better than the others in the previous figure. 

We quantitatively evaluate how well our model predicted the distributions. We computed three 

quantities to measure accuracy of the predictions: overlap ratio, mode gap and variance gap. An overlap 

ratio is the fraction of common area on a plot. A mode gap and a variance gap are the absolute difference of 

modes and variances of theoretical distribution and observed one respectively. Fig. 4 shows those three 

quantities for every genome and k values. We can see the accuracies of the predictions get worse as k gets 

bigger. It is also shown that the accuracy depends on genome very much. 

NC_000117.1 NC_000911.1 NC_000913.2 NC_000962.2 

NC_000964.3 NC_002695.1 NC_002946.2 NC_003228.3 

NC_007517.1 NC_008261.1 NC_009882.1 NC_0010572.1 

NC_012973.1 NC_015431.1 
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Fig. 4. Plots of three quantities for measuring accuracy of predictions made by our model. 

 

From the above analysis, we conclude that our model captures the statistical properties of purity values 

very well for about half of genome sequences we tested though there is a room for improvement in cases of 

long k-mers and the rest of genome sequences. 

4. Conclusion 

We proposed a generative model for k-mers of genome sequences and analyzed the accuracy of 

distributions of purity values predicted by the model. Our model is based on a binomial distribution and has 

only a single parameter which can be easily determined from a set of purity values. We train our model for 

14 bacterial genome sequences with different lengths of k-mers, and the accuracies of the predictions made 

by the model are investigated with three quantitative measures. Our analysis shows that our model can 

predict the distribution of purity values very well for six genome sequences and it makes better prediction 

for shorter k-mers. We conclude that we have successfully uncovered the statistical properties of purity 

values at least for a part of bacterial genome sequences. We believe our result will become the foundation of 

future development of the discriminator of horizontal transferred genes. 
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