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Abstract: Inferring the gene regulatory network is an important first step toward understanding the work 

of the cell and consequently curing diseases related to malfunction of the cell. One thorny problem in gene 

regulatory network inference is that even with high throughput technology, the available time series 

expression data is still very limited compared to the network size. 

To alleviate this problem, we propose to decompose large network into small subnetworks without prior 

knowledge of the decomposition. Our algorithm first infers an initial GRN using CLINDE, decomposes it into 

possibly overlapping subnetworks, then infers each subnetwork by either CLINDE or DD-lasso and finally 

merges the subnetworks. We have tested this algorithm on synthetic data of networks with 500 and 1000 

genes. The results show that our proposed algorithm does improve the GRN inference performance of using 

either CLINDE or DD-lasso alone on the large network, with statistical significance, and is robust to 

different variances and slight deviation from Gaussian distribution in error terms. 
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1. Introduction 

Inferring gene regulatory network (GRN) has been an important problem in bioinformatics. Genes are 

transcribed into mRNAs and then translated into proteins. Transcription Factors (TFs) trigger or inhibit the 

transcription of other genes. Non-negligible transcriptional and translational delays have been observed 

[1]-[3]. These delays are known to affect the network stability, or cause oscillations [4]-[7]. In order to 

understand the work of the cell and subsequently diseases related to the malfunctio of the cell (such as 

cancer), it is crucial that the GRN be first mapped out, with regulatory effects and delays. Doing so 

experimentally is too time-consuming and expensive, therefore computational methods on high-throughput 

microarray or RNA-seq expression data are attractive complementary means to infer the GRN. 

2. Background: Gene Network Inference 

There are many GRN inference algorithms and models, with different levels of details, see Ref. [8], [9] for 

surveys of GRN modelling and Ref. [10] for survey on GRN inference algorithms for microarray expression 

data. 

Most models of GRN are graphs, with vertices being genes, and edges being regulatory relationships. 

Different levels of details could be achieved by labeling the edges with extra information. In undirected 

graph, only an association network is captured, e.g. ARACNE [11] and C3NET [12]. Alternatively, directed 
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edges could be used, as in Ref. [13] which is genetic algorithm method, but it does not label the edges with 

time delays. Some algorithms consider only delay of one time step, as in Ref. [14], which uses association 

rule mining to find frequent regulatory patterns. Boolean network, e.g. in Ref. [15], is a classic model of GRN 

with only one time step. Ordinary Differential Equations (ODE), when discretized in time, reduces to one 

time step model, as in Ref. [16], which uses Gaussian process for Bayesian inference of an ODE model, and 

DELDBN [17], which combines ODE model with local Bayesian analysis. Dynamic Bayesian Network (DBN), 

which allows delays and cycles, is sometimes used as one time step model, as in Ref. [18]. 

Not many algorithms infer multiple time delays. Reference [19] first estimates the possible delays from 

pairwise mutual information from discretized expression data, then infers multiple time step DBN by 

minimizing MDL score using genetic algorithm. Banjo [20] also optimizes a score metric on DBN using 

discretized expression data by MCMC based method, and updated version of the program allows multiple 

delays. TD-ARACNE [21] is an extension of ARACNE with time delays. But these algorithms do not label the 

edges of GRN with regulatory effect. In contrast, in DD-lasso [22], the expression of a gene is a linear 

combination of expression of its regulators at (possibly different) previous time steps. It first estimates the 

delays between each gene pairs by maximum likelihood, then uses lasso [23] to remove indirect effects and 

estimate the coefficients, therefore the edges are labeled with the delays as well as the regulatory effects. 

CLINDE [24] uses a similar model, but uses conditional independence of the shifted time series to estimate 

the delays and eliminate indirect effects. 

Some algorithms use perturbation data, e.g. [25], [26]; or need TF binding information, e.g. [27]; or use a 

combination of perturbation data and time series expression, e.g. TSNI [28]. 

3. Motivation: Difficulty of Inferring Large Network from Limited Data 

In high-throughput the time series expression data, the number of genes is usually very large (in the 

thousands), but the number of time points is far smaller (in the tens), which still poses a severe challenge to 

inferring a causal GRN. Besides the cost, there is another difficulty to obtaining longer time series. Current 

technology requires a sample of cells to get sufficient signals of gene expressions at one time point, so the 

cell cycles of the sample cells have to be synchronized at the beginning of the experiment. However, the 

inherent stochastic nature of the operation of the cell cycle would make the cells increasingly 

unsynchronized. Consequently, the expression values obtained would be increasingly “blurred” as the time 

series gets longer. Therefore, the useful length of a time series is practically limited. 

One way to alleviate this problem is to perform biological replicates, and make the inference algorithm 

utilize multiple relatively short time series instead of a long one. Both CLINDE and DD-lasso can accept 

multiple time series. In this paper, we focus on another possibility: to decompose a large GRN into smaller 

possibly overlapping subnetworks without prior knowledge, then infer each subnetwork, and finally “stitch” 

the subnetworks to get an overall GRN. This is feasible owing to the sparsity of GRNs. The main difficulty is 

to decompose a GRN into subnetworks without prior knowledge of the GRN structure. 

4. Methods 

4.1. Overview 

We assume the true GRN consists of loosely connected and sparse subnetworks, as illustrated in Fig. 1(a). 

These assumptions may suggest a clustering based method for decomposition, but there are some issues to 

address. Firstly, the similarity measure needs to take into account the time delays. This could be solved by 

considering the correlation between shifted time series, and trying the possible time delays (up to a 

maximum allowed delay) to define the similarity measure. Secondly, indirect effects, which lead to 

correlation between genes not directly dependent, need to be taken into account. For example, if abc, 
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then a high correlation between a and c will be observed. Indirect effects may cause more genes in different 

subnetworks to appear dependent, which may make the clustering more difficult. This is illustrated in Fig. 

1(b). Thirdly, most clustering methods give disjoint clusters as output, in which case either further 

processing is needed to find the edges across subnetworks, or these edges are ignored. Therefore, either 

overlapping clusters are found, or disjoint clusters have to be “expanded”. 

Because of the above, we propose to first infer an initial GRN using CLINDE, which handles time delays 

and helps eliminate indirect effects, then decompose the initial GRN into overlapping subnetworks. 

 

 
Fig. 1. (a) Structure of subnetworks; (b) Indirect effect across subnetworks; (c) Contribution of vertices 

pairs to edge betweenness; (d) Example of edge betweenness. 

 

The overall flow is given in Fig. 2. The steps are 1) initial GRN inference using CLINDE, 2) decomposition 

using edge betweenness to get subsets of genes, 3) each gene subset is used to infer a subnetwork using 

either CLINDE or DD-lasso, 4) the subnetworks are merged to obtain the final GRN. In the following, the 

input data, GRN model, and the steps of the proposed algorithm are described. 

 

 
Fig. 2. Overall flow of the algorithm. 

 

4.2. Data and Model 

The given data is        , for        ,        , where       is the expression value of gene   at 

time  , and there are   genes and   equidistant time points, and the model is: 
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so that     is the regulatory effect of gene   on gene  , where the regulatory effect is repressive if     is 

negative, activatory if positive, and absent if zero; and     is the positive time delay of the edge     (if 

     ); and       is the error term for gene at time  . We assume that the error terms are zero-mean, and 

are mutually independent, but otherwise we do not make stringent assumptions on the distribution of the 

error terms. Note that this model allows self-regulation and cycles (with positive delays) in the GRN. 

4.3. Initial GRN 

Only a few GRN inference algorithms handle multiple time delays, CLINDE [24] and DD-lasso [22] are two 

of them. And from [24], CLINDE outperforms DD-lasso when the number of time points is small relative to 

the number of genes, so we choose CLINDE to infer an initial GRN. 

CLINDE is based on the PC algorithm [29]-[30], and consists of two stages. Stage 1 considers all (directed) 

pairs of genes   and  , and all possible delays   up to a maximum delay, to determine if     is 

significant with the delay   based on either correlation test, or mutual information test. The test is 

considered significant if the score of the test is larger than a score threshold. In the (partial) correlation test, 

the score is                , and in the (conditional) mutual information test, the score is the (conditional) 

mutual information. For correlation test, the regulatory effect (positive or negative) is also estimated. After 

stage 1, there may be multiple edges from   to  , but with different delays. Stage 2 attempts to prune the 

edges by partial correlation tests or conditional mutual information tests. Iteratively, the remaining edges 

are considered for pruning by conditioning first on     neighbor, then     neighbors, and so on up to 

    , for a given parameter   , where the neighbors are shifted properly using the delays estimated in 

stage 1. If the conditional test is not significant, the edge is pruned. 

For our purpose of decomposition into subnetworks, after stage 2, we “condense” the multiple edges 

    with between the same pair of genes to retain only the one with the most significant p-value. 

4.4. Decomposition 

Given an initial GRN, we decompose it by identifying edges likely to be across subnetworks, by using 

“edge betweenness” [31]. In an undirected graph, consider the shortest path(s) between two vertices. If 

there are   shortest paths, for each shortest path, each constituent edges receives a weight of    . The 

“edge betweenness” for an edge is the sum of weights after considering all vertex pairs. This is illustrated in 

Fig. 1(c). Intuitively, edge with higher edge betweenness is more likely to be across subnetworks, because 

the shortest paths of all vertex pairs in different subnetworks have to go through those few edges across 

subnetworks, this is illustrated in Fig. 1(d). Reference [31] gives a fast method to calculate edge 

betweenness of all edges in a graph with   edges and   vertices in       time. 

The steps for decomposition are as follows, starting from the initial GRN (considered as undirected): 

1) Identify all the components (the maximally connected subgraphs). 

2) If a component has size of at least   , calculate the edge betweenness, and remove the edge with the 

highest edge betweenness. 

3) Go back to step 2 until all components are smaller than   . 

The size threshold    should not be too small, because removing more edges means higher chance that 

the genes are grouped wrongly. On the other hand,    should not be too large to avoid difficulty in 

subnetwork learning due to limited data. The default threshold    used is 60, based on the previous 

performance of CLINDE and DD-lasso. 
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After that, we consider three ways to obtain the final subsets of gene for the subnetworks: 

1) Component: Simply output each component as a subset, but this gives disjoint partitions. 

2) Parents: For each component, include its parents based on the initial GRN. Presumably the removed 

edges are those across subnetworks, we include the parents so that these cross edges could be 

identified in the subnetworks. And in this case, the subnetworks are likely overlapping. 

3) XParents: For each component, include its parents based on the initial GRN. But for each 

subnetwork, after inference, the edges between the parents (not in the component) are removed. 

The motivation is to help remove indirect effects between the parents. 

4.5. Infer Subnetworks 

The possibly overlapping subsets of genes (either one of Component, Parents or XParents) has been 

obtained. The corresponding subset of expression data could be obtained and each subnetwork could be 

re-learned. Both CLINDE and DD-lasso could be used for this purpose. 

DD-lasso is based on lasso [23], which is a regularized regression method that also has the effect of 

feature selection. DD-lasso extends lasso to handle time delays. DD-lasso consists of three stages. In stage 1, 

for all directed pairs of genes   and  , determine the delay   such that     has the maximum 

absolute correlation when shifted by delay  . In stage 2, for each gene  , treat all the genes as potential 

parents, with the delays determined in stage 1. Then, lasso is used to predict the real parents of   through 

the feature selection nature of lasso. In stage 3, backward elimination is done for each gene to further 

remove parents that are likely only indirect effects. Note that in DD-lasso, it is assumed that between any 

two genes there is only one edge with a single delay, whereas in CLINDE this is not assumed. 

Since the initial GRN is estimated using CLINDE, so after decomposing into subnetworks, using DD-lasso 

may lead to greater improvement on the subnetworks, even though DD-lasso may not perform well on the 

large network, given the limited data, as it has different performance characteristics from CLINDE. 

4.6. Merge the Subnetworks 

After the subnetworks are re-learnt using either CLINDE or DD-lasso, they can simply be unioned to 

obtain the final estimate of the GRN, because the overlapping nature of the subnetworks avoids the need of 

post-processing for the cross edges. 

5. Experiment Results and Discussions 

Since it is difficult to find known large gene networks and sufficiently long time series data of the involved 

genes, we use synthetic data to evaluate our proposed algorithm, where we know the underlying gene 

network, and there is no lack of sufficient expression data. 

5.1. Performance Metrics 

We assess the performance mainly on Effects, which is correct if and only if both the link and the sign of 

the effect     are correct. From [24], it is usual to have the effects and delays being correct at the same time, 

rather than getting one but not the other. We use F-score = (2 × Recall × Precision)/(Recall + Precision) as an 

overall measure of performance. 

5.2. Generation of Synthetic Network and Expression Data 

To generate a subnetwork, we randomly choose 1 up to M0 parents for each gene. For each link, the delay 

is uniformly chosen from 1 up to τ0, and the coefficient has absolute value randomly chosen between 0.5 

and 1.5, with random sign. The coefficients are scaled to make the network stable. To generate a large 

network of size   as in Fig. 1(a), we first generate            subnetworks, each with size   ; then 
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generate a network of size           , each vertex representing a subnetwork, and for each link, we 

connect two random genes from the corresponding subnetwork. Finally permute the gene indices to 

prevent the subnetworks from being easily identified from the indices. 

Having generated the network, we generate expression data according to (1), where each error term is 

                    
 , where     is        . Therefore, σ controls the variance, and α controls the 

gaussianity, and varying α allows us test slight deviation from Gaussian distribution. 

5.3. Experiment Settings 

We have tested these settings: network size n=500, 1000; subnetwork size of 50; σ=0.5, 2, 8; α=0.5, 1, 2, 3; 

maximum number of parents M0=4; maximum delay τ0=4; number of time points m=200. For each setting, 

we generate 20 random replicates, with a total of 480 networks and time series. 

In using CLINDE for learning initial GRN and subnetworks, we use the default (partial) correlation tests, 

and try the score thresholds 2, 3, 4. But due to limited space, we show the results for score threshold 3 only, 

as the results for 2 and 4 are similar. For other parameters, we use the default values. 

5.4. Synthetic Data Results 

 
Table 1. Median Effects F-Score of CLINDE and DD-lasso by Decomposition on the Networks 

     Component Parents XParents 

n α σ CL-init DD CL-sub DD-sub CL-sub DD-sub CL-sub DD-sub 

500 0.5 0.5 0.773 0.073 0.772 0.783** 0.770 0.824++ 0.774 0.823++ 

  2 0.769 0.073 0.775** 0.791+ 0.766 0.826++ 0.771 0.825++ 

  8 0.768 0.073 0.770+ 0.772** 0.764 0.811++ 0.768* 0.811++ 

 1 0.5 0.772 0.075 0.772* 0.787** 0.768 0.830++ 0.773* 0.829++ 

  2 0.775 0.072 0.770 0.781* 0.774 0.824++ 0.777** 0.822++ 

  8 0.768 0.072 0.769* 0.786+ 0.766 0.826++ 0.770+ 0.825++ 

 2 0.5 0.759 0.078 0.756 0.779+ 0.746 0.820++ 0.753 0.820++ 

  2 0.747 0.073 0.751* 0.774++ 0.741 0.808++ 0.746 0.807++ 

  8 0.746 0.073 0.753 0.765+ 0.741 0.807++ 0.747 0.806++ 

 3 0.5 0.643 0.082 0.623 0.636 0.611 0.673++ 0.643 0.675++ 

  2 0.629 0.080 0.589 0.561 0.592 0.647++ 0.622 0.646++ 

  8 0.635 0.080 0.612 0.619 0.593 0.665++ 0.630 0.666++ 

1000 0.5 0.5 0.750 0.081 0.758+ 0.775++ 0.746 0.822++ 0.752** 0.820++ 

  2 0.737 0.082 0.743+ 0.756++ 0.732 0.811++ 0.737** 0.810++ 

  8 0.740 0.082 0.752++ 0.767++ 0.733 0.816++ 0.740** 0.813++ 

 1 0.5 0.742 0.081 0.750** 0.771+ 0.737 0.815++ 0.745** 0.814++ 

  2 0.743 0.081 0.750+ 0.770+ 0.737 0.820++ 0.745++ 0.818++ 

  8 0.741 0.082 0.743* 0.759+ 0.734 0.810++ 0.741* 0.808++ 

 2 0.5 0.719 0.077 0.731+ 0.752++ 0.709 0.797++ 0.722 0.795++ 

  2 0.714 0.077 0.717 0.730+ 0.706 0.784++ 0.713 0.783++ 

  8 0.712 0.077 0.720** 0.736++ 0.701 0.787++ 0.711* 0.786++ 

 3 0.5 0.603 0.070 0.577 0.589 0.551 0.617++ 0.598 0.629++ 

  2 0.595 0.069 0.554 0.537 0.543 0.604** 0.588 0.614+ 

  8 0.596 0.069 0.564 0.547 0.542 0.609+ 0.590 0.615++ 

Medians are taken over 20 replicates. *: p-value < 0.1. **: p-value < 0.01. +: p-value < 1e-3. ++: p-value < 1e-5. 

 

Table 1 shows the median (taken over the 20 replicates) Effects F-score of first inferring an initial GRN by 

CLINDE (CL-init), then decompose the initial GRN (Component, Parents and XParents), then use CLINDE and 

DD-lasso to infer the subnetworks (CL-sub and DD-sub respectively), and finally merge the subnetworks. 

DD is DD-lasso alone on the large network. We have highlighted the best entry in each row. We have also 
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performed one-sided Wilcoxon signed-rank test on whether the median F-score of CL-sub and DD-sub are 

better than CL-init, and label the significant entries. 

Firstly, note that DD alone has poor performance, while CL-init has reasonable performance. The 

performance of CL-sub is comparable to or sometimes better than CL-init with statistical significance. Also 

note that DD-sub is better than CL-init with statistical significance in almost all cases, except for Component 

with α=3. Also DD-sub is substantially better than DD. This shows the effectiveness of our proposed 

algorithm, and that decomposing the large network without prior knowledge of the decomposition can 

improve the inference performance. 

Comparing Component, Parents and XParents, the trend is not very clear for CL-sub, but for DD-sub, 

Parents and XParents are better than Component, and Parents is slightly better than XParents. This shows 

that including the parents of the component helps, presumably that helps to recover the links across 

subnetworks. Also, comparing Parents and XParents, it shows that removing the links between parents not 

in the component does not help much, presumably it is because DD-lasso can already effectively remove 

indirect effects on the subnetworks. 

Also note that the results are quite consistent with different σ and α, which shows that this algorithm is 

robust to different variances and slight deviation from Gaussian distribution for the error terms. 

6. Conclusion 

We have demonstrated the effectiveness of our algorithm in improving the inference of large causal GRN 

with time delays from limited data by decomposing into subnetworks without prior knowledge of the 

decomposition. For future work, we intend to study the effects of using different GRN inference algorithm 

for initial GRN, and using different methods for decomposition into subnetworks. 
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