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Abstract: Although microarray and deep sequencing technologies allow us to monitor gene expression at a 

genomic level, they also generate a relatively high false discovery rate, which limits our further exploration 

of disease mechanism. Furthermore, it is usually difficult to detect disease related genes with weak 

differential expression. It is well known that genes interact with each other during cellular and molecular 

processes. Therefore, disease related genes are not isolated. With large scale gene expression data, it is 

possible to evaluate the genome-wide co-expression information. This information is valuable for 

understanding gene interactions. We have shown that differential expression analysis can be improved 

when this information can be incorporated. In this study, we demonstrate that genome-wide co-expression 

information can also clearly improve gene set enrichment analysis and classification analysis. 
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1. Introduction 

Microarrays can be used to measure expression for tens of thousands of genes at the mRNA level for 

samples in normal and disease groups, and then statistical methods for two-sample comparison can be 

used to identify differentially expressed genes. Differentially expressed genes are potential disease related 

genes for clinical diagnoses and medical treatments. This approach has been successfully used in cancer 

studies [1] as well as diabetes studies [2]. Furthermore, disease related pathways or gene sets can be 

identified through microarray analysis [3]. With microarray data, we can understand unknown gene 

functions through the clustering analysis. Microarray data also allow us to perform disease classifications at 

a molecular level. 

The recent deep sequencing technology (RNA-seq or digital gene expression) has shown a promising 

impact on biomedical studies. It can directly measure the amount of molecules at a genomic level. 

Compared to the microarray technology, this new technology can significantly reduce the noise in 

expression measurements and improve the detection range and accuracy. Nevertheless, as a well-developed 

technology, micorarrays have been continuously used for broad biomedical studies [4]. There is still a need 

for more efficient statistical and computational methods for analyzing these types of gene expression data. 

Furthermore, since the structures of data from different genomic technologies are basically similar, 

methods for analyzing genome-wide expression data can also be useful for analyzing other similar 

genomics data. 

The traditional t/F-statistics as well as the nonparametric Wilcoxon/Kruskal-Wallis rank sum tests have 
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been widely used for two-sample or multi-sample comparisons. Due to the relatively small sample size of 

microarray data, it is difficult to achieve sufficient power from the nonparametric methods. Based on the 

exploration of microarray data, many statistical methods have been proposed to improve the detection of 

differential expression. It is well known that genes interact with each other during cellular and molecular 

processes. Disease related genes are not isolated. Furthermore, to understand gene interactions, we can use 

genome-wide expression data to measure the co-expression among genes at the mRNA level. Genome-wide 

co-expression information can be useful in the detection of disease related genes with relatively weak 

differential expression, since these genes are expected to co-express with many other differentially 

expressed genes. Therefore, we expect to further improve the detection of disease related genes if an 

efficient statistical method can be developed to incorporate the genome-wide co-expression information 

into the differential expression analysis. Storey et al. [5] have proposed an optimal discovery procedure 

(ODP) for large-scale significance testing. Their method evaluates the differential expression of a gene with 

the consideration of information from the other genes. However, the co-expression information is not 

explicitly considered in the procedure. Tibshirani and Wasserman [6] have proposed a correlation-sharing 

method for detecting differential expression. Their method evaluates differential expression through the 

correlation-sharing based maximization procedure: for a fixed gene X, its neighbors can be first defined as 

these genes (including X itself) with absolute correlations (with X) greater than a given threshold value; 

then, the average of differential expression measures of these neighbours can be obtained; the maximal 

average is reported after the threshold value is screened from 0 to 1. However, since the correlation is only 

used to rank genes, the magnitude of co-expression is not explicitly considered in the procedure. We have 

recently proposed to use a local regression technique for modelling the relationship between the 

differential expression and co-expression [7]. This method can be extended to other types of expression 

data analysis. 

2. A Gene Set Enrichment Analysis (GSEA) 

We first briefly describe our method [7] as follows. Now consider a large number of genes measured by 

microarrays or RNA-seq: {X1, X2,…, Xm}. Given a gene Xj, we use the Pearson’s correlation coefficient rjk to 

measure the co-expression between Xj and another gene Xk, whose differential expression is calculated by 

the traditional two-sample t-test tk (observed differential expression). Therefore, each gene Xk has a pair of 

measurements (rjk, tk). To gather more observations for the local regression, we consider a modification: (rjk
，
, 

tk
，

) = (sjkrjk，sjktk), where sjk is the sign of rjk. In this way, all the co-expression measures are non-negative. We 

consider (rjj
，

= 1, tj
，

) as a pair of outliers and exclude them from the local regression. We use LOWESS [8] to 

fit the rest m-1 pairs. To predict the differential expression measure of Xj, we linearly extend the fitted curve 

to the right and used the fitted value at rjj
，

= 1 for prediction (predicted differential expression). 

Several parameters need to be determined in LOWESS. Except the smoother span f, which is usually 

data-specific, the default values for all the other parameters can be well used for different data sets. The 

default value (f = 2/3 in R function lowess) of the smoother span is usually a good choice. However, based 

on our analysis experience, a well optimized smoother span f can significantly improve the results. We have 

proposed to determine f by maximizing the overall rank correlation between the observed and predicted 

differential expression measures [7]. The significance of a prediction can be evaluated by the permutation 

procedure that has been widely used in gene expresion data analysis. 

Fig. 1 shows some results from a simulated data set with the configuration m=6000, 0=0.85，n1=n2=15, 

b=20 and r=1.5 (see below for the detail of simulation configuration). The scatter plots demonstrate the 

prediction of differential expression for a truly differentially expressed gene and a truly non-differentially 

expressed gene (f=2/3). 
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Fig. 1. Illustration of the genome-wide co-expression based prediction of differential expression 

(simulated data)( Blue and red colors represent observed and fitted measures). 

 

Since the introduction of GSEA [2], [3], it has received much attention. Efron and Tibshirani [9] have 

recently showed that the maxmean is a powerful statistic for GSEA. For simplicity, we consider the maxmean 

statistic for a type 2 diabetes data set and compare the gene set ranking based on two different scoring 

methods for differential expression analysis: the Student’s t-test and our recently published method [7]. For 

simplicity, the smooth span in LOWESS is still f=2/3. We observe interesting changes of gene set ranking. It 

has been shown that the oxidative phosphorylation pathway is associated with type 2 diabetes. There are 

two gene sets related with this pathway: “MOOTHA_VOXPHOS” and “OXIDATIVE_PHOSPHORYLATION”. 

Their ranks based on the student’s t-test are 8 and 23, respectively. Based on our method, their ranks are 

improved to be 5 and 17. Furthermore, we observe that the circadian pathway related gene set 

(“CIRCADIANPATHWAY”) is ranked 14 based on our method. It has been discussed that the study of 

circadian pathway is promising for understanding diabetes and obesity [10]. However, based on the 

student’s t-test, this circadian pathway related gene set is ranked 276 and it is difficult to identify it. Fig. 2 

compares the differential expression measurements based on the student’s t-test and our method. Overall, 

the scatter plot spreads around the diagonal line. However, the absolute score values of 6 circadian pathway 

related genes are all increased by our method. Furthermore, the scores of 3 genes are slightly positive based 

on the student’s t-test, but our method adjusts them to be negative. Therefore, based on our method, these 6 

genes are all coordinately down-regulated in the diabetic sample group, which makes this gene set highly 

ranked. 

 

 
Fig. 2. Comparison of differential expression measures (Six circadian pathway genes are shown in black). 
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3. Adjustment for Classification Analysis 

Our method [7] can be generalized to the classification analysis of microarray gene expression data. The 

idea is to adjust the observed expression measurements so that these well-developed classification 

methods [11] can still be used for the supervised learning. 

We consider the following approach to adjust gene expression measurements. (Although gene expression 

measurements are collected for different sample groups, the sample group information is not used in the 

adjustment procedure. For each gene, all the expression measurements are pooled together in the 

adjustment procedure.) At the beginning, we perform a simple standardization procedure for each gene. Let 

Xij be the expression measurement on the i-th array for gene Xj. It is first linearly transformed as: 

)/()( jjji

s

ji sxxx  , where jx  and js  are the sample mean and sample standard deviation of n

ijix 1}{ 
. 

After data standardization, we use the genome-wide co-expression information and the (transformed) 

expression measurements of other genes to adjust the transformed measurement 
s

jix . Based on the 

transformed data, we use the Pearson’s correlation coefficient rjk to measure the co-expression between Xj 

and another gene Xk, whose transformed expression measurement on the i-th array is s

kix . Therefore, each 

gene Xk has a pair of measurements ),( s

kijk xr . To gather more observations for the local regression, we 

consider a modification: ),(),( s

kijkjkjk

s

kijk xsrsxr  , where sjk is the sign of rjk. In this way, all the 

co-expression measures are non-negative. We consider ),1( s

jijj xr   as a pair of outliers and exclude them 

from the local regression. We use LOWESS [8] to fit the rest m-1 pairs. To obtain the adjusted expression 

measurement 
s

jix~ , we linearly extend the fitted curve to the right and used the fitted value at 1jjr  for 

prediction (adjusted expression measurement). 

We first evaluate the above approach with some simulated data. We considered the impact of different 

parameters in our simulation studies: (1) gene size, (2) the proportion of differentially expressed genes, (3) 

sample size, (4) distributions of expression measurements of differentially and non-differentially expressed 

genes, and (5) covariance structure. In our simulation studies, we consider the widely used block structure: 

genes are partitioned into many blocks; genes within the same block are positively dependent; and different 

blocks are independent. Multivariate normal distributions are used to simulate expression measurements 

in different blocks. We considered different values for the above parameters. Since relatively large sample 

sizes are usually required for microarray classification analysis, we set n1=n2=50. The block size is b=25 and 

the effect size factor is r=1.5. We simulate 900  (0=0.85) differentially expressed genes among m=6000 

total genes. At this stage, we assume that 5 genes are known to be truly differentially expressed, and they 

are randomly selected from these 900 differentially expressed genes. They can be identified in our analysis. 

The predictive power of these individual genes and their combination (by the linear discriminant analysis, 

or LDA) can be evaluated by the widely used receiver operative characteristics (ROC) curve. Fig. 3 shows 

that the predictive power is clearly improved for the adjusted expression measurements based on the 

comparison of ROC curves. We then evaluate the above approach with an experimental data set. Singh et al. 

[1] accomplished a successful microarray study for prostate cancer. There are 50 normal and 52 cancerous 

subjects in their published data set. It is well-known that genes hepsin, AMACR and GSTP1 are associated 

with prostate cancer [12]. Fig. 4 shows that our adjusted expression measurements can also clearly improve 

the predictive power based on the ROC curves. 
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Fig. 3. Receiver operating characteristics (ROC) curves for 5 disease related genes and their combination 

(based on simulated data). 

 

 
Fig. 4. Receiver operating characteristics (ROC) curves for 3 disease related genes and their combination 

(prostate cancer data). 

 

In practice, the cross-validation procedure is a rigorous way to evaluate the classification performance. 

There will be a training set and a test set. The above procedure can be applied to the training set without 

any modification. But for the test set, we should only use the training set data to adjust the observations in 

the test set so that the selection bias can be avoided [13]. Therefore, the standardization to the test data will 

only use these means and standard deviations estimated by the training data; the correlations will also be 

estimated only based on the training data. We use the widely used support vector machine (SVM) as the 

classifier with 10-fold cross-validation to evaluate the classification performance of these known disease 
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related genes in the above simulated data set (five genes) as well as the experimental data set (three genes). 

(There is no selection of genes.) We observe a clear improvement in classification performance: for the 

simulated/experimental data, the classification accuracy is 80%/87.3% based on the observed expression 

measurements and is increased to 90%/91.2% based on the adjusted expression measurements. 

4. Exploration of Gene Block Structures 

Based on our experience, at least a simple block covariance structure is necessary for our method to 

achieve a satisfactory performance. To illustrate the applicability of out method to microarray gene 

expression data, we show the results from a hierarchical clustering analysis for two well-known microarray 

data sets: one for a prostate cancer study by Singh et al. [1] (50 normal and 52 cancerous subjects) and the 

other for a type 2 diabetes study by Mootha et al. [2] (17 normal and 18 diabetic subjects). The distance 

measure is one minus the Pearson’s correlation coefficient, which has been widely used for microarray data 

analysis. The agglomeration method is “complete linkage” (farthest neighbor). For each sample group 

(normal or disease), a tree is generated based on the hierarchical clustering method. The height is set as 0.3 

(the correlation is 0.7) to cut the trees. We count the number of genes in each partitioned cluster and 

explore its empirical distribution. Fig. 5 shows clearly that there are block structures in microarray data. 

The difference in these histograms implies different underlying block structures for different sample groups 

and different data sets. We also explore the distribution of number of genes in the gene set enrichment 

analysis. In the Molecular Signatures Database [3], over 1600 gene sets have been collected from various 

sources such as online pathway databases, publications in PubMed, and knowledge of domain experts (C2: 

curated gene sets, v2.1). Fig. 6 shows that most gene sets contain about 20~60 genes. Although genes in a 

gene set are not necessarily highly correlated, Fig. 6 is an indirect evidence to support the applicability of 

our method. 

 

 

 
Fig. 5. Exploration of gene block structure based on the microarray data for a prostate cancer study 

(upper panel) and a type 2 diabetes study (lower panel). 
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Fig. 6. The distribution of gene set size. 

 

5. Conclusions 

Microarrays and deep sequencing technologies have been widely used to understand gene regulations at 

a genomic scale. Although there are many excellent methods available for different aspects of large scale 

data analysis, it is still necessary to develop more efficient approaches. For differential expression analysis, 

it is important to achieve a better control of false discoveries; for gene set enrichment analysis, it is crucial 

to achieve a better distinction of disease related gene set; for clustering analysis, it is meaningful to observe 

a clearer separation among different gene clusters; for classification analysis, it is desirable to build a better 

classifier with less genes and a simpler model. The genome-wide co-expression based analysis can be a 

solution since this approach efficiently utilizes the genome-wide interaction information. 

Although it is well known that genes interact with each other during cellular and molecular processes, 

there is a lack of efficient multivariate methods for analyzing gene expression data, especially the 

incorporation of genome-wide interaction information. In this study, we have demonstrated that other 

types of expression data analysis (gene set enrichment analysis and classification analysis) can be improved 

when the genome-wide co-expression information is incorporated. It is interesting to further understand 

the theoretical properties of this approach so that more efficient approaches can be developed. However, 

this task can be difficult due to the complicated correlation structure in experimental data and also the 

limited choices of multivariate statistical distributions. 

Acknowledgements 

The research work was supported by the research fund in the Department of Statistics at The George 

Washington University. 

References 

[1] Singh, D., Febbo, P. G., Ross, K., Jackson, D. G., Manola, J., Ladd, C., et al. (2002). Gene expression 

correlates of clinical prostate cancer behavior. Cancer Cell, 1, 203-209. 

[2] Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., et al. (2003). 

PGC-1α-response genes involved in oxidative phos-phorylation are coordinately downregulated in 

human diabetes. Nature Genetics, 34, 267-273. 

[3] Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., et al. (2005). Gene 

set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression 

profiles. Proc. Natl. Acad. Sci. USA, 102, 15545-15550. 

[4] Cancer Genome Atlas Research Network. (2008). Comprehensive genomic characterization defines 

human glioblastoma genes and core pathways. Nature, 455, 1061-1068. 

International Journal of Bioscience, Biochemistry and Bioinformatics

155 Volume 5, Number 3, May 2015



  

[5] Storey, J. D., Dai, J. Y., & Leek, J. T. (2007). The optimal discovery procedure for large-scale significance 

testing, with applications to comparative microarray experiments. Biostatistics, 8, 414-432. 

[6] Tibshirani, R., & Wasserman, L. (2006). Correlation-sharing for detection of differential gene 

expression. Technical Report. 

[7] Lai, Y. (2008). Genome-wide co-expression based prediction of differential expressions. Bioinformatics, 

24, 666-673. 

[8] Cleveland, W. S. (1979), Robust locally weighted regression and smoothing scatterplots. Journal of the 

American Statistical Association, 74, 829-836. 

[9] Efron, B., & Tibshirani, R. (2007). On testing the significance of sets of genes. Annals of Applied Statistics, 

1, 107-129. 

[10] Ramsey, K. M., Marcheva, B., Kohsaka, A., & Bass, J. (2007). The clockwork of metabolism. Annu. Rev. 

Nutr., 27, 219-240. 

[11] Hastie, T., Tibshirani, R., & Firedman, J. (2001). The elements of statistical learning. Springer Texts in 

Statistics, 6, 15-57. 

[12] DeMarzo, A. M., Nelson, W. G., Isaacs, W. B., & Epstein, J. I. (2003). Pathological and molecular aspects of 

prostate cancer. Lancet, 361, 955-964. 

[13] Ambroise, C., & McLachlan, G. J. (2002). Selection bias in gene extraction on the basis of microarray 

gene-expression data. Proc. Natl. Acad. Sci. USA, 99, 6562-6566. 

 
 
 
Yinglei Lai received his B.S. degrees in information & computation sciences and business administration in 

1999 from the University of Science and Technology of China, and his Ph.D. degree in applied mathematics 

in 2003 from the University of Southern California. After the postdoctoral training during 2003-2004 at Yale 

University School of Medicine, he joined the George Washington University as a faculty member. His 

research areas are statistical problems in the fields of bioinformatics, computational biology and statistical 

genetics. 

 

International Journal of Bioscience, Biochemistry and Bioinformatics

156 Volume 5, Number 3, May 2015


