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Abstract: Micro-RNAs are small non-coding RNAs having important biological functions such as gene 

regulation and disease causality. Network analysis on miRNA-related network can help understanding gene 

regulation mechanism and propose cures for miRNAs related diseases. In this paper, we integrated 

miRNA-related data from three state of the art databases, miRTarBase, miRBase and HMDD v2.0 to 

construct a human miRNAs, gene targets and diseases network. We then performed network statistics 

analysis, disease cluster analysis and gene-disease association analysis on the network. The results show 

that there are community structures in the network, similar disease are associated with similar miRNAs 

with enriched biological functions and gene-disease pairs connected by multiple paths in the network and 

are more likely to have biological association. 
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1. Introduction 

Micro-RNAs (miRNAs) is one type of non-coding RNAs that have important biological functions. miRNAs 

dysregulation is also known to be related to many diseases, e.g. inherited diseases and cancer [1], [2]. 

Network analysis of miRNA-related network is important for understanding gene regulation mechanism 

and proposing cures for miRNAs related diseases. 

There are three state of the art databases related to miRNAs, which are miRTarBase [3], miRBase [4] and 

Human microRNA Disease Database v2.0 (HMDD v2.0 in short) [5]. miRTarBase is a database of published 

miRNA-target interactions. miRBase is a database of published miRNA sequences and annotations. HMDD 

v2.0 is a database that curated experiment-supported evidence for human miRNA and disease associations. 

The motivation of this paper is to integrate the data from different databases and perform network 

analysis. In order to construct the network, the miRNA-related data are downloaded from these databases. 

The rest of the paper is organized as follows. Section 2 presents the data pre-processing of human miRNA, 

gene targets and disease network, and the analysis methods. Section 3 presents the analysis results. Section 

4 concludes this paper. 

2. Materials and Methods 

 Data Preprocessing 2.1.

The miRNA related data are downloaded from miRTarBase, miRBase and HMDD v2.0. There are 4 types 
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of data, which are pre-mature miRNAs (pre-miRNAs in short), mature miRNAs (miRNAs in short), gene 

targets (genes in short) and diseases. 

The miRBase database of Release 20 was downloaded. Each entry in the database contains information 

about a pre-miRNA and miRNA(s), where pre-miRNA creates the miRNA(s). We extracted every pre-miRNA 

and miRNA pairs from the database. Each pre-miRNA and each miRNA are represented by an miRBase 

accession ID. Then, we selected pre-miRNA and miRNA pairs from human only and ignored the pairs of the 

other species. 2794 pre-miRNA and miRNA pairs remained. 

The miRBase database also contains information about the pre-miRNAs and the genes with overlapping 

locations in the human genome. We extracted every pre-miRNA and gene pairs with this feature from the 

database. Each pre-miRNA is represented by an miRBase accession ID and each gene is represented by an 

Ensembl ID (Ensembl ID is used in Ensembl Genome [6]). We converted the Ensembl IDs into Entrez IDs 

(Entrez ID is used in gene-specific database at the National Center for Biotechnology Information (NCBI) 

[7]). Then, we selected pre-miRNA and gene pairs from human only and ignored the pairs of the other 

species. 1513 pre-miRNA and gene pairs remained. 

The miRTarBase database of Release 4.5 was downloaded. Each entry in the database contains 

information about an miRNA and a gene, where the miRNA interacts with the mRNA translating into that 

gene. We extracted every miRNA and gene pairs, and the corresponding miRTarBase ID from the database. 

Each miRNA is represented by an miRBase accession ID and each gene is represented by a gene symbol. We 

converted the gene symbols into Entrez IDs. Then, we selected miRNA and gene pairs from human only and 

ignored the pairs of the other species. 37387 miRNA and gene pairs remained. 

The HMDD v2.0 database was downloaded. Each entry in the database contains information about a 

pre-miRNA and a disease, where the pre-miRNA and the disease have association. We extracted every 

pre-miRNA and disease pairs from the database. Each pre-miRNA is represented by an miRBase accession 

ID and each disease is represented by a disease name. The database only contains human related 

pre-miRNAs so we did not filter out anything. 6427 pre-miRNA and disease pairs remained. 

After pre-processing, there are 1872 pre-miRNAs, 2578 miRNAs, 12760 genes and 380 diseases in total. 

The human miRNAs, gene targets and diseases network are constructed from the integrated data. The 

network representation is as follows. Each pre-miRNA, miRNA, gene and disease is represented by a node 

respectively. Two nodes are connected by an edge if the node pair is inside the processed data. Disease and 

pre-miRNA are connected if disease and per-miRNA are associated. Pre-miRNA and miRNA are connected if 

pre-miRNA creates miRNA. Pre-miRNA and gene are connected if pre-miRNA and gene have overlapping 

locations in the human genome. miRNA and gene are connected if miRNA interacts with the mRNA 

translating into that gene. Fig. 1 shows the network abstraction and Fig. 2 shows the complete network, 

which are prepared for using Gephi 0.8.2 [8] with Fruchterman Reingold algorithm [9] to generate the 

layout. 

 Network Statistics Analysis 2.2.

The network statistics of the network are computed by using Gephi. The network statistics of the network 

help understanding the network structure. The network statistics computed for the complete network are 

Average Degree, Network Diameter, Graph Density, Modularity Score and Number of Connected 

Components. The definitions of the network statistics of the network are as follows. Let the network G = (V, 

E), where V is the set of nodes and E is the set of edges. Let u, v, w ∈ V be the nodes of the network. Let the 

sub-network Gsub = (Vsub, Esub) where Vsub ⊂ V and Esub ⊂ E be the set of nodes and edges in the sub-network. 

Let A be the adjacency matrix of graph G where Au,v = 1 if (u, v) ∈ E, and Au,v = 0 otherwise. Let the 

community assignment C(u), where C(u) is a function that assign community to node u. 
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Fig. 1. Network abstraction. 

 

Fig. 2. Picture of the complete network. 

 

Definition 1. Average degree = Average number of edges connected to the node 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝑒𝑔𝑟𝑒𝑒(𝐺) =  
2|𝐸|

|𝑉|
 

Definition 2. A path between a pair of nodes = A sequence of edges that connect the node pair 

𝑃𝑎𝑡ℎ(𝑢, 𝑣) = ((𝑢, 𝑡1), (𝑡1, 𝑡2), … , (𝑡𝑛−1, 𝑣)), where (𝑢, 𝑡1), (𝑡1, 𝑡2), … , (𝑡𝑛−1, 𝑣) ∈ 𝐸, and 𝑡1, 𝑡2, … , 𝑡𝑛−1 ∈ 𝑉 

Definition 3. Shortest Path(s) between a pair of nodes = A path(s) between a node pair where the number 

of edges is the smallest among all possible paths of that node pair 

𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(𝑢, 𝑣) = 𝑃𝑎𝑡ℎ(𝑢, 𝑣), where ∀𝑃𝑎𝑡ℎ′(𝑢, 𝑣), |𝑃𝑎𝑡ℎ(𝑢, 𝑣)| ≤ |𝑃𝑎𝑡ℎ′(𝑢, 𝑣)| 

Definition 4. Network Diameter = Number of edges in the shortest path between the furthest pair of 

nodes 

𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟(𝐺) = |𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(𝑢, 𝑣)|, where ∀𝑢′, 𝑣′ ∈ 𝑉, |𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(𝑢, 𝑣)|

≥ |𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(𝑢′, 𝑣′)| 

Definition 5. Graph Density = Ratio of the number of edges to the number of possible edges 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝐺) =
2|𝐸|

|𝑉|(|𝑉| − 1)
 

Definition 6. Degree of a node = Number of edges connected to the node 

𝐷𝑒𝑔𝑟𝑒𝑒(𝑣) = |{𝑢: (𝑢, 𝑣) ∈ 𝐸}| 

Definition 7. Modularity Score of a given Community Assignment = Fraction of the edges that fall within 

the given groups minus the expected such fraction if edges were distributed at random 

𝑀𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝐺, 𝐶) =
1

2|𝐸|
∑ [𝐴𝑢,𝑣 −

𝐷𝑒𝑔𝑟𝑒𝑒(𝑢)𝐷𝑒𝑔𝑟𝑒𝑒(𝑣)

2|𝐸|
] 𝜎(𝐶(𝑢), 𝐶(𝑣))

𝑢,𝑣

, where 𝜎(𝐶(𝑢), 𝐶(𝑣))

= 1 𝑖𝑓 𝐶(𝑢) = 𝐶(𝑣), 𝜎(𝐶(𝑢), 𝐶(𝑣)) = 0 if otherwise 

Definition 8. Number of Connected Components = Number of subgraphs in which any two vertices are 

connected to each other by paths, and which is connected to no additional vertices in the supergraph 

𝑁𝑢𝑚𝑏𝑒𝑟 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠(𝐺) = |{(𝑉𝑠𝑢𝑏 , 𝐸𝑠𝑢𝑏): ∀𝑢, 𝑣 ∈ 𝑉𝑠𝑢𝑏  𝑎𝑛𝑑 ∀𝑤

∈ 𝑉 − 𝑉𝑠𝑢𝑏, ∃𝑃𝑎𝑡ℎ(𝑢, 𝑣) 𝑎𝑛𝑑 ∄𝑃𝑎𝑡ℎ(𝑢, 𝑤)}| 
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Definition 9. Size of the graph or sub-graph = Number of vertices in the graph or sub-graph 

𝑆𝑖𝑧𝑒(𝐺) = |𝑉| 

 Diseases Cluster Analysis 2.3.

Disease cluster analysis is performed to find out diseases clusters connecting to similar pre-miRNA nodes. 

A hierarchical clustering is performed on the disease nodes. First, the node distance between all pairs of 

disease nodes are computed (Def. 11). Then, each disease node is considered as a cluster. The cluster pairs 

with the smallest cluster distance are combined to form a new cluster. The cluster distances between the 

new cluster and all the other clusters are computed (Def. 12). The clustering process repeats until only one 

cluster remained. 

The definitions of node distance of a pair of diseases and the cluster distance of a pair of clusters are as 

follows. Let the network G = (V, E), where V is the set of nodes and E is the set of edges. Let u, v, w ∈ V be the 

nodes of the network. Let S = {s1, s2,…, sm} and T = {t1, t2,…, tn} be the sets of disease nodes, which represents 

clusters. 

Definition 10. Number of common targets of a node pair = Number of nodes connected by both nodes 

𝑛𝑢𝑚𝑐𝑜𝑚(𝑢, 𝑣) = |{𝑤 ∈ 𝑉: {𝑢, 𝑤} ∈ 𝐸 and {𝑣, 𝑤} ∈ 𝐸}| 

Definition 11. Node Distance of a node pair = Two nodes is close to each other if the number of common 

targets is high for both nodes 

𝑁𝑜𝑑𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢, 𝑣) = 1 −
𝑛𝑢𝑚𝑐𝑜𝑚(𝑢, 𝑣)

𝑚𝑎𝑥(𝑊(𝑢) ∪ 𝑊(𝑣))
, where 𝑊(𝑤) = {𝑛𝑢𝑚𝑐𝑜𝑚(𝑥, 𝑤): 𝑥 ∈ 𝑉 𝑎𝑛𝑑 𝑥 ≠ 𝑤} 

Definition 12. Cluster Distance of a cluster pair = Average Node Distance between all inter-clusters node 

pairs 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑆, 𝑇) = ∑
𝑁𝑜𝑑𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢, 𝑣)

|𝑆||𝑇|
𝑢∈𝑆,𝑣∈𝑇

 

After the hierarchical clustering, enrichment analysis is performed for each disease cluster in order to 

mine potential biological meaning of the disease cluster. This is achieved by finding out the biological 

meaning from the miRNAs connected to the cluster. First, we extract all pre-miRNAs that are connected to at 

least two disease nodes in the disease cluster. The list of pre-miRNAs is then inputted to a web-accessible 

program called TAM [10] to find out the enriched biological functions. 

 Gene-Disease Association Analysis 2.4.

Gene-Disease association analysis is performed to find out the number of gene-disease association in the 

network. Since the gene nodes and disease nodes are not directly connected in our network, we would like 

to know if the gene-disease pairs with small distance have biological association. We verified these 

gene-disease pairs by using DisGeNET database [11], which contains gene-disease associations from the 

literatures. In the analysis, all gene-disease pairs with distance ≤ 3 in the network are found (Def. 13) first. 

Then an association score is computed for each gene-disease pair (Def. 14). Finally, each gene-disease pair 

is checked if the association exists in DisGeNET. The percentages of verified associations are computed for 

different association score thresholds (Def. 15). The definitions of distance of a node pair, association score 

of a node pair and percentage of verified associations of the network are as follows. Let the network G = (V, 

E), where V is the set of nodes and E is the set of edges. Let u, v ∈ V be the nodes of the network. Let P = (u, v) 
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be the set of gene-disease associations in DisGeNET. 

Definition 13. Distance of a node pair = Number of edges in the shortest path between the node pair 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢, 𝑣) = |𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(𝑢, 𝑣)| 

Definition 14. Association Score of a node pair = Number of paths between the node pair where the paths 

have distance ≤ 3 

𝑆𝑐𝑜𝑟𝑒(𝑢, 𝑣) = |{𝑃𝑎𝑡ℎ(𝑢, 𝑣): |𝑃𝑎𝑡ℎ(𝑢, 𝑣)| ≤ 3}| 

Definition 15. Percentage of Verified Associations with a given association score threshold = Number of 

gene-disease pairs exists in DisGeNET divided by the number of gene-disease pairs beyond the threshold 

𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑑𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒(𝑡) =
|{(𝑢, 𝑣): (𝑢, 𝑣) ∈ 𝑃 𝑎𝑛𝑑 (𝑢, 𝑣) ∈ 𝑇(𝑡)}|

|{(𝑢, 𝑣): (𝑢, 𝑣) ∈ 𝑇(𝑡)}|
,

where 𝑇(𝑡) = {(𝑢, 𝑣): 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢, 𝑣)    ≤ 3 and 𝑆𝑐𝑜𝑟𝑒(𝑢, 𝑣) ≥ 𝑡} 

3. Results 

 Network Statistics Analysis 3.1.

Table 1 shows the details of the network statistics of the complete network. The average degree of the 

network is 5.517 (Def. 1). The network diameter is 16 (Def. 4), which means the furthest pair of nodes has a 

shortest path with length 16. The graph density is 1.56 e-4 (Def. 5) which means the network is very sparse. 

The number of connected components is 513 (Def. 8). Most connected components are small with sizes ≤ 

11 (Def. 9). The size of the largest connected component is 15889. Fig. 3 shows the distribution of number 

of connected components of different network sizes. 

 
Table 1. Network Statistics of the Complete Network 

Statistics Value Descriptions from Gephi Wiki [12] 

Average 

Degree 

5.517 The average degree of a network is the average degree of the nodes. 

Network 

Diameter 

16 The maximal distance between all pairs of nodes. 

Graph Density 1.56e−4 Measures how close the network is to complete. A complete graph has all possible edges and 

density equal to 1. 

Modularity 0.472 Measures how well a network decomposes into modular communities. A high modularity score 

indicates sophisticated internal structure. This structure, often called a community structure, 

describes how the the network is compartmentalized into subnetworks. These sub-networks 

(or communities) have been shown to have significant real-world meaning. 

Connected 

Components 

513 Determines the number of connected components in the network. 

 

The maximum modularity score is 0.472 (Def. 7) and positive values, indicating the possible presence of 

community structures (in short communities) (-1 ≤ modularity score ≤ 1). In the community assignment of 

the maximum modularity score, all connected components with size ≤ 11 forms a community structure 

themselves and the largest connected component are divided into 29 community structures. Fig. 4 shows 

the distribution of sizes of the 29 community structures from the largest connected component. 19 out of 

29 communities are larger than > 100 in size. Most communities have similar distribution of numbers of 

nodes in each data type (pre-miRNA, miRNA, gene and disease). Fig. 5 shows the distributions of numbers 
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of nodes in each data type of the 19 communities with sizes > 100. The disease nodes are rare. The miRNA 

nodes are more than pre-miRNA nodes but the numbers are comparable. The gene nodes are much more 

than the other types of nodes. The community “540” has a different distribution. There are 378 disease 

nodes. The pre-miRNA nodes are more than disease nodes but the numbers are comparable. The 

pre-miRNA nodes are more than the miRNA nodes, and the miRNA nodes are more than gene nodes. 

To conclude, the network statistics of the complete network shows that the network is sparse and 

community structures exist in the network. The communities are similar to one another except community 

“540”, where the data types distribution and some network statistics are different. 

 

 
Fig. 3. Distribution of connected components sizes. 

 
Fig. 4. Communities sizes from the largest 

component. 

 

 
Fig. 5. Distribution of data types of nodes of each community. 

 

 Diseases Cluster Analysis 3.2.

The hierarchical clustering result will be presented here. Fig. 6 shows the heatmap of hierarchical 

clustering result. The heatmap shows that some diseases form a cluster, which means they are associated to 

similar pre-miRNAs. Some clusters contain nodes from similar diseases. Cluster”543” with 13 nodes are 

related to Lymphoma and Leukemia diseases. Cluster “590” with 29 nodes is related to Neoplasms and 

Carcinoma diseases. Cluster “490” with 7 nodes is related to Hepatitis disease. 

The functional enrichment analysis of the disease clusters will be presented here. Table 2 shows the 

functional enrichment analysis for three disease clusters "543", "590" and "490". The biological functions 

found in clusters "543" and "590" are statistically significant in P-values and Bonferroni Values (small value 
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is more statistically significant). 

 

Table 2. Functional Enrichment of the Disease Clusters 
Cluster IDs 

(Frequently occurred 

diseases) 

Number of 

Diseases in 

cluster 

Number of 

miRNAs 

connected 

Biological Functions (with 

smallest Bonferroni values) 

P-values Bonferroni 

values 

543 (Lymphoma 

and 

Leukemia) 

13 18 Hematopoiesis 

Cell proliferation 

Immune response 

Apoptosis 

HIV latency 

< 1.00e−8 

< 1.00e−8 

< 1.00e−8 

< 1.00e−8 

< 1.00e−8 

2.90e−9 

7.04e−9 

8.17e−9 

1.51e−7 

1.89e−7 

590 (Neoplasms 

and 

Carcinoma) 

29 366 Cell cycle related 

Apoptosis onco-miRNAs 

miRNA tumor suppressors 

Hormones regulation 

< 1.00e−8 

< 1.00e−8 

1.00e−8 

2.00e−8 

2.00e−8 

1.35e−8 

6.47e−7 

1.91e−6 

6.85e−6 

7.01e−6 

490 (Hepatitis) 7 1 Cholesterol biosynthesis 

HCV infection 

Carbohydrate metabolism 

Circadian clock 

Circadian rhythm 

3.70e−3 

0.0111 

0.0129 

0.0185 

0.0203 

0.0665 

0.200 

0.233 

0.333 

0.366 

 

The majority of the diseases in cluster "543" are related to Lymphoma and Leukemia. The biological 

functions enriched are also related to these diseases. Hematopoiesis (Bonferroni value = 2.90e-9) is 

associated with Leukemia and immune response (Bonferroni value = 8.17e-9) is associated with Lymphoma. 

Another interesting disease cluster is "590". Cluster "590" is related to diseases Neoplasms and 

Carcinoma. The biological functions enriched are also related to these diseases. Onco-miRNAs (Bonferroni 

value = 1.91e-6, which means miRNAs that are associated with cancer, are associated with Carcinoma and 

miRNA tumor suppressors (Bonferroni value = 6.85e-6) are associated with Neoplasms. These result shows 

that the disease clusters found by hierarchical clustering are biological meaningful. As a future work, we can 

collaborate with the Biologist for further interpretation in the biological meanings and functions of the 

disease clusters. 

For cluster "490", the functions enriched are only marginally significant in P-values and insignificant in 

Bonferroni values. One possibility is that the number of miRNAs is too small, which affects the enrichment 

analysis result. 

To conclude, the hierarchical clustering results show that some diseases are associated with similar 

pre-miRNAs. Some disease clusters contain similar diseases and the miRNAs connected to the disease 

cluster contains enriched biological functions. These biological functions are the biological meanings of 

these disease clusters. 

 Gene-Disease Association Analysis 3.3.

The percentages of verified association of the gene-disease pairs (Def. 15) in the network will be 

presented here. Fig. 7 shows the percentages of verified associations with different association score 

thresholds. Numbers of verified gene-disease associations are presented in blue bar and percentages of 

verified gene-disease associations are presented in red line. The percentage of verified association 

increases as the association score threshold increases. The verified percentage > 50% when the association 

score ≥ 16. This result shows that some gene-disease pairs in the network are associated and the 

gene-disease pairs with high association scores are likely to be verified in literature. In our network, genes 
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and diseases are not directed connected but with miRNAs in between. The high association score suggests 

some gene-disease association is related to miRNAs. 

To conclude, some gene-disease pairs in the network are biologically associated and some of the 

gene-disease pairs association score are related to miRNAs. 

 

 
Fig. 6. Heatmap of hierarchical clustering result. 

 
Fig. 7. Percentages of verified associations with 

different thresholds.  

 

4. Conclusion 

In this paper, we have collected and cleansed the data from three state of the art miRNA-related 

databases, which are miRBase, miRTarBase and HMDD v2.0. A network representing the relationships 

between miRNAs, genes and diseases have been constructed. We then performed network statistics analysis, 

disease cluster analysis and gene-disease association analysis to the network. The network statistics 

analysis shows that community structures exist in the network. The disease cluster analysis shows that 

similar diseases are associated with similar miRNAs with enriched biological functions. The gene-disease 

association analysis shows that some gene-disease pairs are biologically associated with miRNAs involved. 

Acknowledgment 

This research is partially supported by the Direct Grant of CUHK and the General Research Fund (Project 

ref: 414413) of RGC, Hong Kong SAR, China. 

References 

[1] Menc´ıa, A., Modamio-Høybjør, S., Redshaw, N., Mor´ın, M., Mayo-Merino, F., Olavarrieta, L., et al. (2009). 

Mutations in the seed region of human mir-96 are responsible for nonsyndromic progressive hearing 

loss. Nature Genetics, 41(5), 609-613. 

[2] Mraz, M., & Pospisilova, S. (2012). Micrornas in chronic lymphocytic leukemia: From causality to 

associations and back. Expert Review of Hematology, 5(6), 579-581. 

[3] Hsu, S. D., Tseng, Y. T., Shrestha, S., Lin, Y. L., Khaleel, A., Chou, C. H., et al. (2014). Mirtarbase update 

2014: An information resource for experimentally validated mirna-target interactions. Nucleic Acids 

Research, 42(D1), D78-D85. 

[4] Kozomara, A., & Griffiths-Jones, S. (2014). Mirbase: Annotating high confidence micrornas using deep 

sequencing data. Nucleic Acids Research, 42(D1), D68-D73. 

[5] Li, Y., Qiu, C., Tu, J., Geng, B., Yang, J., Jiang, T., & Cui, Q. (2014). Hmdd v2. 0: A database for 

 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

International Journal of Bioscience, Biochemistry and Bioinformatics

147 Volume 5, Number 3, May 2015



  

experimentally supported human microrna and disease associations. Nucleic Acids Research, 42, 

1070-1074. 

[6] Flicek, P., Amode, M. R., Barrell, D., Beal, K., Brent, S., Carvalho-Silva, D., et al. (2011). Ensembl 2012. 

Nucleic Acids Research, 40, 84-90. 

[7] Maglott, D., Ostell, J., Pruitt, K., D., & Tatusova, T. (2011). Entrez gene: Gene-centered information at ncbi. 

Nucleic Acids Research, 39(suppl 1), 52-57. 

[8] Bastian, M., Heymann, S., Jacomy, M., et al. (2009). Gephi: An open source software for exploring and 

manipulating networks. ICWSM, 8, 361-362. 

[9] Fruchterman, T. M., & Reingold, E. M. (1991). Graph drawing by force-directed placement. Software: 

Practice and Experience, 21(11), 1129-1164. 

[10] Lu, M., Shi, B., Wang, J., Cao, Q., & Cui, Q. (2010). Tam: A method for enrichment and depletion analysis 

of a microrna category in a list of micrornas. BMC Bioinformatics, 11(1), 419. 

[11] Bauer-Mehren, A., Rautschka, M., Sanz, F., & Furlong, L. I. (2010). Disgenet: A cytoscape plugin to 

visualize, integrate, search and analyze gene–disease networks. Bioinformatics, 26(22), 2924-2926. 

[12] GitHub. (2015). Gephi/gephi. Retrieved May 19, 2015, from 

https://github.com/gephi/gephi/wiki/Statistics 

 

 
 

Cheung Kwan Yau received the BSc degree in computer science from the Chinese 

University of Hong Kong in 2011, where he is currently working toward the MPhil degree 

in the Department of Computer Science and Engineering under the supervision of Prof. K. 

S. Leung and Prof. K. H. Lee. His research interests include bioinformatics and artificial 

intelligence. 

 

 

 

Kin-Hong Lee received the B.S. and M.S. degrees in computer science from the University 

of Manchester, Manchester, U.K. He was an associate professor with the Department of 

Computer Science and Engineering, Chinese University of Hong Kong and retired in 2013. 

His research interests include computer architecture and bioinformatics. He has 

published over 120 papers in these two fields. 

 

 

 

Kwong-Sak Leung received his BSc (Eng.) and PhD degrees in 1977 and 1980, 

respectively, from the University of London, Queen Mary College. He joined the 

Computer Science and Engineering Department at the Chinese University of Hong Kong 

in 1985, where he is currently a professor of computer science & engineering. His 

research interests are in bioinformatics and soft computing including evolutionary 

computation, parallel computation, probabilistic search, information fusion and data 

mining, fuzzy data and knowledge engineering. 

 

International Journal of Bioscience, Biochemistry and Bioinformatics

148 Volume 5, Number 3, May 2015


