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Abstract: In this paper, a novel global noise reduction approach based on the sparse representation and 

nonlocal means algorithm is proposed to enhance the image qualities of various medical imaging modalities, 

including ultrasound images and magnetic resonance images. By using an overcomplete dictionary, a 

medical image is decomposed into a sparsest coefficients matrix populated primarily with zeros. A nonlocal 

means algorithm is developed to deal with these sparse coefficients to exploit the repetitive characters of 

structures in the whole image, realizing a “truly” global denoising. With synthetic and clinical data of 

ultrasound images and magnetic resonance images, this approach has been compared with other five 

state-of-the-art denoising methods. The experiments quantitative results demonstrate the effectiveness of 

our approach, especially superior in reducing the noise while well preserving the tissue details. It is 

concluded that our proposed approach is capable of enhancing image quality in both ultrasound and 

magnetic resonance images. It has a broad field of applications and will increase the diagnostic potential of 

the medical images. 
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1. Introduction 

Due to the non-invasive, harmless and accurate nature, ultrasound imaging (US) and magnetic resonance 

imaging (MRI) are widely used in diagnoses and treatments [1]. However, the imaging acquisition and 

systems may introduce noises and artifacts, degrading contrast resolution and making medical images 

difficult for non-specialists to interpret. Thus, to achieve the best diagnosis, it is essential to denoise medical 

images without affecting important image features and destroying anatomical details [2]. 

In the past few decades, considerable efforts have been made in denoising the medical images. The local 

statistics methods form an output by a weighted average calculation using sub-region statistics over 

different pixel windows [3]-[5]. The median filter is a nonlinear operator, replacing the middle pixel in the 

window with the median value of its neighbours, effectively in eliminating single and unrepresentative 

pixels [6]. Anisotropic diffusion-based methods control the process of anisotropic diffusion based on 

statistical characteristics of noise [7], [8]. The parametric estimation methods like the maximum-likelihood 

filter and Bayesian denoising method establish noise models and adopt the robust parametric estimation 

approaches [9], [10]. The wavelet-based denoising algorithms based on multi-scale decompositions of the 

noisy images, apply soft thresholds to wavelet coefficients of different scales to eliminate the noise [11], 

[12]. Although the above filters are capable of effectively suppressing the speckle pattern, they still remove 
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fine details. As the locally-based methods, they compromise between the averaging (in homogeneous 

regions) and preserving (at edges and features). Small window sizes or coefficients will retain the noise 

whereas large ones lead to the loss of signal details.  

Different from locally-based methods, the nonlocal means (NLM) denoising algorithm takes advantage of 

the high degree of redundancy in the image [13], [14]. A sparse 3D transform-domain collaborative filtering 

(BM3D) groups the similar 2D image fragments into 3D groups by block matching and uses collaborative 

transform-domain shrinkage to reduce the noise [15]. They perform well in Gaussian noise reduction and 

sharp edges preservation. But the approximation as Gaussian noise will result in a biased estimate. 

Meanwhile, it employs the weighted Euclidean distance to search for the similar patches, which is 

time-consuming and difficult to realize in real applications.  

In recent years, there has been a growing interest in the study of the sparse representation. Using an 

overcomplete dictionary that contains prototype atoms, images can be described by sparse linear 

combinations of these atoms. The K-Singular Value Decomposition (K-SVD) algorithm is an iterative method 

for adapting dictionaries to achieve sparse representations [16]. Applications of the sparse representation 

include denoising, compression and regularization, encompassing a persuasive potential in these fields.  

In this paper, we propose a novel global denoising approach based on sparse representation and the NLM 

for medical images. Our main contributions are: (1) through an overcomplete and non-orthogonal 

dictionary, the original noisy image can be decomposed into the sparsest coefficients matrix populated 

primarily with zeros. Such matrix indicates the nature of the original image, greatly decreasing the 

computational complexity; (2) the weighted Euclidean distances in NLM are replaced by the sparse 

coefficients to exploit similar patterns in the whole image, which helps to achieve the “truly” global 

denoising; (3) the intensities of pixels in all similar small patches are used in the globally denoising. Unlike 

the general pixel-filtering, all pixels in a small patch are denoised simultaneously, accelerating the 

computation time. 

2. Methods 

2.1. The K-SVD Decomposition for the Medical Images  

The K- SVD algorithm is one typical method for the sparse signal representation [16], [17]. Here, we focus 

the algorithm with the specific intent of decomposing the medical images into the sparsest coefficients. 

Through an overcomplete dictionary, the original image is decomposed into a sparse coefficients matrix 

populated primarily with zeros. Only several non-zero coefficients reveal the nature of the image, which 

greatly reduces the complexity of the original image. 

For a noisy image Y∈RM×N, we consider to divide Y into L overlapping image patches of size b × b, L = 

(M-b+1) × (N-b+1). The image patches are ordered lexicographically as vectors yi ∈
2bR . A sparse model 

defines an overcomplete dictionary matrix D∈ KbR 2

 containing K prototype atoms for columns K
jjd 1}{  . 

Then the image Y can be represented as a sparse linear combination of these atoms. The K-SVD is 

designed to seek the sparsest representation coefficients X that give the best image representation [27], 
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where ||.||0 is the l0-norm, counting non-zero coefficients, T0 is a sparsity threshold. According to (1), the 

sparse representation of L image patches is: 
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The goal is to find the dictionary D that yields the sparest representation ||X||0 for the noisy image Y. 

Exact determination of sparse representation proves to be an NP-hard problem. Approximate solutions are 

considered instead. The K-SVD optimizes D and X through a number of iterations. Each iteration consists of 

two steps: (1) a sparse coding stage optimizing the coefficients X; (2) a dictionary updating stage improving 

the atoms in D. Recent development in theory reveals that if the solution X is sparse enough, the solution of 

l0-minimization problem is equivalent to pursuit problem. Here, an orthogonal matching pursuit (OMP) 

method is used to find the approximation one [16]. 

2.2. Global Approach Based on the Image Patches’ Similarity  

The locally-based image denoising methods use the “neighbourhood window” for filtering. The filtering 

effect and the edge preservation is a contradiction. As illustrated in Fig. 1, for a certain small patch p1, if it is 

predicted by the non-relevant patches in its neighbourhood S, the fine structures and edges are smoothed 

out. However, p1 may be well denoised by all similar patches p2, p3, p4 and p5, capable of taking care of the 

details. So we extend the “neighbourhood” to the “whole image”. The redundancy of the texture images 

allows us to find many similar configurations in far away areas. The non-local methods greatly improve the 

denoising performance, especially in the edge preservation. 

 

 

Fig. 1. Similar patches in the whole image. 

How to find the similar small patches in the whole image is the key point in non-local methods. Several 

methods have been proposed to estimate the patches’ similarity, including the mean, the variance, gray level 

co-occurrence matrix (GLCM), Euclidean distance and block matching [13], [18]. These methods are based 

on the pixel intensities, comparing the statistical characters or intensities between two patches. Due to the 

great complexity, it is hardly to realize. Hence, in the traditional NLM, it restricts the “search area” to a large 

window Ω with the size of Rsearch × Rsearch to reduce the operation time. Usually, Rsearch = 21. The large search 

window Ω is more appropriate for the denoising and edge preserving. But it doesn’t make full use of the 

redundancy in the whole image, ignoring the far-away similar patches. 

The K-SVD decomposition makes the overcomplete dictionary D containing many atoms, such as the 

atoms for the texture area and the atoms for the homogeneous area. The sparse coefficients of these two 

areas vary greatly. For the texture area, their coefficients involve a small number of non-zeros, while those 

of the homogeneous areas are all zeros. Thus, for computational purpose, the sum of each sparse 

coefficients vector, as X_sum∈R1×L, is acquired to estimate the patches’ similarity. 
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For the patch yi to be filtered, its differential vector ∆(i) can be obtained by subtracting its X_sumi from 

other patches’ X_sumj. 
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Sort ∆(i) in ascending order, the smaller ∆(i) , the closer two patches. Choose the first t columns, their 

corresponding image patches in the original image are considered to be the candidates. 

To avoid the two patches with opposite characteristics having the same sum of sparse coefficients, the 

average intensity is employed to discard the irrelevant patches in the candidates set. For the t candidates, 

calculating their mean intensity of the patches in the original image Y, named as Y_mean∈R1×L. If the patch 

yk close to the patch yi, that is 21 _/_   ik meanYmeanY , the patch yk is considered, where λ1 < 1 and λ2 >1 

are two constants close to one. Otherwise, the patch yk will be eliminated.  

Therefore, the n (n < t) most similar patches are saved, as Y_similar ∈ nbR 2

. For further speed up, we set 

the same weights to each candidate. Unlike the general pixel filtering, here, we denoise all the pixels (b×b) 

in one small patch together. The denoised iy~  is defined as: 
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~                                 (5) 

 

iy~ is reshaped from column vector of the size b2 × 1 to matrix of the size b × b. For the overlapping pixels, 

we average their outcomes. 

Our global denoising approach is as follows: 

 A noisy image Y is divided into L overlapping image patches of size b × b; 

 Y is decomposed into a sparse coefficient matrix X by K-SVD; 

 Compute the sum of each sparse coefficients vector, X_sum; 

 Calculate the differential vector ∆(·); 

 Sort ∆(·) in ascending order and choose the first t columns as the candidates; 

 The intensity average matrix is further employed to discard the irrelevant patches in the candidate set; 

 Estimate and reshape the denoised image iy~ . 

3. Experiments and Results 

In this section, we carried out the experiments in two scenarios: US images (Rayleigh distributed) and 

MR images (Rician distributed). The performance of our approach was compared with other well-known 

methods in US and MR images denoising. The methods considered in this study were: the K-SVD [16], the 

NLM [13], the SRAD [8], the Portilla’s wavelet [11] and the BM3D [15]. We chose the iterative number of the 

K-SVD as 10 and that of the SRAD as 150 to get the best results. 

For the visual and quantitative evaluation, four criteria, including the visual display, the SNR, the mean 

structure similarity (MSSIM) and the figure of merit (FOM) were taken into account [8], [19]. The SNR was 

defined as, 

 

( ) =  
 

2
M N

M Ni =1 j=1 2

i =1 j=1

Y (i, j)
SNR dB

(Y(i, j) - f(i, j))
10lg[ ]                  (6) 

 

The higher the SNR was, the less noise was. 

The structure similarity (SSIM) was a method for measuring the similarity between two images [8]. It 

explored the structure information as an alternative motivating principle for the image quality measure. 
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The SSIM was defined as, 

 

Y f 1 Yf 2

2 2 2 2

Y f 1 Y f 2

(2μ μ + C )(2σ + C )
SSIM(Y, f) =

(μ + μ + C )(σ + σ + C )
                        (7) 

 

where μg, μf, σg, σf, σgf denote the mean, variance and covariance of 8×8 square window which moved 

pixel-by-pixel in Y(·) and f(·) respectively. C1 =K1 × L, C2 =K2 × L. L=255, K1=0.01, K2=0.03. As the SSIM was 

calculated on various windows of an image, we used the mean SSIM (MSSIM) to evaluate the overall image 

quality, 
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

M
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where M was the number of local windows in the image. MSSIM∈[0,1], the higher the MSSIM was, the better 

the reservation of the texture was. 

The figure of merit (FOM) was adopted to compare edge preservation performances [19]. The FOM was 

defined by, 

 

))1/(1(}),max{/1( 2

1
i

N

iideal dNNFOM  
                            (9) 

 

where N and Nideal were the number of the filtered and ideal edge pixels. di was the Euclidean distance 

between ith filtered edge pixel and the nearest ideal edge pixel. α=1/9. FOM ∈ [0,1], with unity for ideal 

edge detection. 

The parameters of the traditional NML method were optimized by a set of experiments in [18]. Two 

parameters: b (the size of the small image patches) and t (the number of the patch candidates) were set as 

b= 11 and t = 80. 

3.1. Denoising the Synthetic Images  

To assess the performance of the above mentioned methods, we performed experiments in two sets of 

the synthetic images. In the first scenario the image was simulated as US images, corrupted with speckle 

(Rayleigh distributed), in the second as MR images with Rician distributed noise. For the US synthetic 

images, the noisy images with different SNRs were generated by the original image multiplied with different 

Rayleigh-distributed noise levels. The parameter ση
2 varied in the interval {0.5, 0.793, 1, 1.2, 1.5, 1.7, 1.98, 

2.2, 2.5, 2.78, 3.15, 4, 4.4, 5}. For the MR synthetic images, a set of noise levels were added as the variance of 

Gaussian noise σn2 = {4, 4.7, 5.3, 6, 6.3, 7.3, 8.5, 9.5, 10.8, 12, 13, 15}. Fig. 2 showed one example of the US 

synthetic images and the MR synthetic images respectively. 

 

            
(a)                                  (b) 

Fig. 2. The synthetic images, (a) the US image, (b) the MR image. 
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Fig. 3, Fig. 4 and Table 1 were the results of different filters in the US synthetic images. As an example, Fig. 

3 was the output of various methods at SNR=11.45dB. Fig. 4 (a) and (b) were the MSSIM and FOM values of 

different SNRs. Table 1 was the SNR comparison under different noise conditions.  

 

 

Fig. 3. The visual display of results of various filters in the US synthetic image at SNR=11.45 dB, (a) the 

original image, (b) the noisy image, (c)-(h) represents outputs of the filters labelled above the image. 
 

   
(a)                                      (b) 

Fig. 4. The quantitative comparisons of the US synthetic images, (a) the MSSIM, (b) the FOM. 

Table 1. The SNR Comparison under Different Noise Conditions for the US Images (dB) 

  SNR 
2.02 3.12 4.11 5.99 7.14 8.02 9.14 10.1 11.4 12.5 14.5 16.0 18.1 22.1 

the K-SVD 7.43 12.5 12.9 13.8 16.7 17.6 19.9 21.7 23.1 22.6 25.0 28.8 30.2 35.1 

the NLM 2.01 3.16 3.90 6.14 7.23 8.14 9.17 10.1 11.4 12.5 14.4 16.0 18.7 23.2 

the SRAD 9.54 11.0 11.9 14.2 15.4 16.3 16.9 17.9 18.8 19.7 20.8 21.9 22.8 24.0 

the Portilla 
wavelet 

13.1 14.2 14.4 15.2 15.8 17.2 18.1 18.6 19.6 19.8 21.2 21.4 22.6 24.7 

The BM3D 8.92 10.4 10.8 12.3 14.3 14.4 16.2 17.2 18.4 18.8 20.9 22.1 25.1 29.4 

our 
approach 

15.6 16.5 17.6 20.7 21.2 22.5 23.4 23.8 24.8 26.3 26.3 28.8 30.2 35.6 

 

Fig. 5, Fig. 6 and Table 2 were the results of different filters in the MR synthetic images. As an example, Fig. 

5 was the output of various methods at SNR = 11.02 dB. Fig. 6 (a) and (b) were their MSSIMs and FOMs. 

Table 2 was the SNR comparison. 

In Fig. 3, we observed that the NLM, the BM3D, the K-SVD and the Portilla’s wavelet worked well with the 

Gaussian noise, but failed in the Rayleigh noise. The speckle was clearly visible in the background. The 

SRAD was a classic method in the US image denoising. But it also remained noise the homogeneous area, 

(e) 

method 

(a) (b) (c) (d) 

(f) (g) (h) 
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with the image blurred. Apparently, our proposed method had the best despeckling effect, with the highest 

MSSIM and FOM values. Table 1 corroborated with the visual observation. Compared with the other filter, 

our approach improved the SNRs of the noisy images greatly, especially superior for the high-noise levels. 

 

Fig. 5. The visual display of results of various filters in the MR synthetic image at SNR = 11.02 dB, (a) the 

original image, (b) the noisy image, (c)-(h) represents outputs of the filters labelled above the image. 

       
   (a)                                              (b) 

Fig. 6. The quantitative comparisons of the MR synthetic images, (a) the MSSIM, (b) the FOM. 

Table 2. The SNR Comparison under Different Noise Conditions for the MR Images (dB) 

  SNR 
6.20 7.49 8.23 9.13 10.2 11.2 12.4 13.5 14.2 15.3 16.2 17.7 

the K-SVD 7.47 8.53 9.19 9.98 10.7 11.7 12.7 13.8 14.3 14.9 15.9 17.5 

the NLM 6.55 7.81 8.51 9.51 10.7 11.6 13.1 14.2 14.7 15.8 16.7 17.9 

the SRAD 6.92 7.81 8.19 8.75 9.32 9.85 10.4 10.9 11.1 11.4 11.6 11.9 

the Portilla 
wavelet 

7.79 8.19 9.81 10.3 11.3 12.3 13.7 14.1 14.5 15.8 16.2 17.1 

the BM3D 7.75 9.01 9.57 10.6 11.4 12.4 13.6 14.4 14.9 16.0 16.5 17.0 

our approach 8.79 9.05 9.64 10.6 11.6 12.5 13.8 14.6 15.2 16.1 16.8 17.5 

 

It could be seen from Fig. 5 that both the K-SVD and the SRAD were over smoothed in MR images, with 

lots of tissue details lost. Since the MR images with Rician distribution could be well approximated by a 

Gaussian distribution at high SNRs. The methods with the assumption of the noise model being Gaussian 

showed good denoising performances. The NLM preserved more features, while had poor noise 

suppression ability. The BM3D improved the NLM in flat zone, but over-smoothed the contours and details. 

The Portilla’s wavelet obscured the image. In Table 2, the SNRs of the different filters were not obvious. In 

method 

(a) (b) (c) (d) 

(e) (f) (g) (h) 
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the aspect of the MSSIM and the FOM, the proposed method was very competitive. It revealed that the edge 

preservation was the most remarkable merit of our denoising method. 

3.2. Denoising the Clinical Medical Images  

We applied the proposed methods to the clinical medical images, including the breast tumor US image, 

and the liver MR image, as shown in Fig. 7 and Fig. 8. 

 

 

Fig. 7. Denoised results of a breast tumor US image, (a) the original image, (b)-(g) represents outputs of 

the filters labelled above the image. 

 

Fig. 8. Denoised results of a liver MR image, (a) the original image, (b)-(g) represents outputs of the filters 

labelled above the image. 
 

In the US and MR imaging, it was seen that the NLM, the Portilla’s wavelet and the BM3D were suitable 

for the MRI images, but failed in the despeckling. Compared with the originally US images, the speckle was 

still noticeable in both solutions. The SRAD provided the significant speckle suppression, with the cost of 

excessive smoothing details. The K-SVD blurred the output, with a lot of features lost. Our approach 

achieved the balance between the noise suppression and the feature reservation both for the US images and 

MR images. Some important imaging details were better preserved in the denoised image. 

4. Conclusion 

In this paper, a new and efficient technique for denoising the medical images has been proposed. We have 

designed a global denoising approach via the sparse representation for the Rayleigh distributed US images 

and the Rician distributed MR images. This method utilizes the sparse coefficients of the image, seeking the 

most similar patches in the whole image. Experimental results on the synthetic and clinical medical images 

are present to evaluate the performance of the proposed method. A comparison with the state of the art 

(a) (b) (c) (d) 

(e) (f) (g) 

(a) (b) (c) (d) 

(e) (f) (g) 
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denoising methods demonstrated that our approach manages to achieve competitive results in a wide 

variety of the experimental conditions. It yields better noise attenuation and edge enhancement, especially 

works excellently in containing fine structures 

Acknowledgment 

This work was supported by the National Basic Research Program of China (No. 2015CB755500), the 

National Natural Science Foundation of China (Grant 61401102) and the Science and Technology 

Commission of Shanghai Municipality (Grant 14YF1400300). 

References 

[1] Manning, D., Gale, A., & Krupinski, E. (2007). Perception research in medical imaging. British Journal of 

Radiolog, 78(932), 683-685.  

[2] Sanches, J., Nascimento, J., & Marque, J. (2008). Medical image noise reduction using the 

Sylvester-Lyapunov Equation. IEEE Transactions on Image Processing, 17(9), 1522-1539. 

[3] Lee, J. (1981). Speckle analysis and smoothing of synthetic aperture radar images. Computer Graphics 

and Image Processing, 17(1), 24-32. 

[4] Frost, V., Stiles, J., Shanmuggam, K., & Holtzman, J. (1982). A model for radar images and its application 

for adaptive digital filtering of multiplicative noise. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 4(2), 157-165. 

[5] Kuan, D., Sawchuk, A., Strand, T., & Chavel, P. (1987). Adaptive restoration of images with speckle. IEEE 

Transactions on Acoustics Speech and Signal Processing, 35(3), 373-383. 

[6] Vanithamani, R., Umanaheswari, G., & Ethilarasi, M. (2010). Modified hybrid median filter for effective 

speckle reduction in ultrasound images. Proceedings of the 12th International Conference on 

Networking, VLSI and signal processing (pp.166-171). 

[7] Deng, Y., Wang, Y., & Shen, Y. (2011). Speckle reduction of ultrasound images based on 

Rayleigh-trimmed anisotropic diffusion filter. Pattern Recognition Letters, 32(13), 1516-1525. 

[8] Yu, Y., & Acton, S. (2002). Speckle reducing anisotropic diffusion. IEEE Transactions on Image 

Processing, 11(11), 1260-1270. 

[9] Shankar, P. (2006). Speckle reduction in ultrasonic images through a maximum likelihood based 

adaptive filter. Physics in Medicine and Biology, 51(21), 5591-5602. 

[10] Rajan, J., Jeurissen, B., Verhoye, M., Audekerke, J., & Sijbers, J. (2011). Maximum likelihood 

estimation-based denoising of magnetic resonance images using restricted local neighbourhoods. 

Physics in Medicine and Biology, 56(16), 5221-5234. 

[11] Portilla, J., Strela, V., Wainwright, M., & Simoncelli, E. (2003). Image denoising using scale mixtures of 

Gaussians in the wavelet domain. IEEE Transactions on Image Processing, 12(11), 1338-1351. 

[12] Taya, P., Acton, S., & Hossack, J. (2011). A wavelet thresholding method to reduce ultrasound artifacts. 

Computerized Medical Imaging and Graphics, 35(1), 42-50. 

[13] Buades, A., Coll, B., & Morel, A. (2005). A review of image denoising algorithms with a new one. 

Multiscale Modeling & Simulation, 4(2), 490-530. 

[14] Manjón, J., Caballero, J., Lull, J., Mart, G., Bonmat, L., & Robles, M. (2008). MRI denoising using non-local 

means. Medical Image Analysis, 12(4), 514-523. 

[15] Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image denoising by sparse 3-D transform 

domain collaborative filtering. IEEE Transactions on Image Processing, 16(8), 2080-2095. 

[16] Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete 

dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11). 4311-4322. 

International Journal of Bioscience, Biochemistry and Bioinformatics

34 Volume 5, Number 1, January 2015



  

[17] Elad, M., Figueiredo, M., & Ma, Y. (2010). On the role of sparse and redundant representations in image 

processing. Proceedings of the IEEE, 98(6), 972-982. 

[18] Guo, Y., Wang, Y., & Hou, T. (2011). Speckle filtering of ultrasonic images using a modified non 

local-based algorithm. Biomedical Signal Processing and Control, 6(2), 129-138. 

[19] Wang, Z., Bovik, A., Sheikh, H., & Simoncelli, E. (2004). Image quality assessment: From error visibility 

to structural similarity. IEEE Transactions on Image Processing, 13(4), 600-612. 

 

Yi Guo received the B.Sc. degree in electronic engineering, and the M.Sc. and Ph.D. degrees in 

biomedical engineering from Fudan University, Shanghai, China, in 2013. She is now a lecturer 

in Department of Electronic Engineering in Fudan University. Her research interests include 

medical signal and image processing. 

 

 
Hanchao Chai received the bachelor's degree in biomedical engineering from Fudan University, 

 Shanghai China, in 2013.  

He is now studying in Department of Electronic Engineering in Fudan University for the master'

s degree. His research interest is in medical image segmentation. 
 

 
 

 

Yuanyuan Wang received the B.Sc., M.Sc. and Ph.D. degrees in electronic engineering from 

Fudan University, Shanghai, China, in 1990, 1992 and 1994, respectively. During 1994 to 1996, 

he was a postdoctoral research fellow with the school of electronic engineering and computer 

science at University of Wales, Bangor, UK. In May 1996, he went back to Department of 

Electronic Engineering at Fudan University as an associate professor. He was then promoted to a 

full professor in May, 1998. He is currently the director of biomedical engineering center and vice dean of 

Information Science and Engineering School at Fudan University. He is also the author or coauthor of 6 

books and 430 research papers. His research interests include medical ultrasound techniques and medical 

signal processing. 
 

International Journal of Bioscience, Biochemistry and Bioinformatics

35 Volume 5, Number 1, January 2015


