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Abstract: This paper proposes a method for the identification of the expressed markers from single-cell RNA-

seq data in sarcoidosis patients. This method classifies T cells into several subtypes and infers lineages that 

undergo a transition process to each subtype as the disease progresses. It also estimates each ongoing 

continuous gene expression and identifies lineages and markers by analyzing differences within and between 

lineages. Using the method, we have revealed how naive T cell changes as the disease progresses in sarcoid 

patients and successfully detected potential markers in sarcoidosis patients, which was not detected by 

existing cluster-based methods. 
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1. Introduction

Sarcoidosis is a systemic inflammatory disease characterized by the infiltration of immune cells into

granulomas. Previous gene expression studies using heterogeneous cell mixtures lack insight into cell-type-

specific immunomodulatory dysfunction. The first single-cell RNA sequencing study of sarcoidosis in control 

peripheral immune cells was reported [1]. Genes that are differentially expressed in 18 cell types have been 

identified and bioinformatically evaluated for functional and pathway enrichment. Their results revealed 

sustained activation of circulating classical monocytes followed by upregulation of trafficking molecules. In 

addition, the sarcoidosis T cell subset showed a pattern of dysregulation. But this study is performed to 

cluster cells, but trajectory analysis of the T cell differentiation process is not performed. Therefore, no 

sarcoid-related information on the differentiation of T cells into their respective subtypes is available. 

In this paper, we propose a novel method for analyzing the differentiation process of T cells in sarcoid 

patients. The study was to identify markers that are expressed in T cell subtypes during differentiation. We 

performed a trajectory analysis to analyze how T cell subtypes change as the disease progresses in 

sarcoidosis. Expression analysis between and within the trajectories was performed to clarify the marker 

expressed in gamma delta T cells, which is one of the subtypes of T cells in the process of T cell differentiation. 

Our method consists of the following five steps: 1) clustering of cells; 2) extracting the CD4+ T cells from 

all types of cells to analyze the T cell differentiation process; 3) dimensional reduction with UMAP; 4) 

performing trajectory inference to identify lineages of transitional processes along with T cell differentiation 

progression; and 5) marker detection by differential expression analysis between lineages (Fig. 1). By using 

this method, we can identify marker candidates that are differentially expressed as specific lineages progress 

toward sarcoidosis differentiation. 
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Fig. 1. Workflow of our method. 

 

2. Marker Analysis of Lineages of T cell differentiation 

2.1. The Dataset in Previous Research 

We used scRNA-seq data to analyze Sarcoidosis from the Gene Expression Omnibus repository 

(GSE132338). The data were derived with scRNA-seq of 35 patients and 13 healthy controls cells from 

patient-derived PBMC. Briefly, assessment consisted of a one-time visit, where, after providing informed 

consent, subjects donated a blood sample and completed surveys of demographics, medication usage, and 

clinical histories. In this trajectory analysis, we used the cell type annotation information in the previous 

research paper [1]. Using a standard analysis pipeline with Seurat [2], cells were clustered by similar gene 

expressions. To characterize cell-type-specific transcriptomes, they generated scRNA-seq profiles of over 

100,000 PBMC. Following quality control measures, they identified 18 cell clusters (data not shown), all of 

which could be assigned cell identities by canonical markers. 13 cell types contained at least 1,000 cells. Each 

subject contributed an average of 1,280 cells that could be identified. To analyze T cell differentiation, we 

extracted CD4 memory T cells, CD4 naive T cells, early T effector T cells, gamma delta T cells, and regulatory 

T cells. We performed PCA analysis and UMAP dimensional reduction using 20 dimensions (Fig. 2). As shown 

in Fig. 1, five large clusters (CD4 memory T cells, CD4 naive T, early T effector T cells, gamma delta T cells, and 

regulatory T cells) were observed. 

 

 
Fig. 2. UMAP plots of T cells with cell types. 
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2.2. Lineage Analysis  

We conducted trajectory inference with Slingshot [3]. In the inference, we set cluster CD4 naive T cell as a 

starting cluster and detected three lineages (Fig. 2). These lineages denote the lineage that progressed from 

CD4 naive T cell to gamma delta T cell (lineage 1), CD4 memory T cell (lineage 2), and regulatory T cell 

(lineage 3). The differentiation process of each T-cell subtype from CD4 naive cells is successfully visualized 

by lineage analysis. Interestingly, different populations of healthy controls and sarcoid patients were 

observed in gamma delta T cells. In addition, the tip direction was different in healthy controls (Fig. 3 (a)) 

and sarcoidosis (Fig. 3(b)) in linage 1 due to their different cell populations.  
 

 
(a)                                            (b) 

Fig. 3. Healthy control and patient lineage detected by trajectory inference. 
 

2.3. Identifying Markers of Between-Lineage Differential Expression 

Given the lineages identified in Section 2.2, we estimated lineage-specific gene expression. To compute 

continuous gene expression across the clusters of the lineage, we employed tradeSeq [4] to infer functions 

for gene expression along pseudotime for each lineage using generalized additive models. We performed 

several statistical tests on expression within and between the lineages described in Section 2.2. To discover 

markers of the T cell states transitions of T cell differentiation, we assessed differential expression between 

the starting and ending points along lineages [5]. In addition, to detect genes that express exclusively in 

gamma delta T cells, we performed a difference Waldstat test between healthy control and sarcoidosis gamma 

delta T cells (linage 1) and regulatory T cells (linage 3).  

We used a Wald test to assess the null hypothesis that the average expression at the starting point (CD4 

naive T cell) is equal to the average expression at the endpoints (gamma delta T cell, CD4 memory T cell, and 

regulatory T cell). Then we subtracted the regulatory T cells (linage 3) Waldstat score from the gamma delta 

T cells (linage 1) Waldstat score. Table 1 shows the markers detected by the resulting scores. The marker 

NKG7 and GNLY were reported in a previous research paper [1] and CCL, CST7, GZMC, and TRDC are found 

by a marker analysis described in Section 2.4.  

Interestingly, we detected new genes CTSW, PLAC8, ID2, and ANXA1 by the method. Each gene described 

above continuous changes in the expression of markers along lineage progression is shown in Fig. 4. The four 

genes show a large difference in statistical scores between lineages 1 and 3 in healthy patients from the 

statistical scores between lineages 1 and 3 in sarcoid patients. As for gene ID2, the difference in expression 

between the lineages 1 and 3 of sarcoid patients appeared to be smaller than that of healthy controls, but the 

Waldstat score difference between the lineages of sarcoid patients and healthy controls was large when 

judged from a statistical perspective. 
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Table 1. Markers Detected by Difference between Lineages 1 and 3 
 difference of Waldstat 1vs3 logFC1vs3 

CCL5 203.60 4.88 

NKG7 115.73 6.08 

GNLY 113.99 6.29 

CST7 111.71 2.57 

CTSW 99.62 3.77 

PLAC8 91.74 3.42 

GZMA 84.04 2.73 

ID2 83.04 3.29 

TRDC 80.39 5.26 

ANXA1 78.82 2.11 

 
 

 
 

   

Fig. 4. Continuous changes in the expression of markers along with lineage progression. 

 

2.4. Comparison with Cluster-Based Marker Analysis 

As described in Section 2.3, we also used Seurat (FindMarkers with the options: only.pos=TRUE) to 

compare the cluster-based markers in sarcoidosis gamma delta T cells and sarcoidosis CD4+ naive T cells. 

Table 2 shows the markers found by the analysis. Compared to genes found in Section 2.3 between-Lineage 

differential expression analysis, six of the top ten genes (GNLY, NKG7, CCL5, GZMA, TRDC, CST7) were 

common. Of the genes found in the analysis, KLRB1 was reported in a previous study, while TRGC1 and DUSP2 

were not found in the differential lineage analysis of Section 2.3 and were only found in the analysis. PLAC8, 

ID2, CTSW, and ANXA1 were not found in the cluster-based analysis with Seurat. This suggests that our 

detection of markers along lineage progression can provide a different means for understanding sarcoidosis 

progression mechanisms. 
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Table 2. Markers Detected by Seurat Marker Analysis 
 avg_logFC 

GNLY 3.349 

NKG7 3.33 

CCL5 2.77 

KLRB1 2.74 

GZMA 2.27 

TRDC 2.22 

CST7 2.09 

TRGC1 2.08 

DUSP2 1.87 

 

3. Discussion 

Sarcoidosis is an enigmatic disease with a well-established genetic predisposition and immune 

dysregulation [6], [7], but no other etiology. For this reason, it is important to understand the immune 

dysregulation inherent in sarcoidosis. To date, researchers are working to develop an effective method for 

identifying gene expression markers by scRNA-seq that goes beyond bulk RNA-seq. In this paper, we 

performed a lineage-based differential expression analysis to identify markers that are differentially 

expressed as a particular lineage progresses toward one of the T cells, gamma delta T cells. Gamma delta T 

cells are known to play a myriad of roles in pathogen clearance, wound healing, autoimmunity, and cancer, 

primarily through the production of soluble mediators [8]. 

Two of six markers detected commonly by the differential lineage analysis and cluster-based analysis, 

NKG7 and GNLY were already reported in previous research [1]. The other 4 genes like CCL5, CST7, GZMA, 

and TRDC are known as follows. CCL5 is associated with pulmonary sarcoidosis [9]. CST7 was observed 

among the most highly upregulated sarcoidosis [10]. GZMA has been highly expressed in highly effector 

(TEMRA) memory T cells [11]. TEMRA memory T cell is a subset of effector memory T cells re-expresses 

CD45RA (termed TEMRA) after antigenic stimulation with unknown molecular characteristics and functions. 

CD4 TEMRA cells have been implicated in protective immunity against pathogens such as dengue virus 

(DENV) [12]. TRDC encodes the T cell receptor delta constant region, one component of the gamma delta T 

cell receptor which is essential for the development of gamma delta T cells [13]. 

Among the genes found only in the cluster-based marker analysis by Seurat are TRGC1 and DUSP2. TRGC1 

(Constant region of T cell receptor (TR) gamma chain) participates in antigen recognition. Gamma-delta TRs 

recognize a variety of self and foreign non-peptide antigens [14]. Upon antigen recognition induces rapid, 

innate-like immune responses involved in pathogen clearance and tissue repair [15], [16]. DUSP2 (dual 

specificity phosphatase 2) is also known as phosphatase of activated cells 1, PAC1 acts as an immune 

checkpoint in T cell antitumor immunity. PAC1 is selectively upregulated in exhausted tumor-infiltrating 

lymphocytes and is associated with poor prognosis of patients with cancer [17]. 

Furthermore, in this paper, we performed differential expression analysis between specific lineages and 

identified new genes differentially expressed in gamma delta T cells. Namely, CTSW, PLAC8, ID2, and ANXA1 

were detected by differential values in each of the lines comparing lineage 1 (gamma delta cells) and lineage 

3 (regulatory T cells). CTSW is highly expressed in TEMRA as well as GZMA [11]. PLAC8 was a commonly 

expressed gene in pulmonary sarcoidosis in comparison to transcribed blood in pulmonary tuberculosis and 

pulmonary sarcoidosis [10]. ID2 is a transcription factor involved in the development of lung ILC cells (Innate 
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lymphoid cells), and ILCs are involved in lung function, barrier integrity, and respiratory tissue remodeling 

after lung injury [18]. These results suggest that the phylogenetic differential analysis method is effective in 

detecting genes related to autoimmune diseases like sarcoidosis that cannot be detected by cluster-based 

analysis. ANXA1 Lipocortin-1 (also known as annexin-1) is upregulated by corticosteroids and plays a 

prominent part in many of their anti-inflammatory actions [19] and is one mediator of endogenous anti-

inflammation, affording regulation of leukocyte trafficking and activation in many contexts [20]. ANXA1 

peptide-mimetic, given therapeutically, ameliorated both signs of inflammation and fibrosis [20]. 

4. Conclusion 

In this paper, we propose a new method to detect markers that differ in a lineage of T cell differentiation 

between sarcoidosis cases and healthy controls. In other words, we proposed a new method to detect the 

difference between genes that vary when lineages migrate from naive t cells to gamma delta T cells and genes 

that vary when lineages migrate from naive T cells to regulatory T cells. Our method can analyze continuous 

state transitions based on single-cell transcriptome data and successfully detects potentially variable genes 

such as CTSW, PLAC8, ID2, and ANXA1. This is something that could not be detected by conventional cluster-

based variation gene analysis tools or ordinary phylogenetic analysis. Differential analysis of lineage-specific 

variable genes will be an effective tool for understanding the process of T-cell state change during sarcoid 

disease progression. In the future, we aim to develop tools that can identify more biomarkers and targets as 

potential lineage trajectories. With the improvement of the trajectory inference method, we aim to develop a 

tool that can identify more potential lineages. 
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