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Abstract: The goal of workflow systems is to put away the disadvantages of the state-of-the-art methods of 

scientific data analysis, mostly in Perl or similar scripting languages. Scientific workflow systems enable the 

development of analysis pipelines, provenance management, process control, recovery, scheduling and 

parallelization of individual tasks, understandability and sharing of workflows among the scientific 

community. There are several workflow systems to design bioinformatics workflows. The objective of this 

work is to identify the frequent workflow patterns or substructures in a corpus of Galaxy bioinformatics 

workflows obtained from myExperiment. Frequent sub graph discovery (FSG) algorithm used in analyzing 

the workflows. Seventy-one reusable workflow patterns identified with a 5% minimum support threshold. 

As future work planning to annotate the identified frequent patterns and to encode the identified patterns in 

the workflow systems with the objective of improving the usability by providing a high-level abstract 

interface to the user. 
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1. Introduction

Due to the advancement of biotechnology, a massive amount of biological data generated today. Thus, the

amount of data processed, analyzed, visualized and managed by scientists enormously increased day by day. 

For complex analyses, scientists often must combine multiple processing steps into a more massive “analysis 

pipelines” or “workflows” that can involve several algorithms, specialized computational tools, databases, 

and web services. Such scientific workflows are executed repeatedly, with different combinations of inputs 

and parameters. Some of the popular workflow management systems include Galaxy [1], [2], Vistrails [3] and 

Taverna [4]. Workflows developed using workflow management systems allow users to develop workflows 

by combining various services and data sources visually. The role of efficient, usable workflow management 

systems has vital importance in scientific research. The use of workflow systems by the domain experts, for 

instance, the life scientists in the bioinformatics domain, are limited [5], [6]. Many of the workflow systems 

can be easily used by computer scientists or trained bioinformaticians but for actual domain experts like life 

scientists, designing a complex workflow is a challenge. In that sense, we argue that the workflow systems 

have not reached a level to cater to their actual users yet. The main reason behind this is that many of the 

bioinformatics workflows are complex and composed of several intertwined tasks making it difficult for 

general users to design using workflow management systems. Moreover, the reuse of workflows is also tricky 

since it is difficult to understand the inner processes of complex workflows. With the integration of necessary 

external services, they become even more challenging to understand. 
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This study is part of research to make the composition and representation of workflows with workflow 

systems easy and efficient in order to make them more beneficial to the real users. The specific objective of 

this study is to identify frequent patterns that can be reused in workflow composition. The claim is that by 

identifying the patterns or high-level abstractions in workflows, the understandability, reuse, and modularity 

of the workflows can be enhanced.   

1.1. Galaxy Workflow System 

Galaxy workflow system developed as a system for the integration of genomic sequences, alignments, and 

functional annotation of sequences. Galaxy allows users to gather and manipulate data from existing 

resources in several ways. Recording and storing every action of the user in the history system is a key 

element of Galaxy. Galaxy enables users to conduct independent queries on genomic data from different 

sources and to combine or refine them using Galaxy, perform calculations, or extract and visualize 

corresponding sequences or alignments. Galaxy system provides a new generation of interactive tools for 

data-intensive genome analysis and allows large-scale analyses that previously required programming 

experience and database management skills. The history page is identified as simple to use but powerful with 

the ability to handle large genome annotation data sets. Users can perform multiple types of analyses 

including query intersections, subtractions, and proximity searches and can display the results using existing 

browsers like UCSC Genome Browser or Ensembl.  

There are 7223 valid tools available in Galaxy ToolShed today. The ToolShed allows Galaxy users to install 

these freely available Galaxy tools into their local instances. It allows the sharing of tool updates and versions 

and simplifies the management of the tools. Many labs have their local instances of Galaxy with selected tools 

categorized into groups. One such categorization is to categorize tools as Text Tools, Genomic File 

Manipulation, Common Genomic Tools, Genomic Analysis, Metagenomics, Proteomics and Metabolomics, 

Genomics Tool kits, Statistics and Visualization.  

1.2. myExperiment 

myExperiment (http://www.myexperiment.org) [7] is an online research environment and the most 

significant and largest public repository of workflows today. It is a social sharing network since a large 

number of bioinformatics workflows are available there. These workflows are processes consisting of a series 

of computational tasks that use web services. Workflows in myExperiment can be accessed by anyone and 

then be reused and repurposed to their specific requirements. 

Moreover, developers submit their workflows to myExperiment and share it with the scientific community. 

myExperiment encourages users to register to create the social community. By registering as a user in 

myExperiment, one can get a more affluent user experience than being anonymous. As of today, 

myExperiment has 10694 members and contains more than 3500 workflows. Similar to other social 

networks users in myExperiment can request friendship from other registered people having the same 

research interests. Friendship links can make a network of trusted individuals.  

The remainder of the paper is organized as follows. Section 2 describes about workflow abstractions, 

section 3 presents a comparison of frequent subgraph mining algorithms and FSG, while section 4 

summarizes the methodology. Section 5 reports experimental results and discusses the validation of the 

approach. Later section 6 describes the related work.   

2. Workflow Abstractions 

Substructures or sub-workflows in scientific workflows represent the usage patterns of the tools. 

Identifying such substructures help scientists to retrieve, reuse and efficient designing of workflows. 

Different workflows can share part of their functionality with other workflows.  

Several methods have been used in the past in modelling and representing workflows. Graph-based 
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methods are most popular among those. Graph-based models are based on the theories proposed by [8]. 

According to [5], definition 1 summarizes the main concepts, just as follows: 

A graph G = (V, E) is defined as a non-empty set of vertices (nodes) V = (v1, ..., vn) which are interconnected 

by an empty or nonempty set of edges (links) E = (e1, ..., em) with E ⊆ V × V and V disjoint from E (V ∩ E = ∅). 

Graphs are directed when an edge e = (u, v) ∈ E means that the edge goes from u to v (having (u, v) ∈ V), u 

being the tail of the edge while v being its head. A walk W is a sequence of consecutive vertices (v1, ..., vn) ∈ 

V such that for each pair of vertices (vi, vi+1) with i ∈ (1, ..., n−1) there exists an edge e ∈ E that connects them. 

If ∀ (vi, vj) ∈ W vi ≠ vj with i ≠ j, W is denoted as a path. Two vertices of a graph G are connected if there is a 

path between them. Connection is an equivalence relation on the vertex set V. Hence, a graph G (V,E) can be 

divided into sets of connected vertices, called components. When G (V,E) has only one component, the graph 

is connected. Otherwise the graph is disconnected. A cycle C is a walk with (v1, ..., vn), where v1 = vn and 

where the edges (e1, ..., ek) ∈ C are distinct. A graph without cycles is acyclic. Finally, a graph G = (V, E, LV, LE, 

ϕV, ϕE) is labeled if LV and LE are sets of labels for the vertices and edges respectively; and ϕV and ϕE are 

functions that define how each vertex or edge is mapped to a label: V → LV and E → LE respectively. 

There are several different types of graphs, including directed graphs, connected graphs, cyclic graphs, and 

labeled graphs. Scientific workflows are data-intensive and they are often represented as Directed Acyclic 

Graphs(DAGs). For representing vertices in a graph, an array or a linked list is used. For representing edges 

adjacency matrix, adjacency list, hash table or trie data structures are used. According to the data structure, 

memory usage and execution time will be different. Among the different methods, the most straightforward 

mechanism that can be used to represent a graph structure is by using an adjacency matrix or adjacency list. 

3. Frequent Subgraph Mining Algorithms  

Workflow mining and frequent subgraph mining are popular domains among the research sub-domains of 

graph mining. Frequent Subgraph Mining (FSM) is the essence of graph mining, and the objective of FSM is to 

extract all the frequent subgraphs of a given data set, of which the occurrence counts above a particular 

threshold. 

FSM algorithms work in two steps. First, the candidate subgraphs are in either depth-first or breadth-first 

manner, and in the next, step the frequency of occurrence of identified subgraphs will be determined.  Thus 

developing an algorithm that will do the above two steps effectively and efficiently is the main focus of FSM 

research. Further, the FSM algorithms divided into two categories as Inexact FSM and Exact FSM. In inexact 

FSM algorithms, an approximate measure is used to compare the similarity between two graphs.  Hence 

these algorithms are not guaranteed to find all similar subgraphs, but the computational efficiency is high.  

According to the search, strategy, algorithms divided into two categories as Breath First Strategy (BFS) and 

Depth First Strategy (DFS). BFS guarantees the discovery of all frequent subgraphs and low vulnerability to 

redundancy. However, DFS is used by most recent algorithms as those consumes less space compared to BFS. 

The high probability of redundancy in generated subgraphs is high in DFS. [9] has done a comparative survey 

on graph mining algorithms and has classified the algorithms based on search strategy, nature of input and 

completeness of output.  

A survey done by Jiang et al. [10] presents several significant FSM algorithms proposed over the period 

from 1994 to 2004. According to them, no “new” algorithms were introduced recently but there had been 

much work on developing variations of existing algorithms. They have also studied the number of FSM 

algorithms in the literature of different domains and the usage dominated in the chemistry, biology and web 

domains among others. 

They have presented a survey of state-of-the-art algorithms of FSM on many different types of mining 

strategies concerning different types of graphs producing different types of patterns. Further, the algorithms 
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categorized based on generation strategy, the mechanism for traversing the search space and the occurrence 

counting process. According to their survey results, most FSM algorithms adopt exact matching. They have 

made a comparison of several different exact matching graph isomorphism algorithms employing different 

techniques and different matching types and have described the limitations and benefits of each algorithm. 

We studied 5 different FSM algorithms including Subdue[11], FSG[12], gSpan[13], CloseGraph[14] and 

Gaston[15] and a comparison of them is shown in Table 1. 

 

Table 1. Comparison of FSM Algorithms 

Tool Input type 
Graph 

representation 
Search strategy Nature of output Limitation 

Subdue Single graph 
Adjacency 

matrix 
Breadth first 

search 
Frequent sub 

graphs 
Small number 

of patterns 

FSG Set of graphs Adjacency list 
Breadth first 

search 

Frequent 
connected sub 

graphs 
NP complete 

gSpan Set of graphs Adjacency list Depth first search 
Frequent sub 

graphs 
Not scalable 

CloseGraph Set of graphs Adjacency list Depth first search 
Closed connected 
frequent graphs 

inefficient 

Gaston Set of graphs Hash Table Depth first search 
Maximal frequent 

sub graphs 

Interesting 
patterns may 

be lost 

 

3.1. FSG 

By considering the pros and cons of each algorithm FSG algorithm was selected to analyze workflows. FSG 

is a breadth-first search algorithm which provides a complete output with the exact search. A detailed 

introduction to the FSG algorithm is given in the next section. 

FSG[12] algorithm finds all connected subgraphs frequently appear in an extensive graph database. 

According to the authors, FSG algorithm can achieve excellent performance and scale linearly with the size of 

the database for problems of moderately large size but for small graphs, the performance of FSG has been 

worst. A sparse graph representation is used to store input transactions, intermediate candidates and 

frequent subgraphs. Adjacency list representations are used to store transactions, candidates and detected 

frequent subgraphs. canonical labeling is used to sort graphs.  In finding frequent item sets structure of the 

Apriori algorithm is used which is more effective in pruning and Transaction ID (TID) has used in frequency 

counting. 

FSG produces three output files as the frequent-pattern file (*.fp) that stores either the frequent or the 

maximal frequent patterns, parent-children list (PC-list) represents parent-children relationships among the 

patterns and TID-list file that shows the graph transactions that are supported by each pattern. 

3.2. Maximal Pattern Mining 

Subgraph mining algorithms need to work with a large number of uninteresting and frequent subgraphs, 

thus the analysis of frequent subgraphs made impossible. Many applications in graph mining require the 

result set to be a summary than a complete set of the frequent pattern space. Without enumerating all graph 

patterns, maximal pattern mining aims to mine a relatively small set of representative patterns with little 

similarity to each other. 

4. Methodology 

93 Galaxy bioinformatics workflows were obtained from my Experiment public repository and shared 

workflows available in the Galaxy platform as .GA files. After removing one-step workflows, example 
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workflows, and test workflows, a total of 82 workflows were available for analysis. Tools(steps) and 

connections in the .GA files were obtained using a Python script.  

FSG (frequent subgraph discovery) tool was used in extracting the patterns from workflows.  

5. Results and Discussion 

The analysis was performed with Intel R Core TM i-7 desktop computer with 16GB memory. The input file 

to FSG contained 82 workflows or 82 transactions. Table 2 shows the summary information about the edges 

and vertices of the workflows.  

 

Table 2. Summary Statistics of Galaxy Workflows Used in Analysis 
Feature Number 

Number of Distinct Edge Labels 417 
Number of Distinct Vertex Labels 215 

Average Number of Edges in a Transaction 12 
Average Number of Vertices in a Transaction 11 

Max Number of Edges in a Transaction 86 
Max Number of Vertices in a Transaction 68 

 

There were 215 distinct tools were used by the workflows, and among them, tools having a frequency of 

use of more than 10 were identified as listed in Table 3 with their toolshed repository name. Fastqc which is 

used to control quality is the most frequently used tool. 

 
Table 3. Tools according to Their Frequency of Use 

Tool Description Frequency of Use 
fastqc Quality control for high throughput sequence data. 26 

cat_multiple Concatenate_multiple datasets 18 
bowtie2 Short read aligner 15 

fastq_groomer Convert between various FASTQ quality formats 13 

bowtieForSmallRNA 
 

bowtie wrapper tool to align small RNA sequencing reads 12 

fasta_tabular_converter Fasta file to convert to tabular 12 
ncbi_blastn_wrapper search a nucleotide database using a nucleotide query 12 

snpEff Genetic variant annotation and effect prediction toolbox 12 
BlastParser_and_hits Parses blastn or blastx outputs and organizes hits to subjects 12 

 

The Minimum support threshold used in identifying frequent patterns was 5.0%. The largest pattern size 

identified was 5. The number of identified frequent patterns with the size of the pattern is shown in Fig. 1. 

The number of patterns found was decreased with the increase in pattern size.  

 

 
Fig. 1. Frequent patterns 

 
After filtering the repeated and uninterested patterns, 71 patterns were identified. Some of the patterns 

identified are shown below. 
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oasesoptimiserv&BlastParser_and_hits 

bowtieForSmallRNA&oasesoptimiserv 

oasesoptimiserv&ncbi_blastn_wrapper 

ncbi_blastn_wrapper&BlastParser_and_hits oasesoptimiserv&BlastParser_and_hits 

oasesoptimiserv&BlastParser_and_hits oasesoptimiserv&ncbi_blastn_wrapper 

oasesoptimiserv&BlastParser_and_hits bowtieForSmallRNA&oasesoptimiserv 

ncbi_blastn_wrapper&BlastParser_and_hits oasesoptimiserv&ncbi_blastn_wrapper 

ncbi_blastn_wrapper&BlastParser_and_hits oasesoptimiserv&BlastParser_and_hits 

oasesoptimiserv&ncbi_blastn_wrapper 

In representing the patterns, ampersand is used to show the connection between two tools. Patterns of size 

one eg. yac&cat_multiple can be used to suggest the next tool that is mostly used with a particular tool. By 

using yac&cat_multiple when a user has used yac tool suggesting cat_multiple as the probable next tool by the 

system is helpful for a scientist designing a workflow.  

Fig. 2 shows the frequent pattern shown below in a diagram. Four tools are connected in this pattern.  

 

 

 

 

 
Fig. 2. A substructure identified as a frequent pattern 

 

The processing steps combined in this pattern can be identified as aligning small RNA sequencing reads 

using bowtieForSmallRNA, assemble reads using oasesoptimiserv, parses blastn or blastx outputs, and 

organizes hits to subjects with various coverage information using the tool BlastParser_and_hits and search a 

nucleotide database using a nucleotide query using ncbi_blastn_wrapper. 

As described in section 3.2, maximal pattern mining is done to reduce the number of uninterested patterns. 

Table 4 shows a comparison of frequent patterns found in all frequent pattern search and maximal pattern 

search.  

 

Table 4. All Frequent Patterns vs Maximal Patterns 
 All Frequent patterns Maximal patterns only 

Largest Frequent Pattern Size 5 5 

Total Number of Frequent Patterns Found: 71 15 

 

The number of patterns has reduced from 71 to 15 when searching only for maximal patterns. Since the 

total number of frequent patterns found is not considered high, it is not required to consider only the maximal 

patterns. However, when the number of frequent patterns is very high, it is necessary to consider only the 

maximal patterns to minimize the number of patterns to consider in the analysis.  

Further, we observed the addition of workflows to workflow repositories has reduced over the years. But 

workflow repositories are of real importance to domain users like life scientists who find difficulties in 

designing workflows using workflow systems. Searching capabilities within workflow repositories like 

myExperiment are limited to a keyword search on several tags attached to workflows by authors. However, 

we observed that the searching within the myExperiment repository with the available tags is not effective. 

There should be more research on how to make workflow repositories attractive to workflow designers and 

need to introduce more standards to make repositories more useful.  

oasesoptimiser
v 

BlastParser_and_hits 

ncbi_blastn_wrapper bowtieForSmallRNA 
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Finally, when usage patterns or substructures are made available for workflow designers, they will find it 

easy since it avoids the need for the threading tool by tool. We evaluated the usage of identified patterns with 

the user community and they found it useful. 

6. Related Work 

In [16] Garijo et al. have proposed an approach to automatically detect motifs from the provenance traces 

of workflows or set of workflows in a repository. A characteristic feature of their approach is the use of 

semantic representations to infer generalizations. They used a taxonomy of components associated with a 

catalog of components in generalization. Further, they demonstrated their method with workflows in the text 

analytics domain in the Wings workflow system. SUBDUE algorithm applied independently for each of the 

workflows to retrieve internal macros and in the same way for all workflows to retrieve composite workflows. 

In the experimental setup, they selected a dataset of 22 workflow templates specified in the Wings workflow 

system [17] with 30 workflow execution provenance traces of those workflow templates, annotated 

according to the Open Provenance Model for Workflows (OPMW)[18]. Authors claim that their proposed 

approach can detect filtered complex fragments successfully while generalizing fragments from workflows 

and provenance details of their executions.  

[19] is an unbiased and comprehensive benchmark of different methods of similarity search in a corpus of 

workflows. They re-implemented previous methods of similarity search and structured according to a 

comparison framework. A comprehensive corpus of similarity ratings collected for a set of Taverna and 

Galaxy workflows and also a gold standard rating obtained from 15 field experts and aggregated using median 

ranking. All algorithms compared using ranking correctness and retrieval precision.  

The study done by [20] proposed a novel principle and an algorithm that can derive all frequent induced 

subgraphs and association rules is directed or undirected general graphs with loops and labeled nodes and 

links. Authors also claim that their method can extract topological information about the graphs. A new 

algorithm developed by extending the Apriori algorithm, mine the graph-structured data with adjacency lists. 

Codes of the frequent induced subgraphs are derived by a bottom-up approach using canonical form 

representation of the adjacency matrix. The algorithm implemented using trie data structure and the 

performance evaluation was done using artificially generated graph-structured transactions.  

Diamantini et al. [21], have used hierarchical clustering to extract frequent and non-trivial sub-structures 

and relationships in 258 Taverna workflows. Workflows presented as graphs and SUBDUE which is an inexact 

matching tool used for clustering and pattern identification. Methodology tested against a subset of 

myExperiment. Authors claim that their approach can build effective models for representing useful usage 

patterns and also helps in retrieving workflows that contain specific patterns.  Results of the hierarchical 

clustering model evaluated using several measures. 

According to Garijo et al., FragFlow [22] an automatic fragment detection system is developed by 

integrating additional graph mining algorithms with filters, data preparation and statistical analysis steps to 

their previous work. FragFlow can be configured to find different sizes or frequencies of fragments, to 

visualize and also to link them back to original workflows. Fragflow is a combination of three different exact 

and inexact graph mining techniques i.e. SUBDUE, gSpan and FSG, to find the most common workflow 

fragments in a corpus of workflows.  

In FragFlow, workflows are represented as labeled directed acyclic graphs (LDAGs). The goals of their work 

were to develop a system that can automatically suggest workflow fragments in a new workflow, find the 

usefulness of the new fragments that are not suggested by LONI groupings, and study the reusability of 

workflows. They evaluated their approach by comparing the fragments detected by FragFlow to sub 

workflows created by the users of the LONI pipeline. LONI pipeline allows users to define groupings in 
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workflows and it has a library of components with well-defined functionality. A Grouping in the LONI pipeline 

likely to have an explicit function associated with them explaining their primary role in the workflow. 
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