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Abstract: FUCCI (fluorescent ubiquitination-based cell cycle indicator) is a fluorescent probe used to 

visualize the cell cycle progression of individual cells using fluorescent proteins of different colors. Because 

the cell cycle is related to biological processes such as proliferation of cancer cells, analysis of imaging data 

visualized using FUCCI is extremely important. This paper proposes a method for spatiotemporal tracking 

and analysis of FUCCI-labeled cells from time-lapse videos. To address the color transition of the 

FUCCI-labeled cell with the cell cycle progression, the proposed method simultaneously estimates the 

location and the cell cycle phase of the target cell. Furthermore, to analyze the cell phase transition, this 

paper proposes to apply multistate time-to-event analysis to the information obtained through our tracking 

method. This paper demonstrates the usefulness of our method with application to FUCCI-labeled HuH7 

cells (human hepatocellular carcinoma cell line). 
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1. Introduction 

Recent advances in bioimaging technology have enabled the visualization of various biological processes, 

and automated systems for data acquisition have enabled high-throughput imaging. High-content screening 

(HCS), an imaging-based multi-parametric analysis method, is used in biological research and drug 

discoveries [1]. Such advances have been producing enormous amounts of data. Therefore, the development 

of algorithms for image quantification and analysis is an urgent issue. 

We focus on cell cycle analysis of cells visualized using fluorescent ubiquitination-based cell cycle 

indicator (FUCCI) [2]. The cell cycle is a sequence of events in a cell, which starts when a cell is produced 

from its parent cell’s division and finishes when the cell divides. The cell cycle is composed of four phases, 

i.e., gap 1 (G1), synthesis (S), gap 2 (G2), and mitosis (M). In the S phase, cells replicate their DNA to prepare 

for cell division in the M phase. The G1 and G2 phases are devoted to cell growth. FUCCI is a kind of 

fluorescent probe used to visualize phases in the cell cycle by staining cell nuclei with different fluorescence 

proteins according to the phase. Fig. 1 (a) shows FUCCI-labeled HuH7 cells (human hepatocellular 

carcinoma cell line) superimposed with red and green fluorescence on a corresponding differential 

interference contrast (DIC) microscopy image (gray). FUCCI cells emit red fluorescence in the G1 phase, 
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green fluorescence in the S and G2 phases, and no fluorescence in the M phase, as shown in Fig. 1 (b). 

 

 
Fig. 1. FUCCI and the cell cycle. 

 

The cell cycle is known to be closely related to the proliferation of cancer cells, and some anti-cancer 

agents work specifically in the cell cycle. For example, topoisomerase inhibitors and antimetabolites are 

known to inhibit cancer cells from DNA replication in the S phase. Therefore, temporal observation of 

FUCCI-labeled cells (hereinafter referred to as FUCCI cells) in various conditions through time-lapse videos 

is important for evaluating medical efficacy and clarifying the response mechanism of anti-cancer agents. To 

extract information about cell cycle progression from such time-lapse videos, spatiotemporal tracking and 

phase estimation for each cell are required. FUCCI cell tracking can be a challenging task because the colors 

of the targets change according to the progress of the cell cycle, and the fluorescence signal of the targets 

disappears when cell division or cell death occurs. In FUCCI cell tracking, continuously tracking targets 

across different frames is more important than tracking many cells because the final goal is to analyze the 

relationship between time and cell cycle progression. 

We propose a tracking method for FUCCI cells based on particle filters. A particle filter is a kind of time 

series filters and has been widely applied for target tracking problems because of its flexibility in describing 

the target’s feature. To address the color transition of FUCCI cells according to the cell cycle progression, our 

method estimates the target’s phase and utilizes it to localize the target in the next frame. In other words, 

for accurate tracking, our method simultaneously estimates the location and the cell cycle phase of the 

target cell interdependently. With the experimental result, we show that our method is suitable for FUCCI 

cell tracking compared to existing detection-based cell tracking methods. Furthermore, to show the 

usefulness of the information obtained through our method, we demonstrate the results of time-to-event 

(TTE) analysis to evaluate the effects of medicines on the cell cycle. 

The rest of this paper is organized as follows. Section 2 introduces existing cell tracking methods. Section 

3 proposes a method for tracking and extracting the phase of FUCCI cells and introduces TTE analysis for 

FUCCI cell data. Section 4 shows and discusses the results of experiments to evaluate our tracking methods 

and to verify the usefulness of data obtained through our method. Section 5 discusses our results and future 

work. Section 6 concludes this paper. 

2. Cell Tracking 

Cell tracking is a fundamental task for extracting dynamics from microscopy videos, and various methods 

have been proposed up to the present. Recently, deep learning-based tracking methods [3], [4] have 

achieved state-of-the-art performance. However, such methods require a sufficient number of training data, 
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which means pairs of video and target locations for each frame. Training data are created through manual 

annotation; thus, enough training data for experimental environments with a variety of targets, stains, and 

microscopes are usually not available. Therefore, we focus on tracking methods based on classical image 

processing. 

Most existing cell tracking methods are detection-based methods. Detection-based methods perform 

segmentation (i.e., recognizing target regions and backgrounds in an image) to detect cells in each frame 

and associate the detected cells over frames. Some detection-based tracking methods, such as 

LineageTracker [5] and LAP (linear assignment problems) tracker [6], are capable of handling cell division, 

which frequently happens in FUCCI cell tracking. LineageTracker associates segmented regions based on 

the similarity of statistical features. This method detects cell division based on the fluorescence intensity 

and associates daughter cells with a parent cell that has the most similar statistical features. LAP tracker 

first performs frame-to-frame association of segmented regions. Then, this method links multiple 

trajectories obtained in the previous steps to close the gaps and capture division/fusion events. These steps 

are conducted via optimization of the cost functions (i.e., the dissimilarity between segmented regions or 

trajectories). These detection-based tracking methods heavily rely on the accurate segmentation. However, 

accurate segmentation for microscopic images can be a challenging task due to the low contrast, low S/N 

rate, and/or temporally weak fluorescence intensity. Therefore, detection-based tracking might produce 

multiple fragments of trajectories for each single cell. Because the purpose of FUCCI cell tracking is to 

analyze the cell cycle progression, continuously tracking the same cells for long time steps is extremely 

important, and fragmentation of trajectories might lead to wrong results of the following analyses.. As 

described above, LAP tracker has a gap-closing function to link fragments of trajectories and make the 

trajectories longer. Although, because LAP tracker’s gap-closing function is based on the dissimilarity 

minimization, it is not suitable for cells with dynamic appearance changes such as FUCCI cells. 

Other than detection-based cell tracking methods, various methods, such as particle filters [7], [8], image 

matching [9], and graph-based methods [10], have been proposed. Among these methods, particle 

filter-based methods are flexible for describing the features of the target. A particle filter [11] is a kind of 

time series filter based on sequential Bayesian estimation to predict the internal states of a system from the 

past observations. In particle filter-based target tracking, the internal state corresponds to the target 

location, and the observation corresponds to the sequence of frames. Each tracker represents the target 

location as a set of “particles” that are specific pixels around the target. In the first frame, each target is 

detected by some method, such as segmentation, and all particles belonging to each tracker are set at the 

center of the target. Then, each tracker iterates the procedures shown in Fig. 2 for each subsequent frame. 

To find the target in a frame, the tracker relocates particles from their locations in the previous frame by 

adding small displacements. Then, the tracker calculates the “likelihood” of each particle, which represents 

the possibility that the particle is in the target region and is based on the particle's local information, such 

as color. Particles with low likelihood (a certain percentage of them) are excluded, and the tracker samples 

new particles from the remaining particles with weights proportional to the likelihood to restore the 

number of particles. This procedure is called resampling. Then, the tracker relocates the particles in the 

next frame. The target location in each frame is calculated as the average location of particles weighted by 

likelihoods. Intuitively, this method estimates the target location in the current frame by finding pixels likely 

belonging to the target region from the surrounding patch of the target location in the previous frame. Note 

that the likelihood of each particle can be an arbitrary function. Because of this flexibility, the particle 

filter-based tracking method can be adjusted to be suitable for a wide variety of tracking problems.  
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Fig. 2. Fundamental procedures in particle filter-based tracking method. 

 

3. Tracking and Analysis of FUCCI Cells 

We propose a method to track FUCCI cells and estimate the cell cycle phase based on particle filters. 

Additionally, we apply multistate time-to-event analysis to the results of our tracking and estimation 

method. 

3.1. Tracking and State Estimation of FUCCI Cells Using a Particle Filter 

3.1.1. Problem settings 

In this study, each video to track is composed of the red fluorescence channel, the green fluorescence 

channel, and DIC image channel. An example of the data is shown in Fig. 1 (a). The goal is to predict the 

locations and “states” of each cell for each frame in a given video. As shown in Fig. 1 (b), FUCCI cells in the S 

phase and G2 phase have a similar green color and are difficult to distinguish. In addition, because the 

purpose of FUCCI cell tracking in this study is to analyze the relationship between time and the cell cycle 

progression, we do not have to distinguish the mitosis phase and cell death, which are both the ends of the 

cell cycle. Moreover, to avoid keeping tracking in the background region, our method should detect such 

tracking failure as a situation different from the regular tracking. Therefore, we do not estimate the phase 

itself and alternatively estimate the “state” determined by the color. Here, we define the state set as “G1” 

(red, same as G1), “eS” (yellow, early S), “S-G2” (green, S to G2), “M/D” (no fluorescence, M or cell death), 

and “TF” which stands for tracking failure. 

3.1.2. Overview of our method 

Our method tracks FUCCI cells based on particle filters. Because the color of FUCCI cells greatly changes 

according to the state, the state should be utilized for the definition of likelihood. This means that when 

calculating the likelihood of each particle, the state of the target cell in the previous frame is required. 

Therefore, our method iterates state estimation and location estimation using a particle filter (tracking) 

alternately. Section 3.1.4 describes our state estimation method, and Section 3.1.5 describes our tracking 

using the estimated state. The entire procedure of our method is as follows. 

1) Preprocess the DIC channel image to separate the foreground (cell regions) and background (Section 

3.1.3). 

2) Detect the cells in the first frame and initialize trackers for each cell (Section 3.1.4). 

3) Track each cell based on a particle filter. Iterate the following steps for each tracker in each frame. 

a) Estimate the target cell’s state (Section 3.1.5). 

b) If the target cell’s state remains “M/D” for a certain number of frames 𝑚“M/D”, try to start tracking 
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daughter cells (Section 3.1.8). 

c) Relocate the particles as described in Section 2. 

d) Calculate the likelihood for each particle (Section 3.1.6). 

e) Exclude particles violating the mutual exclusion constraint to deal with densely located cells (Section 

3.1.7). 

f) Resample the particles as described in Section 2. 

3.1.3. Preprocessing of the DIC images 

As discussed in Section 2, “M/D” cells do not emit both green and red fluorescence. In that state, the cell 

regions (foreground) and other regions (background) are difficult to distinguish in fluorescence images, and 

cell tracking is quite difficult. On the other hand, the appearance (texture) of cells in the DIC image does not 

change greatly, and thus, the DIC channel can be used to distinguish between the foreground and the 

background. However, the foreground and the background are difficult to distinguish in raw DIC images 

because of the low contrast. Therefore, our method preprocesses the DIC channel of the input video before 

tracking the cells. Fig. 3 shows the preprocessing procedure. In the cell regions of DIC images (Fig. 3 (a)), 

the spatial intensity change is much larger than that in other regions. Therefore, our method applies a 

differential filter to DIC images to emphasize the cell regions (Fig. 3 (b)). Then, our method binarizes the 

differential image (Fig. 3 (c)) and applies morphological operations and contour filling to outline the cell 

regions with contours (Fig. 3 (d)). 

 

 
Fig. 3. Preprocessing of a DIC image (contrast enhanced). 

 

3.1.4. Initialization of trackers 

To initialize trackers, our method detects cells in the first frame using an arbitrary segmentation method. 

Then, our method locates trackers at the centers of segmented regions. A tracker is composed of a certain 

number of particles. Each particle has the following information. 

1) 𝑝𝑡
(𝑝)
= (𝑥𝑡

(𝑝)
, 𝑦𝑡
(𝑝)
): The location of the particle in frame 𝑡. 

2) 𝑐𝑡
(𝑝)

: The color at the particle’s location 𝑝𝑡
(𝑝)

 in frame 𝑡. 

3) 𝑠𝑡
(𝑝)

: The estimated state of the particle in frame 𝑡. 

The estimation of 𝑠𝑡
(𝑝)

 is described in the next section. Each tracker (not each particle) also has 

information about the target cell as follows. 

1) 𝑝𝑡
(𝑐) = (𝑥𝑡

(𝑐), 𝑦𝑡
(𝑐)): The estimated center location of the target cell in frame 𝑡. 

2) 𝑐𝑡
(𝑐): The color at the target location 𝑝𝑡

(𝑐) in frame 𝑡. 

3) 𝑠𝑡
(𝑐): The estimated state of the target cell in frame 𝑡. 
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Here, 𝑝𝑡
(𝑐) is calculated as the average of each particle’s location 𝑝𝑡

(𝑝)
 weighted by the likelihood. 𝑠𝑡

(𝑐) is 

calculated as the majority of each particle’s state 𝑠𝑡
(𝑝)

 weighted by the likelihood. 

3.1.5. Estimation of cell states 

The state 𝑠𝑡
(𝑐) of each cell is estimated as the weighted majority of each particle’s state 𝑠𝑡

(𝑝)
, as 

mentioned in the previous section. To estimate each particle’s state, our method utilizes the current 

color 𝑐𝑡
(𝑝)

 at the particle’s location 𝑝𝑡
(𝑝)

. First, if the particle is located out of the cell region (i.e., located in 

the background), the particle is likely to have failed to capture the cell location. Therefore, if the intensity of 

the preprocessed DIC channel at the particle location is 0, the state of the particle is estimated as “TF”. 

Second, if the particle location is inside the foreground but not enough fluorescence is observed there, the 

state of the particle is estimated as “M/D”. That is, if the sum of the intensity of green channel and red 

channel is below the threshold 𝜏 , the state is estimated as “M/D”. Then, to determine if the state is “G1” 

(red), “eS” (yellow), or “S-G2” (green), we use the hue in the HSV color space at the particle location. If the 

hue is sufficiently small (i.e., smaller than the threshold 𝜏“G1”), the state is estimated as “G1”. If the hue is 

sufficiently large (i.e., larger than the threshold 𝜏“S-G2”), the state is estimated as “S-G2”. If the hue does not 

satisfy either conditions above, the state is estimated as “eS”. 

3.1.6. Likelihood function 

Our method calculates the likelihood of each particle using the information about the particle in the 

current frame 𝑡, i.e., 𝑝𝑡
(𝑝)

, 𝑐𝑡
(𝑝)

, and 𝑠𝑡
(𝑝)

, and the information about the target in the previous frame 𝑡 − 1, 

i.e., 𝑝𝑡−1
(𝑐) , 𝑐𝑡−1

(𝑐) , and 𝑠𝑡−1
(𝑐) . The likelihood function is the product of three factors referred to as the state 

transition factor 𝑙𝑆 (𝑠𝑡−1
(𝑐) , 𝑠𝑡

(𝑝)
), the color factor 𝑙𝐶 (𝑠𝑡−1

(𝑐) , 𝑐𝑡−1
(𝑐) , 𝑐𝑡

(𝑝)
), and the distance factor 𝑙𝐷 (𝑝𝑡−1

(𝑐) , 𝑝𝑡
(𝑝)
). 

3.1.6.1. State transition factor 

The state transition factor represents the naturalness of the state transition between the previous and 

current frames. In particular, the state transition factor is as follows. If 𝑠𝑡
(𝑝)
= “TF” (tracking failure), the 

particle location is unlikely to belong to the target region. Thus, we define 𝑙𝑆 (𝑠𝑡−1
(𝑐) , “TF”) = 𝛿, where 𝛿 is a 

small constant to avoid division by zero. In other cases, if the particle location belongs to the target region, 

the current state 𝑠𝑡
(𝑝)

 of the particle is likely to be the same as the previous state 𝑠𝑡−1
(𝑐)  or the next state of 

𝑠𝑡−1
(𝑐) . Thus, in the case of 𝑠𝑡−1

(𝑐) ∈ {“G1”, “eS”, “S-G2”}, we define the state transition factor as follows. 

 

𝑙𝑆 (𝑠𝑡−1
(𝑐) , 𝑠𝑡

(𝑝)
) =

{
 
 

 
 𝛼  (𝑠𝑡

(𝑝)
= 𝑠𝑡−1

(𝑐) )

1 − 𝛼  (𝑠𝑡
(𝑝)
= 𝑛 (𝑠𝑡−1

(𝑐) )) 

𝛿  (otherwise)

                        (1) 

 

where 0 < 𝛼 < 1 is a constant and function 𝑛 returns the next state of the given state, i.e., 𝑛(“G1”) = “eS”, 

𝑛(“eS”) = “S-G2”, and 𝑛(“S-G2”) = “M/D”. If 𝑠𝑡−1
(𝑐) = “M/D”, we define the state transition factor as 𝛼 when 

𝑠𝑡
(𝑝)
= 𝑠𝑡−1

(𝑐) = “M/D”; otherwise 1 − 𝛼. That is, cells in the “M/D” state are likely to stay in that state or to 

change into other states. Because particles are likely to get into the “M/D” state by mistake due to the 

temporally lower fluorescence intensity, our method allows such particles to return to the correct state. 

3.1.6.2. Color factor 

The color factor represents the naturalness of color change between the previous and current frames. 

First, if the particle is located in the background, 𝑙𝐶 (𝑠𝑡−1
(𝑐) , 𝑐𝑡−1

(𝑐) , 𝑐𝑡
(𝑝)
) = 𝛿. If the previous state 𝑠𝑡−1

(𝑐)  of the 
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𝑓1(𝑥|𝑣) =
1

1 + exp(𝑥 − 𝑣)
 

target cell is “G1” or “eS”, we define the likelihood as 𝑙𝐶 (𝑠𝑡−1
(𝑐) , 𝑐𝑡−1

(𝑐) , 𝑐𝑡
(𝑝)
) ≈ 1 when the color change 

between frames (i.e., difference between 𝑐𝑡−1
(𝑐)  and 𝑐𝑡

(𝑝)
) is in the likely range; otherwise, the likelihood is 

smaller. To represent this behavior as the likelihood, we use the following functions.  

 

  (2) 

 

 

𝑓2(𝑥|𝑣𝑙 , 𝑣𝑟) = min(𝑓1(−𝑥|−𝑣𝑙), 𝑓1(𝑥|𝑣𝑟)) #                          (3) 

 

Fig. 4 visualizes these functions. As shown in the figure, 𝑣 in function 𝑓1 denotes the inflection point 

satisfying 𝑓1(𝑣 ∣ 𝑣) = 0.5 . Similarly, 𝑣l  and 𝑣𝑟  in the function 𝑓2  are inflection points satisfying 

𝑓2( 𝑣𝑙 ∣∣ 𝑣𝑙 , 𝑣𝑟 ) = 𝑓2( 𝑣𝑟 ∣∣ 𝑣𝑙 , 𝑣𝑟 ) = 0.5. 

 

 
Fig. 4. Function 𝑓1 and function 𝑓2. 

 

In this study, we use the difference in the hue of the HSV color space to represent the color change 

between frames. The color change from the “G1” state (red) to the “S-G2” state (green) via the “eS” state 

(yellow) is described as the increase in the hue as shown in Fig. 5. 

 

 
Fig. 5. A typical transition of the hue from the “G1” state to the “S-G2” state. 

 

Compared to using the red and green channels, using the hue to represent color changes is relatively 

simpler. In addition, we consider that the hue is robust to variations in fluorescence intensity among target 

cells. That is, while the variations in fluorescence intensity directly affect the red and green channels, in the 

HSV color space, such variations mainly affect the brightness or value (V of HSV). Here, we define 𝑕 as a 

function to convert a color in our method’s color space (red, green, and preprocessed DIC) to the hue while 
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=
𝑓2 (𝑕 (𝑐𝑡

(𝑝)
) − 𝑕 (𝑐𝑡−1

(𝑐)
) | 𝛽“S-G2”

(𝑙)
(𝑐𝑡−1

(𝑐)
) − 𝛾, 𝛽“S-G2”

(𝑟)
(𝑐𝑡−1

(𝑐)
) + 𝛾) + 𝑓1 (𝑟 (𝑐𝑡

(𝑝)
) + 𝑔 (𝑐𝑡

(𝑝)
) | 𝜏“M/D” + 𝛾)

2
 

regarding the third channel as 0. Using this function, we define the color factor where 𝑠𝑡−1
(𝑐) ∈ *“G1”, “eS”+ as 

follows. 

 

𝑙𝐶 (𝑠𝑡−1
(𝑐) , 𝑐𝑡−1

(𝑐) , 𝑐𝑡
(𝑝)
) = 𝑓2 (𝑕 (𝑐𝑡

(𝑝)
) − 𝑕 (𝑐𝑡−1

(𝑐) ) | 𝛽
𝑠𝑡−1
(𝑐)
(𝑙)

(𝑐𝑡−1
(𝑐) ) − 𝛾,  𝛽

𝑠𝑡−1
(𝑐)
(𝑟)

(𝑐𝑡−1
(𝑐) ) + 𝛾)         (4) 

 

where 𝛽𝑠
(𝑙) and 𝛽𝑠

(𝑟) are functions representing the likely upper and lower bounds of the hue change 

between current and previous frames, for the previous state 𝑠 and the given previous hue. 𝛾 is a constant 

representing the distance between the lower or upper bound and the nearest infection points. 

For the case of 𝑠𝑡−1
(𝑐) = “S-G2”, the current state of the target cell is likely to be “S-G2” or “M/D”. Therefore, 

the current color at the target location is likely to be the same as the target’s previous color (green) or black 

(which means fluorescence disappearance). In such cases, the color factor of the likelihood should be 

calculated using not only the difference in the hue. Here, we use the sum of the red and green channels as in 

our state estimation (Section 3.1.5). We denote 𝑟 and 𝑔 as the functions to extract the red channel and the 

green channel, respectively, from the given color. Using these functions, we define the color factor in the 

case of 𝑠𝑡−1
(𝑐) = “S-G2” as follows.  

 

𝑙𝐶 (“S-G2”, 𝑐𝑡−1
(𝑐) , 𝑐𝑡

(𝑝)
) 

 

(5) 

 

In this study, the function 𝛽𝑠
(𝑙) is defined as 0 for any 𝑠 ∈ {“G1”, “eS”, “S-G2”} and given previous hue. 

This is because the hue is not likely to decrease greatly when the previous state 𝑠 is “G1”, “eS”, or “S-G2”, as 

shown in Fig. 5. The function 𝛽𝑠
(𝑟) is defined as the difference between the likely upper bound of the 

current hue and the given previous hue. Therefore, we define 𝛽𝑠
(𝑟) as follows. 

 

𝛽𝑠
(𝑟)(𝑐) = 𝜉𝑠 − 𝑕(𝑐)                                   (6) 

 

where 𝜉𝑠 is the likely upper bound of the current hue for the previous state 𝑠. 

For the remaining case of 𝑠𝑡−1
(𝑐) is “M/D”, we define the color factor as 

 

𝑙𝐶 (“M/D”,  𝑐𝑡−1
(𝑐) ,  𝑐𝑡

(𝑝)
) = {

 𝜀  (𝑑 (𝑐𝑡
(𝑝)
) = 1)

𝛿  (otherwise) 
                        (7) 

 

where 0 < 𝜀 < 1 is a constant and 𝑑 is a function to extract the preprocessed DIC channel from the given 

color and normalize the value in [0, 1]. 

3.1.6.3. Distance factor 

The distance factor represents the closeness between the current particle location 𝑝𝑡−1
(𝑐)  and the previous 

cell location 𝑝𝑡
(𝑝)

. We define this factor so that the value is higher if the distance between 𝑝𝑡−1
(𝑐)  and 𝑝𝑡

(𝑝)
 is 

smaller than half of the approximate cell width and decreases as the distance increases, as follows. 

 

𝑙𝐷 (𝑝𝑡−1
(𝑐) , 𝑝𝑡

(𝑝)
) = 𝑓1 (𝑒 (𝑝𝑡−1

(𝑐) , 𝑝𝑡
(𝑝)
) | 𝜆 + 𝛾)                         (8) 
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where 𝑒 is a function to calculate the Euclidean distance between two given locations and λ is half of the 

approximate cell width. 

3.1.7. Mutual Exclusion Constraint 

In particle filter-based tracking, the target location is estimated by sampling around the previous target 

location and weighting samples according to their likelihood. This policy can lead to failure when cells are 

densely located. If two cells A and B, with similar appearances (e.g., colors in the case of FUCCI cells), are 

close to each other, the particle locations of the trackers for each cell can overlap. Because cells A and B are 

similar in appearance, the likelihood of particles is high even if the particle is inside another cell. In this 

situation, tracking of both cells is prone to failure. Therefore, we apply the mutual exclusion constraint [12] 

for all trackers. In the mutual exclusion constraint, a particle is excluded from the tracker if the particle’s 

likelihood increases when it is calculated supposing that the particle belongs to another tracker. By applying 

this constraint, particles likely in other target regions are excluded and not utilized for the location 

estimation. 

3.1.8. Detection of Cell Division and Death 

When the state of the target cell of some tracker continues being “M/D” for a certain number 𝑚“M/D” of 

time steps, our method stops the tracker from relocating and resampling the particles and starts to detect 

daughter cells in the “G1” state around the tracker’s current location 𝑝(𝑐). Waiting for 𝑚“M/D” steps is 

necessary because cells can be determined as in the “M/D” state due to the temporally lower fluorescence 

intensity. Detection is conducted in the patch around 𝑝(𝑐) using the following algorithm. 

1) Binarize the red channel image after smoothing with an averaging filter. 

2) Extract cell regions in the red channel image, which are also in the foreground region of the 

preprocessed DIC channel image. 

3) Apply the watershed algorithm to separate connected foregrounds. 

If two or more cells are detected, then our method excludes cells already tracked by other trackers from 

the detected set. Specifically, if a detected cell’s location is closer to the center of some “G1” cell tracked by 

another tracker than 𝑝(𝑐), the detected cell is excluded. If two or more cells remain, two cells closest to 𝑝(𝑐) 

are determined as the daughter cells. Once the daughter cells are detected, our method stops tracking the 

parent cell and starts tracking the daughter cells using new trackers; otherwise, our method iterates the 

above procedure in the next frame. If daughter cells are not detected in 𝑚D time steps, our method 

determines that cell death occurred and stops tracking the cell. 

3.2. Time-to-Event Analysis 

The results of tracking and estimating states of FUCCI cells include sequences of states and occupation 

time for each phase. However, some of the results also include the uncertainty of state transition after the 

final frame or the tracking failure. For such complicated data, visualizing the sequences of states over time 

does not help derive a reliable conclusion. Therefore, we propose to apply multistate time-to-event (TTE) 

analysis [13] on such sequences. TTE analysis, also referred to as event-history analysis and survival 

analysis, estimates the probability of occurrence of “events,” which are experiences of interest such as death 

of patients and failure of machines. 

An important feature of TTE analysis is the concept of censoring. If some individual observations cannot 

provide information about the occurrence time of the event, the observation is censored. If we observe 

patient deaths as events, the following data are all censored: data about a patient who does not die before 

the end of observation, data about a patient who dies because of unexpected causes, and data about a 

patient whose observation is canceled due to transfer. In TTE analysis, censored data are not ignored but 
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handled differently. 

TTE analysis utilized in this paper is an extended version of TTE analysis called multistate TTE analysis. 

In multistate TTE analysis, surviving targets progress toward the event via multiple different states using a 

multistate model with inter-state transition. Functions estimated in multistate TTE analysis include state 

occupation probabilities for each state over time and inter-state transition probabilities. In this paper, we 

apply multistate TTE analysis on the tracking results of FUCCI cells to analyze the difference in the cell cycle 

progression between samples with medicine administration and those without. In our analysis, the 

sequence that includes the end of observation or tracking failure is censored. 

4. Experimental Results 

4.1. Data 

We applied our method to time-lapse videos of FUCCI-labeled HuH7 cells (human hepatocellular 

carcinoma cell line). These videos were taken at 30 min intervals over approximately 3 days (total of 150 

frames). The red and green fluorescence images were obtained at 1,024 × 1,024 pixel resolution and 

12-bit (4,096 gradations) dynamic range. We used two datasets. The first one is composed of 10 visual 

fields of control (without medicine administration). The second one is composed of 10 visual fields with 

interferon-𝛼 administration. Interferon-𝛼 is a medicine used to treat liver cancers clinically. 

4.2. Implementation 

We implemented our tracking method using the Python language with the OpenCV library. We 

determined the parameters in our method heuristically. Specifically, parameters 𝜏𝑠 for 𝑠 ∈ {“G1”, “S-G2”, 

“M/D”} (thresholds for estimating the cell state from the hue) were determined using the averaged 

sequence of color transition in an annotated visual field. Parameters 𝜉𝑠 for 𝑠 ∈ {“G1”, “eS”, “S-G2”} (the 

upper bound of the likely current hue for the previous state 𝑠) were defined as follows. 𝜉“G1” and 𝜉“eS” are 

the averaged hue in the state “eS” and “S-G2”, respectively. 𝜉“S-G2” is the maximum hue in the state “S-G2”. 

Each specific value was derived from an annotated visual field. In addition, we used the seeded-growth 

algorithm for segmentation of the first frame. This algorithm is also used in the LineageTracker plugin [5] of 

ImageJ [14], and we obtained the segmentation results through that plugin. 

In the experiment to compare the tracking performance (Section 4.3), we used LineageTracker and LAP 

tracker as well as our method. We used the LineageTracker plugin of ImageJ and the TrackMate [15] plugin 

of Fiji [16], a distribution of ImageJ, which provides LAP tracker as an option. 

We performed our multistate TTE analysis using the R language and the msSurv package [13]. 

4.3. Evaluation of Tracking 

To evaluate the performance of our method, we utilized 2 annotated visual fields. Visual field #1 was also 

used for parameter setting. We applied our method, LineageTracker, and LAP tracker to these videos and 

compared the results. We tuned the parameter settings in LineageTracker and LAP tracker manually for the 

fair comparison. 

4.3.1. Evaluation criteria 

A simple criterion to evaluate the performance of tracking is the accuracy. This criterion evaluates how 

many objects are detected in each frame on average as a comparison with the ground-truth. The accuracy of 

tracking 𝑎 for a tracking result (i.e., a set of obtained trajectories) is calculated as follows. 

 

𝑎 =
1

𝑓
∑

𝑑𝑡

𝑛𝑡
𝑡                                              (9) 
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where 𝑓 is the number of frames, 𝑛𝑡 is the number of cells in the frame 𝑡 of the ground-truth, and 𝑑𝑡 is 

the number of successfully detected cells in the frame 𝑡. Here, we say a cell is successfully detected in the 

frame 𝑡 if the distance between the cell and one of the obtained trajectories in the frame 𝑡 is below the 

threshold. In this experiment, we defined this threshold as half of the approximate cell width, specifically 20 

pixels. Obviously, accuracy is higher for better performance. 

 The accuracy can be used to evaluate how many cells are detected in each frame from its definition 

above. However, in FUCCI cell tracking, tracking each cell for consequent frames is more important than 

tracking many cells. Therefore, we used other criteria to evaluate how many frames the tracking method 

can track the same target. One criterion is MT (Mostly Tracked) [17], which means the rate of mostly 

tracked trajectories, i.e., ground-truth trajectories that are tracked as the same target at least 80% frames of 

their life span. Here, “tracked” means that the location error is 20 pixels or less, similar to the calculation of 

accuracy. Another criterion is ML (Mostly Lost) [17], which means the rate of mostly lost trajectories, i.e., 

ground-truth trajectories that are tracked at most 20% frames of their life span. MT is higher and ML is 

lower for better performance. 

4.3.2. Results 

Table 1 shows the tracking results of both our method and LineageTracker evaluated in terms of accuracy, 

MT and ML. Higher values denote better performance in criteria with (↑), and lower values denote better 

performance in criteria with (↓). For LineageTracker and LAP tracker, both the best results obtained 

through parameter tuning and the results with default settings (in parentheses) are shown. The best result 

for each criterion is written in bold font. 

 
Table 1. Tracking Results for Each Visual Field 

 Visual field #1 Visual field #2 

Accuracy (↑) MT (↑) ML (↓) Accuracy (↑) MT (↑) ML (↓) 

Our method 0.611 0.302 0.238 0.638 0.400 0.200 

LineageTracker 0.821 

(0.821) 

0.081 

(0.024) 

0.551 

(0.700) 

0.938 

(0.938) 

0.109 

(0.042) 

0.611 

(0.733) 

LAP tracker 0.891 

(0.841) 

0.092 

(0.008) 

0.637 

(0.714) 

0.946 

(0.884) 

0.093 

(0.055) 

0.629 

(0.664) 

 

As a result, our method achieved better performance in terms of the MT and ML criteria for both data. 

Thus, we confirmed that our method is more capable of continuously tracking FUCCI cells for longer time 

steps than existing methods. In terms of the accuracy, LineageTracker and LAP tracker achieved better 

performance for both visual fields. This result is reasonable. While LineageTracker and LAP tracker, which 

are detection-based tracking methods, conduct segmentation for all frames first, our method tracks only the 

cells detected in the first frame and the daughter cells detected in the later frames. Therefore, 

LineageTracker and LAP tracker are capable of detect more cells, compared to our method. However, in 

FUCCI cell tracking, continuously tracking the same target is more important than tracking many targets. 

Therefore, this result shows the effectiveness of our method for FUCCI cell tracking.  

Fig. 6 shows the example results of our tracking method. In each example, small circles in the images 

represent the locations of particles, and large circles in each image represent the locations of target cells. 

The images on the right in each example are DIC images superimposed with particle and cell locations. Here, 

the color of each circle represents the state of the particle or cell as follows; the red color corresponds to 

“G1”, the yellow color corresponds to “eS”, the green color corresponds to “S-G2”, the blue color corresponds 

to “M/D”, and the black color corresponds to “TF”. The images on the right in each example depict red and 

green fluorescence with cell locations in white color. In Fig. 6 (a), although there are some areas where 
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multiple cells are densely located, each cell with red and green fluorescence is tracked correctly. In Fig. 6 (b), 

the tracker tracks the target cell 34 in frame 60 (top); however, it tracks a different cell in frame 68 (bottom). 

The reason for this mistracking is that the cell tracked in frame 68 is not originally tracked by other trackers. 

In such cases, even though our method utilizes the mutual exclusion constraint, the tracker has the 

possibility to erroneously track the untargeted cell whose likelihood is sufficiently high because it has a 

similar appearance. 

 

 
Fig. 6. Example results of our tracking method (contrast enhanced). 

 

4.4. Multistate Time-to-Event Analysis 

We applied multistate TTE analysis to the results of our method using whole 20 visual fields, including 

non-annotated visual fields. Fig. 7 shows the state occupancy probabilities for both groups of cells under 

control and interferon-administered conditions. In Fig. 7, the blue and red bands surrounding the plotted 

line represent the 95% confidence intervals. As shown on the left in Fig. 7, the state occupation 

probabilities of the G1 phase under the interferon-administered condition are higher than the probabilities 

under the control condition. This result suggests that a relatively larger number of cells tend to keep staying 

in the G1 phase (i.e., unable to progress to the S phase) compared to the cells in the control condition. This 

phenomenon is known as G0/G1 arrest [18]. 

5. Discussion and Future Work 

5.1. Improving the Tracking Method for FUCCI cells 

In the experimental results shown in Fig. 6 (b), our tracker loses the target even though the cells are not 

densely located. This is because the likelihood of particles in the neighbor untargeted cell region is 

sufficiently high, as the target and neighbor cells are quite similar. Although our method employs the mutual 

exclusion constraint to exclude such particles, it is not valid if the neighbor cell is not tracked by any 

trackers. One of the straightforward ways to solve this problem is to track all cells in the visual field. 

However, tracking all cells requires segmentation for every frame. While image segmentation is a 

well-studied problem, accurate segmentation of bioimages with low S/N ratios, low contrast, densely 
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located targets and a large number of highly similar targets is still challenging. Therefore, a more accurate 

tracking method that does not depend on the segmentation performance is required. One of our ideas is to 

utilize the history of each target’s motion as auxiliary information. Specifically, we are considering 

adaptively adjusting the particle filter settings, such as the number of particles, the distribution of 

displacements to add to the particle locations for relocation, and the design of the likelihood function. Using 

the history of the target’s motion, our method can estimate the location of the target with features unique to 

the target itself and has possibilities to achieve more accurate tracking. 

 

 
Fig. 7. State occupation probabilities obtained through multistate TTE analysis. 

 

In this paper, our method does not distinguish between the mitosis phase and cell death. However, for 

some kind of analysis, these two events should be separately handled. For example, a kind of anti-cancer 

agent induces apoptosis in cancer cells, while another agent inhibits metastasis and proliferation of cancer 

cells. Discrimination between the mitosis and cell death is important for evaluating the effects of 

combination chemotherapy when both kinds of agents are used. 

5.2. Analysis of the Cell Cycle via Cell Tracking and TTE Analysis 

In our TTE analysis, we confirmed that our method for tracking and estimating cell state produces useful 

data for the analysis of the cell cycle. Our results of TTE analysis in Fig. 7 do not show a great difference 

between the two conditions. Such a small but significant difference is difficult to reveal without TTE 

analysis. Quantification via visual inspection is unrealistic in situations with a large number of cells, frames, 

visual fields, and/or conditions. Therefore, our method can be an effective way to extract useful information 

about the transitions of cell states from time-lapse videos. 

6. Conclusion 

In this paper, we proposed a method to track and estimate the states of FUCCI cells for analysis of the cell 

cycle. Our method tracks the target cells based on particle filters and simultaneously estimates their states. 

We showed that our method achieves much better performance in terms of continuous tracking of the 

target cell, which is important for the analysis of the cell cycle, compared to existing detection-based 

tracking methods. Additionally, we confirmed the usefulness of TTE analysis of the tracking results. Our 

method effectively handles enormous amount of time-lapse videos obtained through temporal observation 

on fluorescently labeled cells. 

Conflict of Interest 

International Journal of Bioscience, Biochemistry and Bioinformatics

106 Volume 10, Number 2, April 2020



  

The authors declare no conflict of interest. 

Author Contributions 

KF and SS designed the study, implemented the algorithm and performed the analyses; MI provided the 

data and discussed the results; HS, TM, and HM contributed to improving the algorithm; KF and SS wrote 

the manuscript draft; HM supervised the study; all authors had approved the final version. 

Acknowledgment 

The authors would like to thank Dr. Junichi Kikuta, Dr. Yoshinori Kagawa, and Dr. Sakae Maeda for the 

insightful suggestions. This work was supported in part by JST CREST Grant Number JPMJCR15G1; JSPS 

KAKENHI Grant Number JP18H05035, JP18K19842, and JP19H04207, Japan. 

References 

[1] Usaj, M. M., Styles, E. B., Verster, A. J., Friesen, H., Boone, C., & Andrews, B. J. (2016). High-content 

screening for quantitative cell biology. Trends in cell biology, 26(8), 598-611. 

[2] Zielke, N., & Edgar, B. A. (2015). FUCCI sensors: powerful new tools for analysis of cell proliferation. 

Wiley Interdisciplinary Reviews: Developmental Biology, 4(5), 469-487. 

[3] He, T., Mao, H., Guo, J., & Yi, Z. (2017). Cell tracking using deep neural networks with multi-task learning. 

Image and Vision Computing, 60, 142-153. 

[4] Hayashida, J., & Bise, R. (2019). Cell tracking with deep learning for cell detection and motion 

estimation in low-frame-rate. Proceedings of International Conference on Medical Image Computing and 

Computer-Assisted Intervention (pp. 397-405). Shenzhen: the MICCAI Society. 

[5] Downey, M. J., Jeziorska, D. M., Ott, S., Tamai, T. K., Koentges, G., Vance, K. W., & Bretschneider, T. (2011). 

Extracting fluorescent reporter time courses of cell lineages from high-throughput microscopy at low 

temporal resolution. PloS one, 6(12), e27886. 

[6] Jaqaman, K., Loerke, D., Mettlen, M., Kuwata, H., Grinstein, S., Schmid, S. L., & Danuser, G. (2008). Robust 

single-particle tracking in live-cell time-lapse sequences. Nature methods, 5(8), 695. 

[7] Yuan, L., Zheng, Y. F., Zhu, J., Wang, L., & Brown, A. (2011). Object tracking with particle filtering in 

fluorescence microscopy images: Application to the motion of neurofilaments in axons. IEEE 

Transactions on Medical Imaging, 31(1), 117-130. 

[8] Tokunaga, T., Hirose, O., Kawaguchi, S., Toyoshima, Y., Teramoto, T., Ikebata, H., et al. (2014). Automated 

detection and tracking of many cells by using 4D live-cell imaging data. Bioinformatics, 30(12), i43-i51. 

[9] Shigeta, H., Seno, S., Nishizawa, S., Uchida, Y., Kikuta, J., Ishii, M., & Matsuda, H. (2019). Analyzing 

leukocyte migration trajectories by deformable image matching. Proceedings of 2019 IEEE International 

Conference on Bioinformatics and BioEngineering (pp. 94-98). Athens: IEEE. 

[10] Padfield, D., Rittscher, J., & Roysam, B. (2011). Coupled minimum-cost flow cell tracking for 

high-throughput quantitative analysis. Medical image analysis, 15(4), 650-668. 

[11] Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online 

nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174-188. 

[12] Chai, Y., Park, J., Yoon, K., & Kim, T. (2011). Multi target tracking using multiple independent particle 

filters for video surveillance. Proceedings of 2011 IEEE International Conference on Consumer 

Electronics (pp. 735-736). Berlin: IEEE. 

[13] Ferguson, N., Datta, S., & Brock, G. (2012). msSurv, an R package for nonparametric estimation of 

multistate models. Journal of Statistical Software, 50(14), 1-24. 

[14] Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH image to ImageJ: 25 years of image analysis. 

International Journal of Bioscience, Biochemistry and Bioinformatics

107 Volume 10, Number 2, April 2020



  

Nature Methods, 9(7), 671. 

[15] Tinevez, J. Y., Perry, N., Schindelin, J., Hoopes, G. M., Reynolds, G. D., Laplantine, E., Bednarek, S. Y., Shorte, 

S. L., & Eliceiri, K. W. (2017). TrackMate: An open and extensible platform for single-particle tracking. 

Methods, 115, 80-90. 

[16] Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., 

Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. 

(2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. 

[17] Yoon, J. H., Yang, M. H., Lim, J., & Yoon, K. J. (2015). Bayesian multi-object tracking using motion context 

from multiple objects. Proceedings of 2015 IEEE Winter Conference on Applications of Computer Vision 

(pp. 33-40). Waikoloa Beach, HI: IEEE. 

[18] Maeda, S., Wada, H., Naito, Y., Nagano, H., Simmons, S., & Kagawa, Y., et al. (2014). Interferon-α acts on 

the S/G2/M phases to induce apoptosis in the G1 phase of an IFNAR2-expressing hepatocellular 

carcinoma cell line. Journal of Biological Chemistry, 289(34), 23786-23795. 

 

Copyright ©  2020 by the authors. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, 

provided the original work is properly cited (CC BY 4.0). 

 

Kenji Fujimoto received his B.E. degree from Osaka University in 2019. He is currently a 

student in the master’s course of the Department of Bioinformatic Engineering, Graduate 

School of Information Science and Technology, Osaka University. His research interests 

include bioimage informatics. 

 

 

 

Shigeto Seno received his B.E., M.E., and Ph.D. (information science) degrees from 

Osaka University in 2001, 2003, and 2006, respectively. He has been an associate 

professor in the Department of Bioinformatic Engineering, Graduate School of 

Information Science and Technology, Osaka University, since 2017. His research 

interests include data mining, bioinformatics (gene expression analysis), and bioimage 

informatics. He is a member of IPSJ, JSBi, and MII. 

 

Hironori Shigeta is an assistant professor of the Graduate School of Information 

Science and Technology, Osaka University. He was a specially appointed assistant 

professor (CREST, JST) at Osaka University from 2017 to 2019. He received his B.E., M.E., 

and Ph.D. degrees from Osaka University in 2008, 2010, and 2016, respectively. He is a 

member of IPSJ, VRSJ, and ACM. 

 

 

Tomohiro Mashita graduated from Osaka University in 2001 and completed the M.S. 

and doctoral programs in 2003 and 2006, respectively. He was a postdoctoral fellow at 

Osaka University from 2006 to 2008. He was a senior research fellow at Graz University 

of Technology from 2012 to 2013. He is currently an associate professor at Cybermedia 

Center, Osaka University. His research interest includes computer vision, and pattern 

recognition. He is a member of the IEICE, IPSJ, VRSJ, and IEEE. 

International Journal of Bioscience, Biochemistry and Bioinformatics

108 Volume 10, Number 2, April 2020

https://creativecommons.org/licenses/by/4.0/


  

Masaru Ishii professor of immunology and cell biology, Graduate School of 

Medicine and Frontier Biosciences, Osaka University) graduated from the Osaka 

University Medical School in 1998, and then worked as a physician specialized in 

rheumatology and internal medicine. He studied in the National Institutes of Health as a 

research fellow supported by the Human Frontier Science Program (2006–2008), as a 

Laboratory Chief in Osaka University Immunology Frontier Research Center (associate 

professor; 2008–2011, professor; 2011–2013), and then appointed as a professor and chairman of the 

Department of Immunology and Cell Biology, Graduate School of Medicine, Osaka University, since 2013. 

The bulk of his studies has so far elucidated the cellular dynamics in live bone tissues, with a special focus 

on bone-resorbing osteoclasts, by using intravital multiphoton-based bone imaging that he has originally 

developed. His study is not limited in the field of bone biology, but is currently covering diverse research 

topics where cells are dynamically moving, such as immune cell migration in inflammatory sites and cancer 

invasion/metastases.  

 

Hideo Matsuda received his B.Sc. degree in physics from Kobe University, Japan, in 

1982, and he received his M.E. and Ph.D. degrees in computer science from Kobe 

University, Japan, in 1984 and 1987, respectively. He has been a professor in the 

Department of Bioinformatic Engineering, Graduate School of Information Science and 

Technology, Osaka University, since 2002. His research interests include genomic data 

analysis, gene regulatory networks, and gene expression analysis. He is a member of JSBi, 

IPSJ, IEEE-CS, and ACM. 

 

 

 

 

International Journal of Bioscience, Biochemistry and Bioinformatics

109 Volume 10, Number 2, April 2020

 M.D., Ph.D. (


