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Abstract: S-nitrosylation (SNO) is a sulfur atom occurring in cysteine amino acid in the protein connected 

to nitric oxide (NO), and it is one of the most important and universal Post-translational modifications. 

Nitroso modification will affect regulating cell function and information transfer. In recent years, there were 

many studies have developed the method of indentify S-nitrosylation substrate site in silicon. Unfortunately, 

people did not find significant characteristics for identification in protein sequence. Therefore, this study 

aims to explore structural characteristics on tertiary structures of S-nitrosylated proteins. As the number of 

the crystal structure in the PDB increases, also many SNO sites have been experimentally verified, we 

characterized these substrate sites containing 3D structures by structural analysis methods, such as Spatial 

amino acid composition, side chain orientation, and DSSP relative solvent accessible area. Besides, the 

support vector machine (SVM) was employed to generate the predictive model with the consideration of 

both sequential and spatial features. According to the evaluation of five-fold cross-validation, the spatial 

model could obtain a higher accuracy than the sequential model. Additionally, this work revealed that the 

model concerning multiple spatial features could achieve best performance in the prediction of SNO sites. 

 
Key words: S-nitrosylation, SNO, nitric oxide, tertiary structure, side chain orientation, support vector 
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1. Introduction 

Protein S-nitrosylation (SNO), one of the various posttranslational modifications (PTMs), is a selective 

and reversible PTM by addition of nitric oxide (NO) moiety to cysteine (Cys) sulfur atom in proteins, 

critically regulates protein activity, localization and stability. SNO is thought to play a role which similar to 

phosphorylation, as a pleiotropic regulator that elicits dual effects to regulate diverse pathophysiological 

processes in plant [1] and human diseases, especially in cardiovascular disease and protection [2], the 

immune response [3], neurodegenerative disease [4], inflammation [5] and cancers [6]. Differential 

expression of various SNO targets modulate the localization, stability, and activity of proteins [7]-[9]. The 

SNO status of proteins may be linked to many cancer therapy outcomes as well as therapeutic-resistance, 

generating the need to develop SNO-related anti-cancer therapeutics [10]. With the importance of SNO in 

molecular processes, numerous efforts have been directed toward compute biological studies using protein 

sequential method to identified S-nitrosylation site in silicon [11]-[15]. Among the numerous studies, there 
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are no significant properties in protein sequence around SNO sites. People try to develop more advanced 

methods to identify SNO sites. 

Due to the progress of the structural genomics projects, there are more than 100,000 structures in 

Protein Data Bank (PDB) [16]. With the increase in crystal structure, more PTM site can mapped on known 

structures. And more researches try to dig out useful information from these structures. Durek and 

co-workers characterized phosphorylation sites by spatial amino acid propensity distributions to generate 

spatial signature motifs and the subsequent assessment of this information to improve the prediction of 

phosphorylation sites in proteins [17]. Karabulut et al. present the first comprehensive analysis of global 

and tissue-specific sequence and structure properties of lysine acetylation sites based on recent 

experimental data [18]. The study of Marino et al. have tried to observe characteristics of endogenously 

SNO modified in WT mouse liver on protein 3D structures, and concluded the endogenous 

S-nitrosoproteome in the liver has structural features that accommodate multiple mechanisms for selective 

site-directed S-nitrosylation [19]. 

As the number of experimental SNO sites and protein crystal structure grows, many SNO sites can be 

observed in the 3D structure now. The stably growing in vivo or in vitro SNO sites have prompted an 

increasing interest in the structural characterization of SNO substrate sites. In this study, all experimentally 

confirmed SNO peptides were used to investigate their spatial context such as spatial amino acid 

composition, solvent-accessible surface area, secondary structures, side chain orientation and structurally 

neighboring amino acids of SNO sites. Additionally, we build SVM models by above method of investigation, 

and we got performance better than SVM models which only use sequence information. 

 

 
Fig. 1. Flowchart of this work. 
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2. Material and Methods 

2.1. Data Collection and Preprocessing 

Fig. 1 depicts the system flow of the proposed method, including data collection and preprocessing, 

sequence-based investigation, structural characterization, model training and evaluation. The 

experimentally verified S-nitrosylation sites are mainly extracted from dbSNO [20] and release 20140711 of 

UniProtKB [21]. In this study, the data set extracted from dbSNO and UniProtKB is regarded as the training 

set for sequential and structural investigation of S-nitrosylation sites. After removing the redundant sites 

between dbSNO and UniProtKB, the number of cystein (C) substrate sites is 4165. Based on structure region 

annotation from PDB and UniProtKB, we removed sites which aren’t located on known 3D structure regions. 

Finally we got 298 cysteine sites which can map on 3D structure as positive set. On the other hand, we view 

non- s-nitrosylation cysctein sites which aren’t around 12Å from positive sites in spatial as negative data set. 

Final training data set as shown in Table 1 and each similarity of 13-mer flanking peptide of cysteine 

central wasn’t over 90%. 

 
Table 1. Statistics of Data Set in This Investigation  

 Number of 
positive site 

Number of negative  
site 

Number of SNO proteins 

Data set 298 763 191 

 

2.2. Sequence-Based Investigation 

In order to compare sequence-based investigation with structure characterization, some basic sequential 

peptide character also need to be investigated. The 13-mer flanking sequences (from -6 to +6) from the 

substrate sites (position 0) are extracted for sequence-based investigation. Since the flanking sequences of 

the substrate sites are graphically visualized as the entropy plots of sequence logo, the conservation of 

amino acids surrounding the s-nitrosylation sites can be easily observed. We used amino acid composition 

method to investigate sequential peptide of SNO sites because it is a popular way for SNO site in past 

research. Each SNO peptide was encoded to 20 dimensions for SVM model training. In addition to the 

composition of amino acids of 13-mer peptide, the secondary structure (SS) around the s-nitrosylation sites 

was also investigated. Since these subtract sites have mapped on PDB 3D structure, the flanking sequence 

must have experimentally secondary structure. We extracted the secondary structure from DSSP files. The 

output of DSSP explained extensively under 'explanation'. The very short summary of the output is: H = 

α-helix, B = residue in isolated β-bridge, E = extended strand, participates in β ladder, G = 3-helix (310 helix), 

I = 5 helix (π-helix), T = hydrogen bonded turn, S = bend. We consolidated the output into three terms, "H," 

"E" and "C" which stand for helix, sheet and coil, respectively, and it was encoded to "0," "1" and "2" for SVM 

model training. 

2.3. Spatial Amino Acid Composition 

This characterized method was first used in identified kinase specific phosphorylation site [17], [22]. 

After that, many people used similar method to identify other PTM site which doesn’t have signal sequence 

motif and they also got some significant characteristics from 3D structure. In this study, a spatial amino acid 

composition (Spatial AAC) is determined by calculating the relative frequencies of 20 amino acid types 

within radial distances, ranging from 4 to 12 Å and centralized by s-nitrosylated amino acid residue. In 

addition, the radial distances is determined by calculating any two amino acid C-alpha atom. A radial 

cumulative propensity plot was applied to display the spatial AAC. In order to identify the significant 

difference of spatial AAC between S-nitrosylation sites (positive data) and non-s-nitrosylation sites 

(negative data), a measurement of F-score has been applied to calculate a statistical value for each radial 
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distance. 

2.4. Spatial Amino Acid-Atom Composition 

Since NO is a very small molecule, we think even the difference of atom level may affect the modification 

of cysteine done by NO. A study of Lin et al. in 2013, mentioned that using amino acid atom distribution was 

to help predict DNA binding site on protein [23]. Based on above method, we further observed distribution 

of the atoms of each amino acid. We divided 20 amino acids to 167 amino acid & atom combinations 

(AA-atom). For example, Glycine contains 4 atoms, "N", "CA", "C" and "O", and Glycine became 4 

combinations: G-N, G-CA, G-C, G-O. Same as spatial amino acid composition, it is determined by calculating 

the relative frequencies of 167 AA-atom types within radial distances ranging from 4 to 12 Å and 

centralized by s-nitrosylated cystein Sulfur-Gama(SG) atom. 

2.5. Side Chain Orientation 

The side chain orientation is an important indicator to determine a catalytic site on protein structure. 

Chien et al. have used this method to predict protein catalytic residues [24]. According to their study, 

catalytic residue is a residue whose distance to the catalytic central is less than 10Å and side chain angle to 

catalytic central is less than 80 degree. In this study, the side chain orientations of the amino acids which 

spatially surround the SNO substrate sites are determined to investigate the functional roles and to bind 

effects of the spatially neighboring amino acids to the substrate sites of NO attachment. 

  

 

Fig. 2. Schematic representation of side chain orientation. 

 

As illustrated in Fig. 2, given a spatially neighboring amino acid k which distance is less than 10Å from 

cysteine SG atom, the side chain direction of residue k is the vector 𝑠𝑘 from its Cα atom to its functional 

atom: 

𝑠𝑘 = 𝑋𝑘
𝐹 − 𝑋𝑘

𝐶𝐴                               (1) 

where 𝑿𝑘
𝐹  and 𝑿𝑘

𝐶𝐴 are the functional atom and Cα atom of residue k. Table 2 lists the amino acid types 

whose functional atom is on the side chain (side chain functional amino acids). And we decided to use the 

functional atom for calculating side chain vector of the amino acids. For each cysteine SG atom i and any one 

of its surrounding residue j, the vector between point i and Cα atom of residue j is defined as: 

θ
i
j 
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𝑣𝑖𝑗 = 𝑋𝑖 − 𝑋𝑗                               (2) 

where 𝑋𝑖  and 𝑋𝑗 are the SG atom i and Cα atom of residue j. We computed the angle 𝜃𝑖𝑗 between 𝑣𝑖𝑗 and 

𝑠𝑗 , which is the side chain vector of residue j, 

𝜃𝑖𝑗 = 𝐚𝐜𝐨𝐬
𝑣𝑖𝑗∙𝑠𝑗

‖𝑣𝑖𝑗‖ ‖𝑠𝑗‖
                           (3) 

the angle θ k less than 80◦ is defined as a functional residue to the cysteine residue of the SNO substrate 

site. 

2.6. Model Construction and Evaluation 

This study incorporates support vector machines (SVMs) with the sequential and structural features to 

generate the predictive models for the identification of S-nitrosylation sites. A public SVM library, namely 

LIBSVM, is applied for training the predictive models. The radial basis function 

(RBF): K(Si,Sj)=exp(−γ∥Si−Sj∥2) is selected as the kernel function of SVM. Five-fold cross-validation is used 

to evaluate the predictive performance of the models. The following measures of predictive performance of 

the trained models are defined as: Precision (Pre) = TP/(TP+FP), Sensitivity (Sn) = TP/(TP+FN), Specificity 

(Sp) = TN/(TN+FP) and Accuracy (Acc) = (TP + TN)/(TP+FP+TN+FN), where TP is true positive prediction; 

TN is true negative prediction; FP is false positive prediction and FN is false negative prediction respectively. 

 

 

Fig. 3. Amino acid composition and secondary structures of SNO sites. 

 

3. Results and Discussion 

3.1. Sequential and Structural Amino Acid Composition of SNO Sites  

In sequence-based investigation of substrate site, Fig. 3A shows that there is no significant motif in flank 

of SNO sites. However, the Two Sample Logo as presented in Fig. 3B, is a comparison of position-specific 

amino acid composition, between SNO sites (top) and non-SNO sites (bottom), indicates that the positively 

charged Lysine (K) and Histidine (H) residues are highly abundant around SNO sites. Consistent with 
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previous studies, the SNO cysteine has the preference to locate in the regions flanking with acidic and basic 

amino acids. Fig. 3C and 3D show the frequency of secondary structure of center substrate site and flanking 

sequence. Sequence logo shows that there is no significant secondary structure motif surrounding the SNO 

sites. There are still differences found on center cysteine that more positive site located on coil region and 

more negative site located on helix region, as presented in Fig. 3C. 

When it comes to Structure characterization, Fig. 4A shows the radial cumulative propensity plot (spatial 

neighborhood) of amino acid composition, surrounding 298 SNO substrate sites based on tertiary 

structures in the range from 4 to 12 Å respectively. Found in the observation from Two Sample Logo, SNO 

has the significant enrichments of K and H residues in the sequential neighborhood of substrate sites. 

However, the radial cumulative propensity plots present that there is an additional enrichment of amino 

acids in the spatial neighborhood. In addition to the K and D residues, an enrichment of hydrophilic 

residues exists and includes Asparagine (N) and Proline (P), accompanied by a remarkable depletion of 

hydrophobic Cysteine (C) residue in the spatial neighborhood. 

 

 
Fig. 4. Spatial amino acid and detailed atom composition. 

 

Fig. 4B shows 167 AA-atom (X-axis) and the average of composition (y-axis). We found average 

composition for spatial range 8Å and 10Å has more difference between positive and negative. In 8Å range, 

significant difference between atom of number 33 to number 47(atom of Cysteine and Glutamine), and 96 

to 114(atom of Methionine and Phenylalanine). When range zoomed to 10Å, trend of number 48 to number 

56(atom of Glutamic acid) became significant. However, we found that not all atoms belong to same kind of 
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residue can have same difference value between positive and negative data. Differences indeed exist at 

atomic level. 

3.2. Side Chain Orientation of SNO Sites 

 For characterization of side chain orientation, we calculated the average of side chain angle of top 3 

residues, which are nearest from central cysteine by above method. As shown in Table 2, the average is 

closely between positive and negative and both they are over than 80:. Then we calculated average of side 

chain angle of each residue, which locates in range 10Å from central cysteine SG atom. The average of side 

chain angle of positive sites has been smaller than negative, and average of negative is more than 80:. This 

means side chain angle of spatial neighbor residue have tendency to point to cystein SG atom (NO binding 

atom). In before researches, it was said that side chain of residue can occur attract for small molecular. If the 

side chains of surrounding amino acids tend to be in the same direction, this position will be easy to form a 

catalytic location. Concerning PTM issue, we can also use side chain orientation as the combination of 

molecules even this kind of molecules are much smaller than some ligand. There is no difference found in 

small range for residue side chain angle, only the range zoomed to 10Å, the difference can be tell. Overall, 

the combination of NO should be affected by the side chain angle of surrounding residues. 

 
Table 2. Average of Side Chain Angle of Cysteine Surround Residues 

 Nearest three 
surround residues in 

positive data set 

Nearest three 
surround residues in 

negative data set 

Distance < 10 Å 
surround residues in 

positive data set 

Distance < 10 Å 
surround residues in 

negative data set 

Average of side 
chain angle 

94.97: 93.28: 53.17: 81.36: 

 

 

Fig. 5. Characteristics of relative solvent accessible area around SNO sites. 

 

3.3. Relative Solvent Accessible Area of SNO Sites 

Fig. 5 shows average of relative solvent accessible area of cysteine and spatial neighbor residues in 10Å, 

positive and negative respectively. Average value presented that positive RSA is bigger than both negative 

cysteine and surrounding residues. Even so, we observed the average of RSA in positive cysteine is still low, 

so we tried to observe the appearance of protein 3D structures. As shown in Fig. 6, many cysteine residues 

are coated with surrounded residues even distributed on the surface of proteins and this makes its RSA 

value to be low. We also found a pair of same protein structure which one of them has modified cysteine 

(SNC). Even cysteine has been modified, the residue still be buried by surrounded residues (RSA: 0.03). The 
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RMSD of two structures alignment is 0.241; this means these two structures have highly structure similarity. 

Thus we found even cysteine be buried in protein NO molecular, still it can bind on cysteine. 

 

 

Fig. 6. Structure and solvent area comparison between same proteins. Left-hand side is the cysteine 

modified structure and its RSA value is 0.37. Right-hand side is the non-modified cysteine with RSA value as 

0. RMSD of two structure alignment is 0.241. 

 
Table 3. SVM Performance 

Training features Spatial 
Range 
(Å) 

TP FP TN FN Sensitivity Specificity Precision Accuracy 

AAC - 174 323 440 124 58.39% 57.67% 35.01% 57.87% 
Secondary Structure - 162 333 430 136 54.36% 56.37% 32.73% 55.79% 
SPAAC 12 177 315 448 121 59.40% 58.72% 35.98% 58.91% 
SPAAAC 10 180 296 467 118 60.40% 61.21% 37.82% 60.98% 
Side chain orientation 10 165 316 447 133 55.37% 58.58% 34.30% 57.68% 
SPAAAC + 
Side chain orientation 

10 190 280 483 108 63.76% 63.30% 40.43% 63.43% 

AAC + SPAAAC+ 
Side chain orientation 

10 183 292 471 115 61.41% 61.73% 38.53% 61.64% 

 

3.4. Cross-validation Performance 

Table 3 shows all cross-validation performance of each sequential and spatial features and hybrid 

combination. For sequence feature, the predictive of amino acid composition of 13-mer peptide (AAC) 

sensitivity, specificity, precision, and accuracy are 58.39%, 57.67%, 35.01%, 57.87% respectively. The 

performance of secondary structure is less than AAC. This performance shows there is no significant 

characteristic in frank sequence for identified S-nitrosylation. For spatial feature, each method was adopted 

to do the test from range 4Å to 12 Å. Each measures of predictive performance increased when the spatial 

AAC at 12Å, as shown in Table 3. And then, spatial AA-atom compositions (SPAAAC) at 10 Å proposed 

better performance than above methods. This indicates that the difference in atomic level is preferably be 

used to identify cysteine S-nitrosylation. Performance of side chain orientation is 55.37%, 58.58%, 34.30% 

and 57.68% respectively. But the model trained with a combination of SPAAAC and side chain orientation 

performed best. Finally, we combined sequential and spatial best feature, the predictive performance was 

slightly declined but still better than sequential performance only. Overall, the features of spatial 

characteristic were more powerful than sequential characteristic as for identified S-nitrosylation site. 
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4. Conclusion 

As many studies have described, it is hard to find significant features of s-nitrosylation site in sequence, 

we used protein structural attributes to dig out useful characterizations such as spatial amino acid 

composition, side chain orientation. Also, we used this method to identify s-nitrosylation site in silicon. 

Apart from s-nitrosylation site problem in sequence structure, there are many other issues share the same 

problem. As the number of crystalline structures grows rapidly, more and more researchers turn to study 

3D structure. For now, many PTM sites can mapped on known PDB structures, such as glycosylaiton, 

acetylation, methylation etc. Karabulut et al. have used Spatial amino acid composition to identify tissue 

specific acetylation site and they also discovered that characteristic of 3D structure are different from the 

one of amino acid sequence [18]. To sum up, we proposed that spatial amino acid composition and side 

chain orientation methods can be used to enable the identification of PTM sites on protein 3D structure. 
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