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Abstract: This paper presents an effective clinical decision support technique for recommending 

medications for critical care patients by combining various clinical data of the patients. Specifically, our goal 

is to infer necessity of medications for intensive care unit (ICU) patients by looking into similar patients' 

medication. The patient similarity is inferred utilizing their first 24-hour clinical data. Modern ICUs are 

equipped with numerous monitoring devices, including devices that monitor vital signs such as heart rate, 

blood pressure, Oxygen saturation and so on. Patients also undergo different pathological (i.e., laboratory) 

tests, medications and nursing. In this work, we utilize a combination of several of these data for inferring 

the necessity of prescribing or administering certain medication. We encounter several challenges 

associated with this task, including heterogeneous sources of features such as lab test results, prescription, 

fluid intake and fluid output, missing values, class imbalance and high dimensionality. We address some of 

these challenges by feature selection, missing value imputation and class balancing. We investigate the 

effectiveness of using patient similarity network and fusion of these networks for the recommendation task. 

We also study the effectiveness of ensemble classification models, where each model is trained from a 

specific set of features. When recommending certain medication for a new patient, we first find the most 

similar patients of the query patient based on the first 24-hour clinical data and recommend or decline 

based on the medication data of those patients. The proposed technique has been evaluated on a real ICU 

patients’ database and exhibits AUROC score of up to 0.83 for certain prescription drugs. 
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1. Introduction 

Recent advances in intelligent data analytics, availability of high-performance computing and abundance 

of clinical data have encouraged multitude of research works in clinical decision support systems. 

Healthcare data are generated from many different sources and in different formats such as electronic 

health records (EHR), medical imaging, medical text data (e.g. nurse notes), and public health data. In this 

work, we are interested mainly on utilizing various clinical records of intensive care unit (ICU) patients for 

recommending medications. Modern ICUs are equipped with various sensors and monitoring devices, and 

therefore ICU patients are usually always under intensive observation. Therefore, many different forms of 

data are generated by the patients, such as time series data (e.g. vital signs), pathological test results, 

periodic administration of medication, and fluid intake and output data. In addition to these, there are 

nurse notes, demographic data as well as administrative (e.g. admissions) and procedural (e.g. caregiver 
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name) information. 

Different forms of the patient data are being used by researchers to achieve different goals. For example, 

vital signs have been used to predict patient situation (e.g. deterioration) ahead of time that can warn 

caregivers with plenty of time to react and save the patient’s life [1]. Lab test results also have been used to 

predict patient survival probabilities [2]. However, in this work we address a different problem, namely, 

recommendation of medication for ICU patients using different clinical data sources. The motivation is that 

administration of correct and necessary medication for ICU patient is critical. An effective recommender 

system would be beneficial for caregivers by aiding them in this critical decision making. We have shown 

that combining clinical data from different sources can improve the effectiveness of the recommendation. 

We utilize different data sources, including medication and fluid input data, fluid output data, and 

prescriptions. 

There are many challenges involved in building such a system, some of which are mentioned in the 

literature ([1], [3]-[5]). The first challenge is that of constructing a uniform feature vector. All machine 

learning tasks require instances to have uniform feature vector. For example, if we consider each patient as 

an instance, and use his lab test results as features, then we must make sure that for all the patients we use 

the same set of lab tests as features. However, this may result in many missing values because a particular 

lab test may not be done for all the patients. In addition, it is also possible that the same lab test has been 

done more than once (e.g. blood sugar), which brings the problem of multiple values for the same feature. 

Another problem is that of high dimensionality, which occurs because of many possible data sources and 

data variations. Finally, class imbalance is also a significant challenge, which is a common phenomenon in 

medical data. 

In this work, we address mainly the first three challenges, i.e., missing values, high dimensionality, and 

class imbalance. The first two challenges are interrelated, because the missing values are introduced mainly 

because of high dimensionality, and they bring noise, redundancy, and sparsity in the dataset. Therefore, 

feature selection is applied to choose the features that contribute most for inferring the target class. We also 

get rid of features that have too many missing values. We address the class balancing problem by selecting 

under-sampling of instances from a larger dataset. 

Our contributions are as follows. First, we propose a technique for suggesting medications for ICU 

patients based on different clinical data. In this work, we only use the first 24-hour clinical data for building 

this recommendation system. We believe this system will be useful for caregivers in taking medication 

decisions carefully and effectively. Second, we use patient similarity for building the recommender system, 

which tries to build a network of patient similarity based on the available feature values. Patient similarity 

has been recently used successfully for cancer prediction and other clinical decision support systems [6], 

[7]. Finally, we exhibit three different techniques to combine data from multiple sources and the 

effectiveness of each such technique. These techniques are incremental feature construction, ensemble 

construction and Affinity Network Fusion (ANF). To the best of our knowledge, this is the first work to 

propose a clinical decision support specifically for recommending medications using patient similarity.  

The rest of the paper is organized as follows. Section 2 discusses the works relevant to our technique. 

Section 3 describes the proposed approach in detail. Then Section 4 reports the experiment details and 

analyzes the results. Finally, Section 5 concludes with directions to future research. 

2. Related Work 

We discuss the related works under three broad categories. The first category deals with different clinical 

and healthcare support aspects of ICU patients. The other category of related work applies machine 

learning in general for medical decision support including recommender systems. And the third category 
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discusses the recent advances in patient similarity network approach for clinical decision support. 

First, we discuss the works that specially deal with ICU patients. Mao et al. [1], developed a data-mining 

approach to predict deterioration of patients in the ICU. They used time-series data obtained from different 

sensors attached to patient’s body, such as blood pressure, heart rate, O2 saturation and so on. They 

preprocessed these time-series data and derived several features. Finally, they applied different feature 

selection and optimization techniques to build prediction model, which observes good prediction rate. 

Pirracchio et al. [8] proposed a learning algorithm to predict mortality of ICU patients and successfully used 

in real hospitals. Cismondi et al. [9] addressed a different goal involved with ICU patients, namely, how to 

reduce unnecessary lab testing in the ICU. However, they only focus on gastrointestinal bleeding. In our 

work, we are targeting all cases in the ICUs. 

Purushothan et al. [10] discussed a benchmark work on a big ICU database, which propose a deep 

learning model for survival prediction, ICU stay length prediction and ICD9 prediction task. This work 

applies extensive data preprocessing and provides comprehensive study on the observed results. 

Some other relevant work dealing with ICU patients are as follows. Fialho et al. [3] proposed a feature 

selection technique to find the best features in order to predict ICU readmissions. Cheng et al. [5] proposed 

a clinical decision support system using association rule mining that finds associations among various 

variables such as patients’ conditions, length of ICU stays and so on, and reports interesting findings. 

Our proposed work is different from the above in that our goal is to develop a recommender system to 

complement caregiver decision making in prescribing and administering drugs, whereas the above systems 

deal with mainly three goals, namely, patient survival prediction, ICU readmission prediction and length of 

hospital stay prediction. Also, we study a combination of different data sources rather than only vital signs 

or demographic data.  

The other category of related work are all approaches that in general deal with data mining-based 

solutions for developing clinical decision support systems. Herland et al. [11] did a comprehensive survey 

on this topic, i.e., clinical data mining applications on big data in health informatics. Celi et al. [12] applied a 

statistical approach to predict mortality among patients with acute kidney injury. Cai et al. [13] proposed a 

Bayesian network approach to develop models using EHR for real-time prediction of several targets, 

including length of hospital stay, mortality, and readmission of hospitalized patients. 

Other related applications of machine learning are in the recommender systems. Recommender systems 

predict the relevance of an item (e.g. medication, drug, therapy, movies, music, research article, social tag, 

twitter pages) for a give user (e.g patient, user of e-business system) using various machine learning and 

information retrieval tools [14]. They have been evolved in recent years with real-world applications in 

on-line shopping, e-commerce, and entertainment areas to solve the problem of information overload [15], 

[16]. Specifically, the recommender systems are used mainly to suggest an item of interest for a user of 

information system or Web applications such as Amazon [17], Google [18], and Netflix [19] recommender 

systems. However, their applications in healthcare are still in its early stages [20]. 

The main approaches to design recommender systems fall into three categories namely, Content-Based 

Filtering, Collaborative Filtering, and Hybrid recommender systems [21]. The Content-Based approach is 

based on collecting and analyzing user’s data, activities, and profile to predict the rating of items of interest 

[22]. Consequently, items that are rated high in the past will be recommended by these systems. The 

Collaborative filtering [23], which is the most widely used recommender system, first attempt to find other 

users ui whose profiles are like that of the user u whom they give a recommendation to. Then, to foresee 

user u ratings on items of interest, the Collaborative Filtering systems utilize known ratings of these items 

that are assigned by users ui. The Hybrid combines both Content-Based Filtering and the Collaborative 

Filtering techniques [24], [25]. Our work shares some commonalities with the Collaborative Filtering 
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approach by finding patient similarity based on available clinical feature values. However, it stands out in 

two ways. Firstly, for similarity computation it combines the data from different sources rather than using 

only patient profile. Secondly, to the best of our knowledge it is the first to support clinical decision making 

by recommending medications for ICU patients. Depending on the type of the end user, the proposed 

clinical recommender system could be used for different purposes. For example, it could be used for clinical 

decision support, as in our work, if the end users are health professionals. On the other hand, when the end 

users are patients, it could be utilized to recommend healthy lifestyle that is customized for each patient 

case [20].  

Next, we discuss different types of Patient Similarity Networks and their applications. Patient Similarity 

Networks (PSNs) are novel paradigm that converts heterogeneous clinical data types into a comprehensive 

network views which facilitate clinical decision making [6], [26]. Given two or more data types, the PSN 

builds a network for each data type by adding an edge between each two patients who have pairwise 

similarity in a given feature. Then it fuses these networks into a single similarity network. PSNs outperform 

the traditional machine learning because it makes that data more interpretable and surpass the single data 

type analysis by fusing data from different sources or types to address the challenges of noisy and 

incomplete data [26], [27]. 

PSN is an emerging framework and there is a limited prior work that used it for clinical decision support 

[6], [7], [28]. Pai et al. [7] did a survey on different approaches of clustering and classification for clinical 

decision support using PSN. Wang et al. [6] uses PSN as a clustering algorithm to group similar cancer 

patients into different similarity network for each type of data, then fuses mRNA expression, DNA 

methylation, and microRNA (miRNA) expression data to generate an overall view of a disease. Li et al. [28] 

identified new subtypes of type 2 diabetes based on EHR and genotype data from 11; 210 patients using 

PSN. Although we do not use PSN directly, we compare our work with a special implementation of PSN 

fusion called Affinity network Fusion (AFN) [29], which have been found not so effective for the clinical data 

types that we use. 

3. Proposed Technique 

In this section first we give an overview of the proposed technique and then describe it in detail. 

3.1. Problem Statement 

Given the clinical records of a patient X, and a target medication Y (e.g. Propofol), the problem is to infer 

whether Y is recommended for X or not. Therefore, it is a two-class classification problem. If the inferred 

value of Y = 0 (i.e., negative class), then the medication is not recommended, and if Y =1 (positive class), 

then it is recommended. We propose a classification model based on patient similarity in first 24-hour 

clinical data. 

3.2. High Level Description 

Fig. 1 shows the high-level architecture of our approach. The ICU patients’ data are collected from 

MIMIC-III database. We use different tables from the database, which includes demographic data, lab test 

results, fluid intake and output data and medication data. First, we choose two target features for 

recommendation. Then we choose cohort of patients based on age. This follows selection of features for 

training. Then class balancing is applied using selective under-sampling of subjects. This follows feature 

extraction from the processed data. A separate feature vector is constructed per table (e.g. medication data). 

This is followed by missing value imputation. Then we systematically combine the individual feature 

vectors and generate classification models using three different techniques, namely, incremental feature 

construction (IFC), ensemble construction (EC), and affinity network fusion (ANF). Finally, these models are 
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used to recommend medication of new ICU patients based on his clinical records. 

 

 
Fig. 1. Architecture of the proposed approach. 

 

3.3. Database 

The source of all datasets in this work is MIMIC-III [30]. The database is collected by the Multi-parameter 

Intelligent Monitoring in Intensive Care (MIMIC) project at the Laboratory of Computational Physiology at 

MIT, funded by the National Institute of Biomedical Imaging and Bioengineering. The data was collected 

between 2001 to 2012 and contain more than 50,000 hospital admissions. 

The database consists of 26 different tables, each containing different types of information, such as 

demographic data, hospital admission data, ICU stay data, medication intake, fluid intake, and fluid output, 

lab test results, chart events, prescription, nurse notes and so on. Most of the tables are event-based, 

meaning; there is a record for every event. For example, a lab test is an event, which is a record in the 

database containing the patient ID, timestamp of the event, test ID (links to the type of the test), numeric 

test value, abnormality flag, unit of measurement and so on. Among these tables, we mainly use the tables 

containing numeric data, namely, inputevents (containing fluid intake data), outputevents (containing fluid 

output data), chartevents (containing all charted records), and prescriptionevents (containing prescription 

drugs data) as well as some demographic and admission related information from other tables. These tables 

contain most of the clinical records. 

3.4. Data Selection, Extraction, and Cleaning 

Target medications: We choose two targets that are frequently administered medications but used for 

two different purposes: 

 Target 1: Docusate Sodium. This is a frequently administered drug obtained in the inputevents 

table. This medication is mainly used as a laxative. 

 Target 2: Propofol. This is a prescription drug obtained in the presecriptionevents, which is mainly 

administered for initiating anesthesia. 

Note that alternate medication exists for both docusate sodium and propofol. Therefore, recommendation 

of these medications is likely to be beneficial for the physician for choosing the right alternative.  

Initial dataset selection: From the MIMIC-III database we choose only the patients with age 15+ as 
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these are the main age groups on which the target medication is applied. This gives us a dataset of about 

35,000 patients. 

Feature selection: From the initial dataset we retrieve raw data Feature selection: From the initial 

dataset we retrieve raw data from four different tables, namely, inputevents, outputevents, chartevents, and 

prescriptionevents. For each of these tables we prepare a separate feature vector for the patients. Then we 

apply feature selection in several stages. In the first stage, we discard features that contain more than 99% 

missing value. Still, most of the features remaining features had more than 90% missing value. Then we 

apply the second stage of selection by choose top 50 features based on their relevancy with the target 

attributes based on gain ratio criterion.   

3.5. Class Balancing, Feature Extraction, and Feature Vector Construction 

Class balancing: Based on the target attribute value, we can identify two classes of patients, namely, 

positive class where the target attribute is present (i.e., the medication was administered), and negative 

class where the target attribute is absent (i.e., medication was not administered). Then we apply class 

balancing by selective undersampling to keep the negative: positive class ratio 60: 40. This is explained in 

the next paragraph. 

Second stage data selection: We select two subsets of data from the initial dataset of 35,000 in order to 

keep the class balance consistent (i.e., 60:40). The first subset consists of 6,000 patients, and the second 

subset consists of 12,000 patients, both randomly selected from the 35,000 pool. This gives us two datasets 

(6,000 and 12,000) for each target feature. The reason for choosing two different dataset sizes was to 

evaluate the effectiveness of the recommender system on varying size of training data. 

Feature extraction: For each dataset mentioned above, we extract two kinds of features, namely, binary, 

and numeric. This is done as follows. First, for each selected feature, we extract only the first 24-hour 

records from corresponding database tables. When constructing the binary feature vector for a patient, we 

set 0 as feature value if no record (i.e., measurement) was found for the feature in the first 24 hours of 

hospital admission for the patient, and set 1 as feature value otherwise (i.e., if there is a record within first 

24 hours). When constructing numeric feature vector, we identify a feature value as missing if no record of 

the feature is found in first 24 hours. Otherwise, if a record is found, we use the numeric value of the feature 

to be the feature value. If, however, more than one record is found (i.e., more than one measurement was 

taken in first 24 hours, which is very common for certain features like ’blood sugar test’), then we take the 

average of all such numeric values as the feature value. Note that this approach gives us four different 

datasets for each target feature, namely, binary-6000, numeric-6000, binary-12000 and numeric-12000. 

Also, note that the binary datasets have no missing values, but the numeric datasets have many missing 

values because it is possible that for many features there is no record in the first 24 hours for a patient. We 

generate these two different sets of features in order to understand each of their effect in constructing the 

recommendation system. Note that there are other unstructured data available for the patients (e.g. nurse 

notes) but we vow to address the issue of using these data for developing recommender systems in future. 

Feature vector construction: For each of the datasets (e.g. binary-6000) we construct feature vector for 

each of the tables mentioned above (e.g. outputevents). This way we come up with three different feature 

vectors, which will be called as follows: OUT (corresponds to outputevents), IN (corresponds to 

inputevents), and PC (corresponds to prescriptions and chartevents combined). Missing value imputation 

and data normalization: For each numeric feature vector we apply standard imputation technique, for 

missing values, i.e., replace the missing value with the mean of the feature values. After this, we normalize 

all the features to obtain scaled value between 0 and 1. 

3.6. Recommender Model Construction 
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Now we discuss our model construction techniques. 

3.6.1. Notations and definitions 

We denote ( , )i jX X to be the Euclidean distance between patient vectors iX and
jX . 

DEFINITION 1 (PATIENT SIMILARITY ( , )i jX X ): Patient similarity is based on Euclidean distance 

between two patient vectors, iX and
jX , and is calculated as follows: 

 
2( , ) [ ( , )]i j i jX X exp X X   (1) 

where  is an adjustable parameter. 

DEFINITION 2 ( k -NEAREST NEIGHBORHOOD ( , )kNN X T ): For each test instance X , the k -nearest 

neighborhood of X  in training data T  is the set of k  training instances ix T  that have highest 

similarity with X . In other words, 1( ) { ,..., }kkNN X x x  where ix  belongs to training data and 

( ); ( )i jx kNN X x kNN X      

 ( , ) ( , )i jX x X x   (2) 

where k is an adjustable parameter. 

3.6.2. Incremental feature construction (IFC) 

Incremental feature construction is done by combining two or more sets of feature vectors.  

Let 1{ ,..., }mF f f  be the one set of features and 1{ ,..., }nG g g  be another set of features. 

Therefore, the incremental construction ( , )IFC F G  is a merger of these two feature sets, i.e.,  

 1 1( , ) { ,..., , ,..., }m nIFC F G F G f f g g    (3) 

The resultant feature vector contains all the features in both sets. In our experiments we apply IFC with 

OUT, IN, and PC. 

3.6.3. Ensemble construction (EC) 

Ensemble construction is done on two or more sets of feature vectors by constructing one similarity 

model per feature vector and then applying weighted majority voting on all similarity models.  

Let 1{ ,..., }mF f f  be the one set of features and  

1{ ,..., }nG g g be another set of features. Then ( , )EC F G  will first compute nearest neighborhood on 

F  and then on G , and then apply majority voting on the constructed neighborhoods. This is done as 

follows. Let X  be the test instance, and 1{ ,..., }NT x x  be the training data. Also let ( , )FU kNN X T  

be the k -nearest neighbors of X  in T  using feature vector F  and ( , )GV kNN X T  be the k

-nearest neighbors of X  in T  using feature vector G  Also, assume that the target feature value for 

training instance ix  is iy . Therefore, the majority voting is done as follows: 

 
( ) ( )

( , ) ( , ) / ( , )
i i

i i i

x U V x U V

EC F G y X x X x
   

    (4) 

3.6.4. Affinity network fusion (ANF) 

We use the ANF technique proposed in [29] to combine two more sets of features. This is done as follows. 
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Let 1{ ,..., }mF f f  be the one set of features and 1{ ,..., }nG g g  be another set of features. Then

( , )ANF F G  works as follows. First an affinity (i.e., similarity) matrix is generated for each of features, 

using both training and test instances (after target feature removed). Let ( )AM F , ( )AM G  be the 

affinity matrix for feature vectors F , and G , respectively. Each such matrix is a square matrix, where each 

row i  corresponds to an instance ix  and each column j  corresponds to an instance 
jx , and the cell 

value at ( , )i j  denotes similarity between ix  and 
jx  calculated using the given feature vector. After this, 

these two matrices are merged using a fusion technique that considers similarity values in both matrices. 

The fused matrix is identified as ( , )ANF F G . For a test instance X , the ( , )kNN X T can then be 

computed by using the similarity values found at the row corresponding to X , and columns corresponding 

to T . 

4. Experiments 

We now describe the experiments and analyze the results. 

4.1. Datasets and Preprocessing 

The source of all datasets in this experiment is MIMIC-III [30], and the preprocessing is done according to 

description in Section 3. We would like to recall to the reader about the notations that we will be using for 

the processed datasets. 

Docuset: The first target feature (medication) Docuset Sodium (Laxative). Propofol: The second target 

feature (medication) Propofol (Anesthetic). OUT: Feature vector constructed using outputevents table.  

IN: Feature vector constructed using inputevents table. PC: Feature vector constructed using 

prescriptions and chartevents table. binary-6000: The dataset (containing one of the above feature vectors) 

obtained with selected 6000 patients, where feature values are binary. numeric-6000: The dataset 

(containing one of the above feature vectors) obtained with selected 6000 patients, where feature values 

are numeric. binary-1200: The dataset (containing one of the above feature vectors) obtained with 

selected 12000 patients, where feature values are binary. numeric-12000: The dataset (containing one of 

the above feature vectors) obtained with selected 12000 patients, where feature values are numeric. Each 

dataset is evaluated using three-fold cross validation. 

4.2. Competing Approaches 

IFC: The incremental feature construction approach discussed in Section 3. 

EC: The ensemble construction approach discussed in Section 3. 

ANF: The affinity network fusion approach discussed in Section 3. 

VC: This is the vertical clustering approach proposed in [2]. In this approach, we use the combined 

feature vector (IN+OUT+PC), and then apply vertical clustering to create two clusters. Each such cluster will 

have a subset of features from the combined feature vector. Then we use two variations of evaluation. 

VC+EC uses Ensemble construction approach using the two clusters to evaluate the prediction performance, 

and VC+ANF uses ANF of the two clusters to evaluate prediction performance. 

4.3. Parameters and Other Setup 

Parameter  : this parameter is used for similarity computation. We use   = 1 in all experiments. 

Parameter k : this is the k  for k NN computation, and we use k =3 in all experiments. Both parameters 

were tuned to obtain good performance. For computing ANF, we use the tool by authors [29]. 
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4.4. Evaluation 

Evaluation metric: We use Area Under the ROC curve or AUROC in all experiments. 

Results in small datasets (numeric-6000 and binary-6000): Fig. 2 shows the performance of each 

competing approach in the numeric-6000 dataset for both target features. The best performance is 

obtained by IFC (IN, OUT, PS), which is the combination of all feature vectors. For Docuset this value is 0.64, 

and for Propofol it is 0.73. The 2nd best performance is observed for the EC (IN, OUT), being 0.63 and 0.71 

for Docuset and Propofol, respectively. We observe the benefit of incrementally adding feature vectors from 

these graphs. For example, when using only OUT features, the Propofol AUROC is found to be 0.5. However, 

by adding IN, and then again adding PC, we observe AUROC improved to 0.7, and 0.73, respectively. This 

same trend is also observed for Docusate. ANF performs relatively poorly on both target features. 

 

 
Fig. 2. AUROC on the numeric-6000 dataset. 

 

 
Fig. 3. AUROC on the binary-6000 dataset. 

 

Fig. 3 shows the performance of each competing approach in the binary-6000 dataset for both target 
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features. Here we also observe the same phenomenon, i.e., IFC (OUT, IN, PC) achieves the highest AUROC for 

both target features, followed by EC (OUT, IN, PC). Also, the gradual improvement as a result of combining 

more features is evident here too. Another important observation is that binary features perform better 

than numeric features. For example, the best Propofol AUROC obtained is for binary features is 0.81, 

whereas that of numeric features is 0.73. 

 

 
Fig. 4. AUROC on the numeric-12000 dataset. 

 

 
Fig. 5. AUROC on the binary-12000 dataset. 

 

Results in larger datasets (numeric-12000 and binary-12000): 

Fig. 4 and Fig. 5 show the performance of each competing approach in the 12000 datasets for both target 

features. The results follow similar trends as the 6000 datasets. For example, the best performance is again 

obtained by IFC (IN, OUT, PS), gradual improvement is observed with combination of more features, and 

better AUROC value for the binary dataset than the numeric. 

Results summary and discussion: Table 1 shows the summary of above results. 
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Table 1. Summary Result on All Datasets (Best Two Competitors) 

Competitor Target numeric6000 binary6000 numeric12000 binary12000 Overall 

IFC (OUT, IN, PC) 
Docuset 0.64 0.67 0.66 0.66 0.66 

Propofol 0.73 0.81 0.77 0.83 0.79 

EC (OUT, IN, PC) 
Docuset 0.63 0.63 0.62 0.59 0.62 

Propofol 0.71 0.78 0.68 0.71 0.72 

 

It is evident from the results that binary features achieve better results than numeric. This is because 

binary features do not contain any missing values, but numeric features contain substantial amount of 

missing values. Although imputation is done, it may not work well when too many feature values are 

missing (which is the case for many features and instances). Another observation is that Propofol prediction 

achieves better performance than Docusate. This happens because Docusate is a relatively more common 

medication that is used as laxatives. This may be used for a wide variety of patients. On the other hand, 

Propofol is only used during general anesthesia, meaning, its application is on a more constrained and less 

versatile pool of patients. This causes the models to learn better and make better predictions. Also, we have 

seen that ANF did not perform well. One possible reason is that ANF has many parameters, which was not 

tuned but could be tuned to get a better result. Finally, EC approach performs relatively worse than IFC 

because individual feature sets may not be big enough to construct a strong ensemble. However, for a larger 

feature vector, EC is expected to have better performance. 

5. Conclusion 

We have demonstrated a technique for utilizing combination of various clinical data sources for 

medication recommendation of ICU patient using patient similarity in the clinical data. The proposed 

technique uses only first 24 hours clinical data of patients to find the most similar patients, and 

recommends medication based on the similar patient’s medication record. We have shown different ways to 

combine different clinical data sources and examined their relative performance. We also discussed in detail 

the data preprocessing step, which also requires lots of effort and poses many challenges. We believe that 

the proposed work will be a valuable contribution to healthcare decision support, especially for clinical 

recommender systems where data exhibits similar characteristics. In future, we would like to emphasize 

more on other issues such as missing data handling, improving similarity network construction and 

handling of multiple values for the same feature. Furthermore, we would like to increase the effectiveness of 

the prediction performance by combining other data sources such as nurse notes. 
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