
 

 

 

 

Abstract—Many currently used algorithms for protein 

coding sequences require large learning sets consisting of real 

genes to estimate sensible values for used parameters and make 

the prediction reasonable. They also fail in recognition of short 

genes because their sequencescontain usually very weak coding 

signal. To overcome these problems, we worked out a new 

algorithm for finding protein coding potential in prokaryotic 

genomes. This algorithm uses homogeneous Markov chain for 

modeling nucleotide transition between fixed positions in 

codons thereby reduces the order of Markov chain retaining 

simultaneously information on dependence between nucleotides 

in sequence on relatively long distances. We tested performance 

of this algorithm in relationship to size of the learning set 

calculating true and false positive rates for different model 

orders. We also made some comparisons between our algorithm 

and commonly used GeneMark. The presented algorithm seems 

to  work better than GeneMark especially for smaller learning 

sets. 

 
Index Terms—Gene finding, markovchains, ORF, protein 

coding sequence 

 

I. INTRODUCTION 

Although many algorithms using different measures [1] for 

predicting protein coding sequences in prokaryotic genomes 

have been developed (see [2] and [3] for recent reviews), 

there is still an unsolved problem to distinguish true and false 

coding sequences among short open reading frames (ORFs) 

fewer than 300 bp. Though majority of these ORFs are 

spurious, some short genes are likely present in this set. They 

may encode peptides important for cell functioning, e.g. 

fulfilling regulatory or signalling functions.  

The number of small ORFs (smORFs) increases 

exponentially with the decrease in their length [4], which 

hampers to recognize real genes among false frames. 

Recognition of these genes is also difficult because their 

coding signal is disturbed by statistical fluctuations coming 

out from their short sequences. As a result of this, gene 

predicting programs that achieve very high rates of gene 

detection, accept simultaneously quite a lot of false positives. 

Moreover, many of these algorithms rely only on large 

learning sets of true genes which are necessary to make 

reliable estimation of used parameters. Therefore, they are 

not optimal for small bacterial genomes that encode smaller 
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sets of real genes. Then, to reach the proper size of learning 

sets, some non-coding ORFs are probably included in the 

training procedure. It may additionally increase the false 

positive rate in the stage of gene recognition. Furthermore, 

more general models which are assumed to be universal for a 

wide range of genomes are not appropriate for some, 

especially small genomes which are characterized by a 

specific nucleotide or codon bias.  

To avoid these problems we developed a suitable statistical 

model which can be useful for detection a protein coding 

signal. This model utilizes specific properties of protein 

coding sequences related to correlations in nucleotide 

composition in particular codon positions, which was 

observed both in prokaryotic [5] and eukaryotic genomes [6]. 

Our algorithm uses homogeneous Markov chains to analyse 

this coding information on long distances in particular codon 

positions (separately for the first, the second and the third) 

and does not require high chain order to work properly. The 

new method was compared with commonly used GeneMark 

also based on Markov chains [7]. 

 

II. ALGORITHM FOR FINDING A CODING SIGNAL 

The most common gene finders use Markov chain 

approach for modelling dependences between occurrence of 

nucleotides in protein coding sequences [7], [8]. Our method 

uses six homogeneous Markov chains forsuch sequences to 

determine the positional pattern frequencies which are next 

employedin detectionof coding signal in analysed sequences. 

This algorithm consists of two stages: the training step and 

the analysis step. 

A. Training Step 

The main task of this step is to compute model parameters 

which are calculated from a learning set of nucleotide 

sequences. For a given genome, such a set is a collection of 

annotated ORFs with ascribed function in GenBank database 

[9], excluding ORFs that were described as questionable or 

hypothetical. 

B. Construction of Transition Matrices 

Let us consider 𝑆 =  𝑆𝑖1 ,  𝑆𝑖2 , … , 𝑆𝑖𝑛 } asequence of 

nucleotides extracted from fixed codon positions (i=1,2,3) in 

a protein coding sequence. We construct the initial 

probabilities 𝑃(𝑆𝑖
ℎ)  ofh nucleotides𝑆𝑖 situated in the same 

codon positions i (where h defines the model order) and also 

the probability transition matrices between nucleotides in the 

same codon position. Matrices𝑀1 , 𝑀2, 𝑀3concern to direct 

(i.e. sense) strands of training sequences whereas matrices 

𝑀4, 𝑀5, 𝑀6  are based on complementary strands of these 
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sequences (i.e. antisense strands). The matrices𝑀4 , 𝑀5, 𝑀6 

are useful for the model of ”shadow” coding regions. 

Obviously,the matrices𝑀1, … ,𝑀6are transition matrices for 

homogeneous Markov chains. 

C. Determination of Positional Pattern Frequencies 

The obtained matrices are used to determine vectors of 

positional pattern frequencies in the learning set. The 

positional pattern is a vector of indices of matrices that give 

the highest value of total probability for a given codon 

position. In sum, there are 216 such potential patterns i.e. 111, 

112, 113, etc. It is easy to notice that in this case we actually 

use a maximum likelihood approach. The frequencies of 

these vectors are obtained as follows: 

1) Each sequence in every reading frame is analysed by 

moving windows with a fixed length (e.g. 96 nt) and a 

fixed window shift (e.g. 12 nt); 

2) For each window, a vector of digits 𝑑1
 , 𝑑2 , 𝑑3)called the 

positional pattern is determined in the following way: 

a) For each of three codon positions 

probabilities𝑃𝑀1
, 𝑃𝑀2

, 𝑃𝑀3
, 𝑃𝑀4

, 𝑃𝑀5
, 𝑃𝑀6

are calculated 

by using trained matrices 𝑀1 , … ,𝑀6respectively; 

b) if 𝑃𝑀𝑗
= 𝑚𝑎𝑥(𝑃𝑀1

, 𝑃𝑀2
, 𝑃𝑀3

, 𝑃𝑀4
, 𝑃𝑀5

, 𝑃𝑀6
) ,for fixed 

codon position i, then 𝑑𝑖 = 𝑗 and finally a positional 

pattern  𝑑1
 , 𝑑2, 𝑑3) is obtained; 

3) The frequency for each positional pattern is calculated 

from all analysed windows which aremade of reading 

framescoming from thelearning set (Fig. 1). 

 
Fig. 1. Bar plots of positional pattern frequencies computed for the training 

set sequences from Escherichia coli genome for six reading frames. 

D. Test or Analysis Step 

The aim of this step is to detect the correct reading frame 

for an analysed DNA sequence.The first two steps are the 

same as in the determination of positional pattern frequencies 

(subsection II.C.): 

1) Each sequence in every reading frame is analysed by 

moving windows with a fixed length (e.g. 96 nt) and a 

fixed window shift (e.g. 12 nt); 

2) For each window, a vector of digits 𝑑1
 , 𝑑2 , 𝑑3) called the 

positional pattern is determined in the following way: 

a. For each of three codon positions 

probabilities𝑃𝑀1
, 𝑃𝑀2

, 𝑃𝑀3
, 𝑃𝑀4

, 𝑃𝑀5
, 𝑃𝑀6

are calculated 

by using trained matrices 𝑀1 , … ,𝑀6respectively; 

b. if 𝑃𝑀𝑗
= 𝑚𝑎𝑥(𝑃𝑀1

, 𝑃𝑀2
, 𝑃𝑀3

, 𝑃𝑀4
, 𝑃𝑀5

, 𝑃𝑀6
) ,for fixed 

codon position i, then 𝑑𝑖 = 𝑗 and finally a positional 

pattern  𝑑1
 , 𝑑2, 𝑑3) is obtained; 

3) For a positional pattern  𝑑1
 , 𝑑2, 𝑑3 )found for every 

window and every reading frame, we ascribe a respective 

frequency 𝑃1 , 𝑃2 , 𝑃3 , 𝑃4 , 𝑃5 , 𝑃6  which were determined 

previously for the learning set; 

4) As an additional non-coding reference, we assume the 

uniform distribution of positional pattern frequencies and 

introduce probability𝑃7 =
1

216
; 

5) For every window we obtain a coding signal vector of 

frequencies for six reading frames plus the non-coding 

reference: 

 
𝑃1

 𝑃𝑖
7
𝑖=1

,
𝑃2

 𝑃𝑖
7
𝑖=1

, . . ,
𝑃7

 𝑃𝑖
7
𝑖=1

  

6) Finally, the respective elements of the coding signal 

vector are averaged over all windows for a given 

sequence. The sequence is assumed to be coding in frame 

i, if the iposition in the coding signal vectors has the 

highest value. 

The idea of the presented algorithm is similar to the 

algorithm which was introduced in the paper [10]. The main 

difference is the extension of the set of possible positional 

pattern frequencies from 27 to 216. The new approach takes 

into account all possible frequencies obtained by using 

matrices 𝑀1 , … ,𝑀6  at once. This approach gives better 

results especially in genomes with strong coding signal in the 

complementary (antisense) strand (e.g. in Escherichia 

coligenome). 

 

III. RESULTS 

We have tested our algorithm on Escherichia coli 536 

genome and have also analysed several small genomes 

ofMycoplasma. To evaluate efficiency of our algorithm we 

measured true positive rate (sensitivity) and false positive 

rate. For fixed model orders ( ℎ = 2 and ℎ = 4) we also 

compared our results with scores obtained by GeneMark 2.5 

for model orders ℎ = 2 and ℎ = 5. In this 

software,Escherichia coliwas used as a reference genome. 

A. Analysis of Escherichia Coli Genome 

1) Estimation of true positive rate 

The whole set of ORFs annotated as protein coding 

sequences including 2773 ORFs was divided into two parts: 

1) training set (1000 ORFs); 

2) test set (the rest 1773 ORFs). 

Furthermore, from the training set, we chose randomly 

subsets containing increasing number of ORFs, i.e. 100, 

200, ..., 1000 ORFs which were used as training sets. Our aim 

was to find dependences between true positive rate in the test 

set and the size of the learning set for the fixed model order 

(ℎ = 1, 2, 3, 4). These results averaged on 20 simulations are 

presented in Fig. 2. The fraction of correctly recognized 

genes increases rapidly with the learning set size and 

stabilizes from the set of 300 or 400 ORFs. Interestingly, 

lower order models perform much better for smaller learning 

sets than the most complex one with the model orderℎ = 4 
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which slightly surpasses the simpler models for larger 

learning sets. 

 

 
Fig. 2. Relationship between true positive rate and the size of training 

setcalculated for the new algorithm for different model orders ( ℎ =
1, 2, 3, 4). 

 

2) Estimation of false positive rate 

To estimate efficiency of the newalgorithm according to 

the false positive rate we used two test sets: 

1) protein coding sequences that were read in incorrect 

(alternative) frame, i.e. 2, 3, 4, 5, and 6; 

2) random sequences generated according to the genome 

nucleotide composition and the length distribution of real 

protein coding sequences. 

The results averaged on 20 simulations are shown in Fig. 3. 

The relationships between false positive rate and the size of 

learning set are different for the two test sets. Generally, 

when ORFs in the incorrect reading frame are used as a test 

set, the false positive rate decreases with the size of the 

learning set. The rate is higher for the ℎ = 4 model than for 

the simpler models when the smaller learning sets are 

considered.The opposite situation is for the larger learning 

sets. However, for random generated sequences,the rate 

increases with the learning set size. Moreover, the high order 

model ℎ = 4in comparison to the simpler models receives 

the lowest false positive rate for all learning sets of random 

generated sequences. 

 

 
Fig. 3. Relationship between false positive rate and the size of the training set 

for: sequences in incorrect reading frame (in the left) and randomly 

generated sequences (in the right). Four model orders (ℎ = 1, 2, 3, 4) were 
considered. 

B. Comparison of the New Algorithm with Gene Mark 

We used the same learning and test sets to make 

comparisonbetween the new algorithmand the popular 

softwareGeneMark.The new algorithm was applied with the 

ordersℎ = 2and ℎ = 4whereas GeneMarkwith the orderℎ =
2 and ℎ = 5 . We chose the order of ℎ = 5 for 

GeneMarkbecause it is the most common used order in the 

current GeneMark version 2.5. These two algorithms were 

compared according to true (Fig. 4 and 5) and false positive 

rates (Fig. 6 and 7) in the relationship to the size of learning 

set. 

 

 
 
Fig. 4. Comparison of true positive rates between our algorithm (green) and 

GeneMark 2.5 (red) for ℎ = 2model order in the relationship with the size of 

the learning set. 

 

All algorithms achieve true positive rate higher than 0.93. 

For low order models (Fig. 4), the new algorithm receives the 

true positive rate higher than GeneMark, i.e. more than 0.94, 

for learning sets including more than 100 ORFs. Only for the 

smallest set consisting of 100 sequences, GeneMark 

performs slightly better. The increase in the true positive rate 

with the number of ORFs in the learning set is observed to 

about 500 sequences for the both algorithms whereas for 

more numerous sets, the rate stabilizes. 

When more complex model orders are used (Fig. 5),the 

increase in the rate with the learning set size is more 

pronounced, especially for GeneMark. For the new algorithm, 

there is no change in the rate for learning sets including 800 

and more sequences. The new algorithm still works better 

than GeneMark and obtains the true positive rate higher than 

0.94for all learning sets. However, the difference between the 

two algorithms diminishes with the increase of the learning 

set size.The two algorithms converge for the set consisting of 

1000 ORFs achieving true positive rate about 0.945. 

 

 
Fig. 5. Comparison of true positive rates between our algorithm (green) and 

GeneMark 2.5 (red) for model order ℎ = 4 and ℎ = 5, respectively, in the 
relationship with the size of the learning set. 
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Comparison of two methods regarding relationship 

between the false positive rate and the size of learning set is 

presentedin Fig. 6 and Fig. 7 for different model orders. The 

relationship is weaker than for true positive ratealthough in 

most cases the false positive rate decreases with the learning 

set size. Interestingly, performance of two algorithms 

depends on the tested set. The new algorithm has lower false 

positive rate for sequences read in incorrect frames with the 

ℎ = 2model order and for random sequences with the order 

of ℎ = 4  while GeneMark performs better in the case of 

incorrect reading frames with the order ofℎ = 5  and for 

random sequences with the order of ℎ = 2. By average, the 

two algorithms show similar 0.055 false positive rate. 

GeneMark achieves both the lowest and the highest false 

positive rate values. 

 

 
Fig. 6. Relationship between false positive rates calculated in our algorithm 

(green) and GeneMark (red) with the size of the learning set for: sequences 
read in incorrect frame (in the left) and random sequences (in the right). The 

model order ofℎ = 2 was considered. 

 
 
Fig. 7. Relationship between false positive rates calculated in our algorithm 

(green) for ℎ = 4 and GeneMark (red) forℎ = 5with the size of the learning 

set for: sequences in incorrect reading frame (in the left) and random 
sequences (in the right). 

 

C. Coding Signal Strength in Different Group of 

Sequences 

The main task of our algorithm is to find a sequence with 

coding signal in a proper reading frame. In Fig. 8 we 

compared the strength of the coding signal for model order of 

ℎ = 2  in different group of sequences: protein coding 

sequences, sequences in incorrect reading frame, and 

randomly generated sequences. The strength was described 

by empirical tail distribution functions (i.e. 1 − 𝐹 𝑥 =
𝑃(𝑋 > 𝑥)), where X is a random variable of the value with 

the strongest coding signal. The distribution for protein 

coding sequences is clearly shifted towards higher values of 

coding signal.Protein coding sequences with coding signal 

higher than 0.3 are over 91% while there are only 13% 

ofincorrect ORFs and almost no random sequences (0.9%) 

above this value. 

 

 
Fig. 8. Comparison empirical tail distribution functions (1 − 𝐹 𝑋 )  for: 
protein coding sequences (red solid line), sequences in incorrect reading 

frame (black dotted line), random sequences (green dashed line). 

D. Small Genomes 

As was mentioned in Introduction, one of the most 

important problems in the recognition of protein coding 

sequences is difficulty in obtaining a large enough training 

set when small genomes are analysed. Here, we tested the 

new algorithm in the case of genomes smaller than 1 

Mbpassuming tiny learning sets (Table I ). For every genome 

we chose randomly 200 annotated ORFs in the training set 

whereas the rest of ORFs was used to build the test set. Sets 

for calculation of the false positive rate were prepared 

similarly but were based on ORFs read in incorrect frames. 

The algorithm achieved true positive rate higher than 0.90 

and false positive rate below 0.1. 

 

TABLE I: TRUE POSITIVE RATE (TPR) FOR SMALL MYCOPLASMA GENOMES. 

Mycoplasma strain (genome size) TPR 

M. agalatiae (0.88 Mbp) 0.97 

M. arthihritidis 158L3 1 (0.82 Mbp) 0.96 

M. mobile 163K (0.78 Mbp) 0.97 

M. pulmonis UAB CTIP (0.96 Mbp) 0.94 

M. synoviae 53 (0.8 Mbp) 0.97 

 

IV. CONCLUSION 

The presented algorithm describes nucleotide transition in 

three codon positions independently. Therefore, it reduces 

order of Markov chain retaining simultaneously the same 

coding information that is contained in higher order chains 

thatanalysethe dependence between nucleotides in 

subsequent codon positions of a studied sequence. The new 

algorithm achievedgood performance both for both small and 

large learning sets. In our test we obtained average the true 

positive rate over 0.90 and the false positive ratebelow 0.1. 
Models with lower order worked usually better for smaller 

learning sets but the most complex models were better for 

larger learning sets. However, the difference both in the true 

positive rate and the false positive rate between models of 
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different order was bigger for the small learning sets than for 

larger ones. Models with higher order showed stronger 

relationship with the size of learning set than simpler ones. 

The performed comparisons indicate that our algorithm is 

comparable with GeneMark algorithm according to the false 

positive rate but achieves the higher true positive rate. In 

addition to that, the new algorithm worksespecially well 

under low order models and seems useful in the recognition 

of  protein coding sequences in tiny genomes with small 

coding capacity. 
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