



Abstract—Basic Local Alignment Search Tool (BLAST) is

one of the most widely used bioinformatics tools to determine

similarities between genomic sequences. Ever since its inception

several algorithmic improvements have been made to improve

speed and runtime memory requirements without affecting the

sensitivity and selectivity of the tool. Fast search algorithm

(FSA) BLAST has been the most successful among such

improvements with 20-30% faster processing rate. In this work

a modified data structure is used for the hit detection process.

Codes have been developed separately for use of existing and

modified data structures and tested on sample database. It has

been found that the use of new data structure results in up to

81% reduction in run time memory requirement and about

20% reduction in hit detection time without affecting sensitivity

and selectivity of the algorithm.

Index Terms—BLAST, hit detection, neighborhood words,

DFA, prefix word table, query pointers, space complexity, time

complexity, blosum matrix.

I. INTRODUCTION

Basic local alignment search tool (BLAST) is the most

widely used sequence similarity search tool used by

computational biologists to understand the role, structure and

function of genomic sequences. BLAST performs

comparisons between a pair of sequences in order to find

regions of local similarity[1]. The popular BLAST

derivatives are NCBI-BLAST (web based and standalone

versions are available) [2], [3], WU-BLAST [4], Paracel

BLAST [5] and fast search algorithm (FSA)-BLAST[6], [7].

Among them, NCBI-BLAST (standalone) and FSA-BLAST

are open source programs and any one can download

(ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/Latest,

http://www.fsa-blast.org) and experiment with the program

code and algorithms.

Because of its widespread usage (used over 120,000 times

each day [8]) any improvement to the BLAST algorithm that

can reduce runtime space and time without effecting

sensitivity and selectivity [9] would be very much desirable.

Over the years several modifications to the fundamental

algorithms and new heuristics in BLAST were proposed to

improve speed and minimize runtime space [3-7], [10-16].

Manuscript received December 31, 2011; revised February 13, 2012.

M. Anuradha is with the Department Of Computer Science and Systems

Engineering, Andhra University, Visakhapatnam – 530003, Andhrapradesh,

India (phone: 91-044-22435134; mobile: 91-9444412833;

anuradha_malempati@yahoo.com).

K. Suman Nelson is with Google India, Hyderabad, Andhrapradesh, India

(e-mail: suman.nelson@gmail.com).

P. V. G. D. Prasad Reddy is with the Department Of Computer Science

and Systems Engineering, Andhra university, Visakhapatnam - 530 003,

Andhrapradesh, India (e-mail: prof.prasadreddy@gmail.com).

This paper proposes modified data structure that reduces the

runtime space during the hit detection stage of the FSA

protein BLAST algorithm.

Basically, BLAST program was designed to analyze both

protein and DNA sequences. It has mainly four algorithmic

steps namely finding hits, performing un-gapped alignments,

performing gapped alignments and computing trace back and

outputting the results [2], [3], [6], [7]. The main functional

differences between NCBI BLAST and FSA BLAST are, one

is the structure used for finding hits between a query

sequence and database sequence during the hit detection

stage and the other is using semi-gapped and restricted

insertion alignments during alignment stage of the algorithm

[6,7]. This paper proposes modified data structure that

reduces the runtime space as well as time complexity of the

hit detection stage of the protein BLAST algorithm.

Hits are short, fixed length high scoring matches between

query sequence and database sequence. For protein search,

hit is a match of word length 3 and inexact matches are

permitted whereas for nucleotide search, hit is an exact match

of word length 11. For finding hits, FSA-BLAST used an

optimized deterministic finite automaton (DFA) which

reduced the total BLAST search time by 6 to 30% compared

with table look-up used in NCBI BLAST[3,7]. But study on

this implementation revealed that, the number of query

pointers used by the structure is fixed and dependent on

alphabet size (a) and word length (w), and is equal to „aw „(for

protein sequence, a=24 and w=3), i.e., 243=13,824, not on the

length of the query. In the modified structure, it is made

dependent on length of query sequence and the number of

neighborhood words to each query word. This reduces the

run time space of algorithm by a considerable amount

because we are initializing only the necessary query pointers.

This paper is organized as follows. The hit detection

process in protein BLAST and construction of existing

FSA-DFA structure for finding hits are briefly described in

section 2. The modified structure is discussed and compared

with existing one, in section3. In Section4, implementation

details and testing of code are described. Result analysis is

described in Section5. Conclusions are given in section6 and

scope for further work is discussed in section7.

II. BACKGROUND

A. Hit Detection Process

In this stage, BLAST compares query sequence with each

sequence of the database using Wilbur and Lipmann

algorithm [17]. This process is done in two steps; one is

structure construction which is unique for a query, and

second is processing the database sequence to find word

matches between query sequence and database sequence.

Improved Hit Detection Algorithm

for FSA Protein BLAST

M. Anuradha , K. Suman Nelson, and P. V. G. D. Prasad Reddy

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 2, No. 2, March 2012

71

mailto:anuradha_malempati@yahoo.com
mailto:prof.prasadreddy@gmail.com

During the structure construction, fixed length

overlapping words of length „w‟ are extracted from the query

sequence. For example, let „BABBC‟ be the query sequence

made up of an alphabet: {A, B, C} and w=3, then the fixed

length overlapped words extracted from the query are: BAB,

ABB, and BBC. For each query word, neighborhood words

of length „w‟ are generated. A neighborhood word is a word

obtaining a score greater than or equal to some threshold

value „T‟ (default values used by NCBI-BLAST for protein

search are T=11 and w=3) [18-20], using a selected scoring

matrix. For example for query word BAB, BAC is

neighborhood word. When B is matched with B, score is 6,

when A is matched with A, score is 5 and when C is matched

with B, score is 0. Then the word score is sum of the

individual scores and given below.

B A B

 | | |

B A C 6+5+0=11 which is equal to T.

The default scoring matrix used for protein BLAST is

BLOSUM62 [21]. Each query word along with its

neighborhood words will be associated with a query position

and are stored in a structure. In the above example, query

positions of query words BAB, ABB, and BBC are 1, 2, and 3

respectively.

While processing the database sequences, each sequence is

processed sequentially, that is each sequence is read from the

database, parsed into words of length „w‟ and searched for

query word match in the structure. If a match is found,

corresponding query word position „i‟ and database sequence

word position „j‟ are recorded as hit, which will be the input

to the alignment stage of the BLAST algorithm.

B. Existing FSA-DFA structure

FSA-DFA consists of states, and transitions between the

states. A state is a prefix word of length (w-2). The total

number of states is equal to a(w-2) (24 for a protein sequence).

Position: 1 2 3 4 5

Query: B A B B C

Subject: C B A B B

Threshold: 11

(a)
 A B C

A 5 -1 2

B -1 6 0

C 2 0 4

 (b)

QP QW NWS

1 BAB BAC, BBB, BCB, CAB

2 ABB ABC, ACB,BBB, CBB

3 BBC BBA, BBB

(c)

Fig. 1(a). Example query and database sequences constructed with

an alphabet:{A,B,C};word length(w)=3 (b) Scoring Matrix (c) List

of query words(QW) and their neighborhood words (NWS) along

with their query positions (QP) for the given query.

FSA-DFA shown in Figure.2 for an input given in Figure.1

is constructed as follows.

1) a(w-2) states are initialized in such a way that each state

consists of „a‟ transitions and each transition is

associated with two pointers, one to the next state and

other to a collection of words that share common prefix

of length „(w-1)‟. Each word in the prefix table is

associated with a query pointer pointing to a list of query

positions which is initially initialized to NULL.

2) For each query word, neighborhood words given in

Figure. 1(c) are computed based on the given threshold T

using alignment scoring matrix, and their query

positions are stored in the structure.

For the given example, structure consists of 3 states A, B

and C. Each state consists of 3 transitions A, B and C, and

each transition is associated with corresponding prefix table.

For a given query, we start with word BAB. Transition A of

state B has pointer to next state A and pointer to prefix word

table BA. In the prefix word table, for the word BAB, the

query position is marked as 1 because it is available in query

sequence at position 1. The neighborhood words to BAB,

listed in fig 1(c), are now computed and their positions are

also stored in the structure. This process repeats for every

query word.

Fig. 2. Existing FSA-DFA constructed for the input given in Fig. 1(a) and (b)

While processing the database sequence „CBABB‟, the

first character „C‟ is read. That is we are starting with the

state C. Then the next character „B‟ is read, transition „B‟

from state C is followed. Here transition B of state C has, one

pointer to next state B and other pointer to prefix table of

word CB. Since the next character read is A, and for the word

CBA there is no match in the query sequence the search

advances to next state B. Now we are at state B, and next

character read is A, then transition A from state B is followed

which has pointers to next state A and prefix word table BA.

When the next character B is read, transition „B‟ from prefix

table „BA‟ is followed. Here the transition has a query

position 1, hence outputs the hit as (1, 2), i.e., match occurs at

query position „1‟ and database sequence position „2‟ and

search advances to next state „A‟. This process continues

until the data base sequence is exhausted.

III. MODIFIED STRUCTURE

The limitation of currently being used FSA-DFA is,

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 2, No. 2, March 2012

72

whatever may be the query length, size of the look-up and the

number of query pointers initialized during the structure

construction stage is fixed (aw). For a protein sequence, it is

equal to 243=13,824. Indeed, for a given query we may not be

using these many pointers. Whether we use or not, 4 bytes of

memory is allocated to each pointer which will be a

considerable overhead on run-time space utilization. It can

be overcome by using an array of states and prefix word hash

table which makes the number of query pointers to be

initialized dependent on the size of query and the number of

neighborhood words each query word is associated with,

instead of initializing fixed number of pointers. This section

presents construction of such structure with an example and

is explained below.

 It consists of array of states, where each state is a word

block of (w-2) length. The size of the array is equal to a(w-2)

(24 for a protein sequence). Each state is associated with a

hashed prefix word table with query or neighborhood word

as key and pointer to list of query positions as value. Initially

the size of each hash table is zero and it grows by one key and

one value for each query word and its neighborhood words,

while constructing FSA-DFA.

A portion of the modified FSA-DFA shown in Figure.3,

for the given query sequence „BABBC‟ is constructed as

follows.

Let the query word be „w1w2w3‟. For each query word, w1

is the current state, w2 is the next state and w3 is the transition

that maps query word w1w2w3 from current state into

corresponding query position in prefix word hash table w1w2.

In this example, for query word „BAB‟, B is the current state,

A is next state and B is the transition that maps query word

BAB into query position 1 in prefix word hash table BA.

Similarly neighborhood words to word BAB are also mapped

into query position 1. Similarly the remaining query words,

ABB and BBC, and their neighborhood words are also

mapped into their corresponding query positions in

corresponding prefix word hash tables. So whenever a query

word or neighborhood word is mapped into corresponding

query position, two pointers are initialized. One maps into the

hash table of that state and other to the next state. Hence

the number of query pointers initialized is less than or equal

to the sum of the number of query words and their

neighborhood words.

Fig. 3. Modified FSA-DFA constructed for the input given in Figure.1

(a)and(b)

The database sequence „CBABB‟ is processed as follows.

When the first character „C‟ is read, we are starting with state

C. Then the next character „B‟ is read, a pointer to next state

B is followed. When next character „A‟ is read, since there is

no match for the word CBA in the query, search advances to

next state B. At state B, a pointer to next state A and other to

the prefix word hash table BA of state B is followed. When

the next character B is read, word BAB will be hashed into

slot B of prefix word hash table „BA‟ of state B and outputs a

hit (1, 2). Now we are at state A. when character B is read a

pointer to next state B and other to the prefix word hash table

AB of state A is followed. When the next Character B is read,

word ABB is hashed into slot B of prefix word hash table AB

of state A (where match is found for the word ABB in the

query sequence at position 2, that outputs a hit (2, 3)). The

process continues until the data base sequence is exhausted.

IV. TESTING

This section presents implementation details and testing of

both existing and modified structures used for finding hits, in

the hit detection stage of the FSA protein BLAST program.

The algorithms using the existing and modified FSA-DFA

structures described in section2 and 3 are implemented in C++

language, in visual studio 2010 environment.

To test the code, first the input and output files are created.

The input file consists of twenty protein sequences, randomly

extracted from the non-redundant protein database of NCBI

and Blosum62 scoring matrix. Here, the set of 20 protein

sequences extracted are considered as database and each one

of the 20, taken one at a time as query to be searched against

database. Threshold value needed to find neighborhood

words for each query word is hard coded (T=11). When each

query is run on the database, the program outputs, pairs (i, j),

that identify matches between the query and database

sequences. The number of hits and the number of query

pointers initialized for the structure are stored into the output

file. This process is repeated for both the algorithms, existing

and modified FSA-DFA with BLOSUM 62 scoring matrix.

Time taken to construct the structure and processing the

database sequence has been measured separately using

system clock functions. Quantitative and qualitative analysis

on the results is done and discussed in the next section.

V. ANALYSIS OF RESULTS

A. Quantitative Analysis

The number of query pointers initialized during structure

construction is taken as measuring factor for space

complexity. For a small set of query sequences, the results are

tabulated in Table1 given below. From the results we can see

that, the number of query pointers initialized by the existing

structures is fixed and is maximum possible. It is dependent

on alphabet size „a‟ (24 for proteins) and word size „w‟ (3 for

proteins), i.e., 243=13,824 where as for the modified

structures it is made dependent on size of the query sequence

and the number of neighborhood words, each query word has.

It is found that the percentage reduction in space varied from

18.8 to 81.6%, depending on the query length. Shorter is the

query more is the percentage reduction in space.

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 2, No. 2, March 2012

73

TABLE I: NUMBER OF QUERY POINTERS USED AND HITS DETECTED IN EXISTING FSA-DFA STRUCTURE AND MODIFIED STRUCTURE.

S.No
Query length (in

aa)

Number of query pointers

used

Number of Hits

Recorded % Reduction in run-time

space
Existing Modified Existing Modified

1. 110 13824 2548 984 984 81.6

2. 252 13824 2860 2012 2012 79.3

3. 348 13824 4515 3003 3003 67.3

4. 450 13824 6851 3941 3941 50.4

5. 511 13824 6648 4591 4591 51.9

6. 609 13824 7282 5048 5048 47.3

7. 772 13824 8571 7421 7421 38

8. 1520 13824 10176 13436 13436 26.4

9. 2470 13824 9922 22690 22690 28.2

10. 4638 13824 11222 48748 48748 18.8

Fig. 4. Reduction of hit detection time (existing Vs modified data structures).

Time complexity of modified structure with the currently

being used structure is compared as follows. System clock

has been set separately to measure the structure construction

time for the given query and time for processing the database

sequence for finding hits. The least time unit that can be

measured by the system clock function is millisecond. Since

the processing of database sequence for finding hits runs in

microseconds, it has been set to run 1000 times. It is observed

that there is slight increase in processing database sequence

time due to hashing function used to map the database

sequence word into corresponding query position during the

processing stage. Since the reduction in structure

construction time is more significant (on an average reduced

to 23.4%) than the slight increase in processing time, the

overall time for finding hits is reduced by 20% on an average.

Average percentage reduction in overall time for finding hits

using modified structure is calculated for a small set of query

sequences. The results are graphically represented in

Figure.4 given above.

B. Qualitative Analysis

BLAST performs similarity search which can be improved

either by increasing sensitivity or selectivity. Sensitivity of

BLAST is defined as ability to recognize distantly related

data base sequences to that of a query sequence. Selectivity is

defined as ability to reject unrelated database sequences to

that of a query sequence. The number of alignments being

considered in the second stage of the BLAST is dependent on

the number of hits generated in the first stage of the BLAST.

For example, for a query of length 110 amino acids, the

number of hits recorded for both existing structure and

modified structure is 984, when run on the database sequence

of length 48748 amino acids. In the alignment stage, the

scores of all 984 alignments are computed and best scored

alignments will be taken into account for final output of

BLAST. The experimental results tabulated in Table.1

reveals that the number of hits recorded for existing

FSA-DFA and modified FSA-DFA are similar. Hence we

can say that, space complexity of the algorithm is reduced

without effecting sensitivity and selectivity.

VI. CONCLUSIONS

 The Alternative data structure for FSA-BLAST has been

successfully implemented and tested.

 Use of the new data structure resulted in reducing the

runtime memory requirement significantly. For smaller

query lengths (110 aa) the reduction was found to be up

to 81%, for very large query length (4638 aa) it is about

19%.

 The number of hit detections remained the same for all

query sizes indicating that the use of new structures did

not alter the sensitivity and selectivity of the BLAST

tool.

 The usage of modified data structures also resulted in

reduction of total time taken by the algorithm to detect

hits. The average percentage reduction in hit detection

time is around 20% and showed little correlation to query

length.

 While the new algorithm reduces the space and time

requirement in the structure construction stage, some

time advantage is lost due to the usage of prefix word

hash tables in place of prefix word table look-ups.

Overall, there is significant advantage in terms of

run-time memory and limited benefit in terms of hit

detection time.

 In the currently being used structure, state transitions are

implemented as pointers to next states. But in the

modified FSA-DFA structure these pointers are not

needed because states are implemented as a linear array.

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 2, No. 2, March 2012

74

It resulted in reducing the run time space by 24x4 bytes

per state object, which in turn drastically reduced the

overall memory footprint of FSA-DFA structure.

VII. SCOPE OF THE WORK

The structure is to be further modified so that significant

gains can be made in case of space and time complexities

simultaneously.

While processing the database, the number of hits per

database sequence is known when a specific query is

compared with each sequence of the database. This

information can be used to filter the database sequences that

have negligible number of hits from being used in alignment

stage. Implementing such filtering mechanism could further

reduce the overall BLAST search time.

REFERENCES

[1] A. Pertsemlidis and J. W. Fondon III, “Tutorial - Having BLAST with

bioinformatics (and avoiding BLASTphemy),” Genome Biology, vol. 2,

no. 10, 2001.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,

“Basic local alignment search tool,” Journal of Molecular Biology, vol.

215, no. 3, pp. 403– 410, 1990.

[3] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W.

Miller, and D. J. Lipman, “Gapped BLAST and PSI–BLAST: A new

generation of protein database search programs,” Nucleic Acids

Research, vol. 25, no. 17, pp. 3389–3402, 1997.

[4] WU-BLAST. Available: http://blast.wustl.edu/

[5] C. Boysen and M. A. Rieffel, “Enhancing BLAST Performance by

using paracel filtering package,” Paracel Technology, August 2004

[6] M. Cameron, H. E. Williams, and A. Cannane, “Improved gapped

alignment in BLAST,” IEEE Transactions on Computational Biology

and Bioinformatics, vol. 1, no. 3, pp. 116-129, 2004.

[7] M. Cameron, H. E. Williams, and A. Cannane, “A deterministic finite

automaton for faster protein hit detection in BLAST,” Journal of

Computational Biology vol. 13, no. 4, pp. 965–978, 2006.

[8] S. McGinnis and T. L. Madden, “BLAST: at the core of a powerful and

diverse set of sequence analysis tools,” Nucleic Acids Research,

32:W20–W25, 2004.

[9] E. G. Shapaer, M. Robinson, D. Yee, J. D. Candlin, R. Mines, and T.

Hunkapiller, “Sensitivity and selectivity in protein similarity searches:

A Comparison of Smith-Waterman in Hardware to BLAST and

FASTA,” Genomics vol. 38, pp. 179-191, 1996.

[10] O. Gotoh, “An improved algorithm for matching biological

sequences,” Journal of Molecular Biology vol. 162, no. 3, pp. 705–708,

1982.

[11] J. Ye, S. McGinnis, and T. L. Madden, “BLAST: improvements for

better sequence analysis,” W6–W9 Nucleic Acids Research, vol. 34,

Web Server issue doi:10.1093/nar/gkl164

[12] L. Noé and G. Kucherov, “Improved hit criteria for DNA local

alignment,” BMC Bioinformatics 2004, 5:149 doi:

10.1186/1471-2105-5-149.

[13] S. Delaney, G. Butler, C. Lam, and L. Thiel, Three Improvements to the

BLASTP Search of Genome Databases, 0-7695-0686-0/_ 2000 IEEE

[14] M. Cameron and H. E. Williams, “Comparing Compressed Sequences

for Faster Nucleotide BLAST Searches,” IEEE Transactions, 2007

[15] P. Afratis, C. Galanakis, E. Sotiriades, G.-G. Mplemenos, G. Chrysos, I.

Papaefstathiou, and D. Pnevmatikatos, Design and Implementation of a

Database Filter for BLAST Acceleration,

978-3-9810801-5-5/DATE09 © 2009 EDAA.

[16] X. Guo, H. Wang, and V. Devabhaktuni, “Design of a FPGA-Based

Parallel Architecture for BLAST Algorithm with Multi-hits

Detection,” 2011 Eighth International Conference on Information

Technology: New Generations, 978-0-7695-4367-3/11 © 2011 IEEE,

DOI 10.1109/ITNG.2011.122.

[17] W. J. Wilbur and D. J. Lipman, “Rapid similarity searches of nucleic

acid and protein data banks,” in Proceedings of the National Academy

of Sciences USA, vol. 80, no. 3, pp.726–730, 1983.

[18] S. Altschul, M. Boguski, W. Gish, and J. Wootton, “Issues in searching

molecular sequence databases,” Nature Genetics, vol. 6, pp. 119–129,

1994.

[19] S. F. Altschul and W. Gish, “Local alignment statistics,” Methods in

Enzymology, vol. 266, pp. 460–480, 1996.

[20] S. F. Altschul, R. Bundschuh, R. Olsen, and T. Hwa, “The estimation of

statistical parameters for local alignment score distributions.” Nucleic

Acids Research vol. 29, no. 2, pp. 351–361, 2001.

[21] S. Henikoff and J. Henikoff, “Amino acid substitution matrices from

protein blocks,” in Proceedings of the National Academy of Sciences

USA, vol. 89, no. 22, pp. 10915–10919, 1992.

Anuradha. Malempati was born in Vuyyur, Krishna District, Andhra

Pradesh, India on 1st of July, 1966. She obtained her B.E. degree in

Electronics and Communication Engineering from Andhra University,

Visakhapatnam, India in the year 1992 and M.E. in Computer Science and

Engineering from Madras University, Chennai, India in the year 2000.

 She worked as an assistant professor about 7 years in Panimalar

Engineering college and Anand Institute of Higher Technology affiliated to

Anna University. Currently she is a research scholar in the Department of

Computer Science and Systems Engineering at Andhra University. She is

working on improving the performance of BLAST algorithm under the

supervision of Prof. Prasad Reddy, P.V.G.D. Her research interests include

Sequence Analysis, data structures and algorithms.

Suman N. Kancherla was born in Andhra Pradesh, India on the 22nd of

April, 1976. He completed his Bachelor of Technology in computer science

and engineering from Indian Institute of Technology, Madras, India in

1997.

 He worked as a Senior Software Engineer at Amadasoft India Pvt Ltd, as

a Computer Scientist in Adobe Systems India, as Software Design

Engineer at Microsoft IDC, as Principal Engineer at Xiotech

Corporation and currently working as Software Engineer at Google

India, Hyderabad (India) campus. His current interests include natural

language processing, machine learning, cloud computing and algorithm

optimization.

Prof. Prasad Reddy, P.V.G.D, was born in Rajahmundry, East Godavari

district, Andhra Pradesh, India on 14th July, 1961. He obtained his B.Tech, in

Mechanical Engineering, from Andhra University in the

year 1985 and M.Tech, in Computer Science and Technology,

in 1987, and Ph.D, in Computer Engineering in the year 1993.

 He joined Andhra University in the year 1987 and gained 24 years of

Teaching and Research experience which includes more than 10 years of

Administrative experience. As a Professor of Computer Science, his

specialization includes Enterprise wide Computing, ERP, XML based object

models and scalable web applications.

His research areas are Soft Computing, Software Architectures, Knowledge

Discovery from Databases, Image Processing, Number theory and

Cryptosystems. He has so far successfully

guided 14 Ph.D‟s, 18 M.Phil‟s and 259 M. Tech Projects in the field of

Computer Engineering , and has to his credit, more than 118 Research

papers which includes 52 publications in the referred international Journals

of repute, 3 Patents and he is currently working as Rector of Andhra

University, Visakhapatnam, AP, India..

 Prof. Prasad Reddy is a Fellow, Institution of Engineers, INDIA, Member,

International Association of Engineers, Member, Indian Science Congress.

He has been awarded the BEST Teacher Award by the Government of

Andhra Pradesh for the year 2011.

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 2, No. 2, March 2012

75

