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Abstract—Like any other living species, Human kind has 

been exposed to nanoparticles during its entire existence. But 

the question of their toxicity has only been raised recently as a 

consequence of rapid growth of industrial activity. Nowadays, 

the impact of nanoparticles is not clearly known. For this 

reason Mathematics in Medicine Study Groups (M.M.S.G.) 

developed a mathematical model based on the different 

possible entries of nanoparticles into cells. To allow further 

studies on their toxicity, M.M.S.G. model has been completed 

here by introducing adapted equations of diffusion to 

represent its effects on nanoparticles penetrationand 

accumulation inside cells. It is mainly shown that due to their 

size (100nm), nanoparticles diffusion time is extremely short 

compared to characteristic system evolution time. As a 

consequence, living cells are not shielded against high 

nanoparticle bursts which enter almost instantaneously inside 

and equalizeover all cell domain. More favourable situation 

could only be expected with much larger nanoparticle size. 
 

Index Terms—Diffusion, mathematical model, nanoparticles, 

penetration. 

 

I. INTRODUCTION 

Though nanoparticles (NP) have always existed in their 

natural forms, they are today mostly the direct result of 

industrial activity, and their number has been following the 

rise of this sector during past century. Even though 

nanotechnologies are more and more studied in fields such 

as healthcare, their real impact is still difficult to evaluate in 

terms of nuisance and toxicity [1]-[3] as it depends on both 

penetration inside cells and local specific action. Unlike 

usual particles, NP toxicity, aside its mass, also depends on 

many other parameters such as charge, size, shape, 

composition, porosity and surface structure. Specific surface 

(i.e. the ratio surface/mass), is particularly important as it 

determines thresholds for many interactions with other 

organisms. NPs can also be vehicle for pollutants in 

suspension in the atmosphere, as they can absorb on their 

surface toxic molecules for the organism once inhaled or 

brought in by any means. This induced toxicity is still 

difficult to estimate and to model. For completeness, NP can 

be acting on different cells through rejected vesicles. NP has 

been defined as nano-object whose all three dimensions are 

less than 100 nm. At this very small size, the physical 

properties of a material change and the possibility of 

penetration inside human body is higher [3], [4]. Soit is 

necessary to set down a faithful representative mathematical 

model for correctly describing their internalisation into a cell 

in order to find later clues about their toxicity [1], [5]-[7]. It 
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is the intention to report here a step toward such a model 

developed through easy-to-work and open MATLAB 

software, in order to analyze physical effects at the origin of 

cell penetration by NPs. The work is based on a model 

proposed by the Mathematics in Medicine Study Group 

(M.M.S.G.) [4].  

This is mainly a homogeneous compartment model 

neglecting the detailed influence of diffusion on NP flux into 

cells. However averaged values are not sufficient for precise 

determination of toxicity thresholds which are also related to 

maximum values for direct action. So diffusion effects have 

to be taken care of, and extension of 0 D M.M.S.G. model to 

1D and 2D ones is discussed in present paper. Effects of 

inward speed on diffusion and maximum flux values are 

discussed and enhancement of NPs penetration is evaluated. 

The effect of NP size on their diffusion into the celli also 

analyzed as this is an important parameter for diffusion 

coefficient. 

 

II. M.M.S.G. MODEL 

M.M.S.G. model is a 0D compartment model describing 

the three main penetration ways of NP into cell 

 endocytosis (by a fluid and a receptor)  

 diffusion or disruption  

 passage by ionic channel  

by decreasing order of importance. There are three 

compartments: the boundary area B surrounding cell 

membrane, the cell membrane M and the cell volume I, see 

Fig. 1 M.M.S.G. 0D model is thus a set (S) of five 2nd degree 

nonlinear ordinary differential equations with five time 

dependent unknowns B, M, I, L and H.  

 

dB/dt                            
                          

(1) 

 

dM/dt                                (2) 

 

dI/dt                      

                                                 (3) 

 
dH/dt                                         (4) 

 

dL/dt                                     (5) 

The first three variables B, M, I represent average NP 

distributions in each of the three compartments. L is the size 

of lipids in the membrane and H is the number of holes 

created by specific internalization. The fluctuations are 

functions of the different ways of penetration and the 

various “kx” factors represent the likelihood of an exchange 
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as compared to another one.Adding (1),(2),(3) one gets  

 

d(B+M+I)/dt = k3(Bss B)                        (6) 

 

so B+M+I = C0 a constant when k3 = 0 allowing to reduce (S) 

to four equations.Letting l=L/Bss, m=M/Bss, i=I/Bss, 

h=H/Bss, b=B/Bss, stationary solution of (1),(2),(3), (4),(5) 

can be found in the form b=1 from (6) and  

 

l=linfk5Bss/k10)i ; h=(k7+k8)/k9+ (k8/k9)i         (7) 

 

                     m=m0m1i+m2i
2                               (8) 

 

where m2=(k6k8/k9)Bss and m0, m1 are expressed in terms of 

the various kj, and i is solution of 3rd order equation  

 

(i)k4rml + k4rlk5Bssi =0                    (9) 

 

such that (0)>0 and (i) when i. This implies 

that there exists a positive solution istat to which i(t) 

converges, and so are doing the other components.From 

expressions of the various coefficients, it is not possible to 

reduce (S) on the only base of smallness of some kj. It should 

first be ascertain that there corresponds a nontrivial solution 

to such a reduction. For instance calling (S0) the model 

where one sets k3 = k4f = k5 = k6 = k7 = k8= k9 = 0 owing to the 

smallness of these parameters, which eliminates (4) for H, 

this would lead to stationary solution  

M=B=0, L=Linf, I=I0                                          (10) 

which may not be always appropriate everywhere as 

mentioned below.  
 

 
Fig. 1. Schematic display of system compartments from M.M.S.G. It 

represents interactions between the different compartments of a cell. 

 

Boundary, Membrane and Internalized are compartments 

used in M.M.S.G model and Bulk is outside the cell where 

Np scannot interact with the cell. The large arrows represent 

the three of four main penetration ways explained at the 

beginning of part II. “kx” factors are ratio which represent 

the likelihood of an exchange as compared to another one 

and used in the MMSG 0D model. k1: Binding of NP to 

membrane; k2: Unbinding of NP from membrane; k3: 

Replenishment of NP; k4r: Receptor mediated endocytosis; 

k4f: Fluid–phase endocytosis; k5 Difusion through 

membrane; and k6: Disruption mediated diffusion 

To numerically solve the problem, MATLAB software 

has been preferred to multi-physics non-linear PDE solver 

FreeFEM++ mainly competitive for more general 

geometrical domains.4th order Runge-Kutta method appears 

as more adapted to present problem than Euler one because 

of better conservation of system properties.  

III. DIFFUSION MODEL 

Diffusion is a very general phenomenon occurring in 

gaseous, liquid and solid environments. It concerns the 

different ways of specific particles which are behaving 

under possible outer action in the presence of all the other 

particles in the medium. Experiments have shown that their 

displacement is a Brownian, i.e. random, motion.Addition of 

diffusion effect in M.M.S.G. model is intended to account 

for its role on inhomogeneity of final internal NP 

distribution. This will lead to better evaluation of this 

distribution, and in particular to define its maximum inside 

the cell, an important element in toxicity measurement. In 

addition, the role of diffusion will be determined on every 

component of state functions B, M, I, L and H in the model. 

Rewriting system (1), (2), (3), (4), (5) in compact form  

 

dX/dt = A. X + B : XX=F(X)                         (11) 

 

where X = col[B, M, I, H, L] and A and B stand for the kx 

coefficients of linear and nonlinear terms respectively 

Diffusion model constructed from (11) takes then the  form: 

 

  UU = A.U + B:UU=F(U)                 (12) 

 

where is Laplacian operator (=   
 and   

  
  

 respectively for 1D and 2D systems). U = U(x, t) = 

col{B(x, t), M(x, t), I (x, t), H (x, t), L(x, t)} is a 5-space time 

dependent vector, x=x1 for 1D and x=(x1, x2) for 2D.  = 

diag[αb, αm, αi, αh, αl] represents the diagonal matrix of 

diffusion coefficients for each component studied in the 

model. To figure out diffusion effect with respect to 

homogeneous 0D M.M.S.G. model, the two quantities 

Umax(t)=MaxxU(x, t) and <U(x, t)> = dxU(x, t) will be 

examined. It can be observed from (11) and (12) that at 

equilibrium there exists the relation 

F(<Ueq>) = n.▽USB :UU>         (13) 

Writing U=<U>+U with Ueq(x) the asymptotic limit of 

U(x, t) when t, and n. US is the boundary condition at 

limit surface S. So <Ueq>limt X(t) unless the two terms 

on the right hand side are 0. Such result extends easily to any 

nonlinear interaction function F(U) with more complicated 

<F/U>instead of UU>. 
For resolution the Splitting method has been used. It 

enables to solve two problems by first treating each problem 

and to superimpose the two intermediate results to get the 

final one. 

Entrance of NPs in the cell varies depending on their 

characteristics such as size [8]-[10] because diffusion inside 

the cell is inversely proportional to NP radius [11]. The 

diffusion coefficient is given by StokesEinsteinequation: D 

= kT/(6r) with k the Boltzmann constant, T the 

temperature in K, η the viscosity inkg.m-1.s-1, r the radius of 

the particle in meters which influences results for M, B, L 

and I. Curves for diffusion coefficient vs size of NP are 

displayed on Fig. 2. Consequently, it is much faster to 

calculate any function by inputting NP radius instead of 

entering all diffusion coefficients each time in the equations. 

Flux calculations have been performed with both 

diffusive 1D and 2D system (12) respectively, and with 
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simplified versions of (S). It is verified that same results are 

mainly obtained in the two cases.   

Three different boundary conditions are used: 

 Dirichlet boundary conditions by imposing a fixed value 

on the edges 

 Neumann boundary conditions on derivative values 

By imposing a constant flow 

By blocking entrance and exit on the edges 

The value of each diffusion coefficient from each 

compartment has been evaluated. According to the areas for 

B, M, I, H and L, diffusion coefficients are 

 respectively (cm²/s). 

These values have been adapted to fit the proportions in 

the simulation, and have been multiplied by 105. In a general 

way, diffusion coefficient scales as  (l)2/ where 

 are characteristic length and time scale. As  = 

K/rp(rp particle dimension), from Stokes-Einstein equation 

one gets by equating the two expressions of 



                               (14) 

 

Two consequences can be drawn from (14). If l = lc the 

typical cell size,  =Tdiff, the diffusion time which is shorter 

as rp is smaller, and may be extremely small compared to 

natural (non diffusive) system evolution timeTn, as fixed 

from 0D model for instance. On the other hand, if space 

mesh size for numerical resolution is l = lc/N, N large 

enough integer, explicit scheme stability requires that time 

step be calc<stab
)2rp = Tdiff/N

2 which may be 

extremely small, and would lead to very long calculation for 

following system evolution up to Tn.  
 

 
Fig. 2. Curve which represents evolution of diffusion coefficient depending 

on nanoparticle radius for different compartments (membrane, boundary 

and internalised). This curve use Stockes-Einstein application. 

 

IV. 1D RESULTS 

As expectable, diffusion influences internalisation speed 

and the curves of <B>,<M>,<I>,<H> and <L> converge 

both for the initial rectangular and Gaussian initial 

conditions.  

A. Initial and Boundary Conditions 

Three types of initial conditions are considered: slot 

function, Gaussian function (and reverse function), 

rectangular function (and reverse function). 

Slot initial conditions are defined by B(t=0)=1, M(t=0)=0, 

I(t=0)=0, H(t=0)=0 and L(t=0)=1. Initial conditions 

represented by a rectangular step and their reverses are 

defined by the “unit” scale level 0.25 indicating that NPs are 

supposed to be internalised only at one extremity of the cell. 

Initial conditions are I(x<0.25, t=0)=1 and  I(x>0.25, t=0)=0. 

Other initial conditions are B(x<0.25, t=0) = M(x<0.25, t=0) 

= L(x<0.25, t=0)=0 and B(x>0.25, t=0) =M(x>0.25, t=0) 

=L(x>0.25, t=0)=1 with H(x, t=0)=0. Initial conditions can 

also be represented by a Gaussian distribution. As with 

previous initial conditions, other unknown elements such as 

B, M and L have values opposite to case I except for H, 

which remains equal to zero because it is supposed that there 

were no previous internalisation. Thus one will set: 

 

                           
                                                                                    (15) 

 

with I(x, t=0)=exp{15(x)2}.  

B. 1D Qualitative Results 

Variation of maximum Umax(t) in each compartment has 

been checked with and without diffusion. Strong decrease of 

<M> at the beginning can be explained as a particle 

saturation in corresponding area leading to particle 

displacement toward neighbouring areas, with 

corresponding small increase of <B>. Moreover, when 

initial condition is a Gaussian, the <I> curvecan be 

explained by a very slow filling up until maximum is 

reached which increases I until particle stabilization inside 

the cell.  
 

 

 

 
Fig. 3. 1D Profile Time Evolution for <I(x, t)> (Internalised) at different 

times (T=0 second, T=0.03 seconds, T=0.09 seconds,T=0.19 seconds, 

T=1.55 seconds, T=3.09 seconds). It represents the number of internalised 

nanoparticles based on x. 

 

Addition of diffusion to the model produces fast decrease 

of <B> and <I>, which can be explained by attenuation of 

the Gaussian by diffusion into the cell. After this short initial 

period, the two curves exhibit the same convergence as the 

corresponding ones without diffusion, as verified from 

profile evolution at early time, see Fig. 3. It can be checked 

that, due to actual parameters value, internal NP profile 

becomes completely flat after 3 time units, and 0D system is 

valid after this very short diffusion time.   

Fig. 4 displays the graphs representing average NP 

distribution <U>(t) for Gaussian initial conditions. 

Observed convergence for all components <B>, <M>, <I>, 
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<H>, and <L>, as expectable from stability of 0D M.M.S.G. 

model, is occurring after a time Tn>>Tdiff.  
 

TABLE I: QUANTITATIVE RESULTS FOR RECTANGULAR AND GAUSSIAN 

INITIAL CONDITIONS 

Compartment Acceleration 

rectangular (%) 

Acceleration 

Gaussian (%) 

Boundary 1.82 1.84 

Internalised 3.41 3.43 

Holes 3.14 3.29 

Membrane 1,80 1,80 

Lipid 2,73 2,67 

 

This is confirmed by evaluating convergence times for 

each component with and without diffusion as displayed on 

Fig. 5. Despite differences from (13) they are very similar 

for same initial conditions.  
 

 

 

 
Fig. 4. Convergence of <B>,<M>,<I>,<H> and <L> with Gaussian Initial 

Conditions (<B> for Boundary, <M> for Membrane,<I> for Internalised, 

<H> for Holes, <L> for Lipid Size). Curves represent average nanoparticles 

based on number of iterations. 

 

C. 1D Quantitative Results 

For finer analysis, the point of convergence has been 

taken at the time where the components (<B>, <I>, <H>, 

<M> or <L>) are reaching a given value (for example when 

boundary component has reached a sum of 102).This value 

is considered as the final value with corresponding time 

value. Below are the results of acceleration internalisation 

speed with and without diffusion. 

The results are about the same for Gaussian and 

rectangular initial conditions. This can be explained by the 

fact that rectangular condition will rapidly transform into 

Gaussian one with diffusion. The time to transform the 

rectangle into a Gaussian can explain the fact that 

percentages are higher for the Gaussian. 

It is observed from Fig. 3 that only <L> and <I> are taking 

finite values for t.According to (10) thiswould justify 

simplification of (S) into (S0) if one is interested in large 

time evolution only. 
 

 
Fig. 5. A histogram showing convergence time for <B>, <M>,<I>,<H> 

and <L> with (left column) and without (right column) diffusion and 

gaussian initial conditions (<B> for boundary, <M> for membrane,<I> for 

internalised, <H> for holes, <L> for lipid size). 

 

V. 2D RESULTS 

2D NP diffusion is integrated using Cartesian coordinates 

in order to match true cell proportions.  

Results of M.M.S.G. model have been used as initial 

values to solve the problem for using Splitting method as for 

1D model. The study is resting on a simplified square shape 

cell in Cartesian coordinates. Approximation is possible 

because the model deals with very small dimensions.  

A. Initial and Boundary Conditions 

Like for 1D case, a Gaussian function has been taken for I 

with a mean in the middle of the square for  compartment I. 

Initial conditions for other compartments are deduced 

exactly in the same way as in 1D, i.e. 1-I(x, t=0) for B, M and 

L, and 0 for H. This initial condition is the one where 

diffusion can clearly be observed.  

Neumann boundary condition has been used with 

blocking entrance and exit at the edges because it is the more 

efficient. 

B. Results 

As for 1D case, 2D convergence analysis is showing 

similar results, see Fig. 6. 

The curves are again showing sharp changes at very short 

initial time. Analysis of full2D system evolution at these 

very early beginning times is better followed with adapted 

color scale, see Fig. 7.  

As diffusion coefficients are different, diffusion speeds 

are different in each compartment, but in last one component 

I behaves differently. Here after T=0.32 colors are reversing, 

showing that in the cell domain NP saccumulate in different 

places as shown by comparing T=.08 to T=.39 for instance. 

There are two reasons for this phenomenon. On the one hand, 

larger gradient in NP distribution has stronger effect to make 

it more homogeneous. On the other hand, higher NP 

distributions in neighboring compartments B and Mare with 

same gradient launching more NP into I compartment. 

When k3=0 B+M+I is constant and their distributions 

balance each other. 

L 
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Fig. 6. Curves showingconvergence of <B>, <M>, <I>, <H>, and <L> with gaussian initial conditions (B for boundary, M for membrane, I for internalised, 

H for holes, L for lipid size). 

 

 
T=0.02 s                                      T=0.08 s 

 
T=0.25 s                                 T=0.30 s 

 
T=0.32 s                                       T=0.34 s 

 
T=0.39 s 

Fig. 7. Profiles showing theevolution of nanoparticles amount (representing 

by a color scale) in Internalised compartment called I at different times 

(T=0.02 seconds, T=0.08 seconds, T=0.25 seconds, T=0.30 seconds, T=0.32 

seconds, T=0.34 seconds, T=0.39 seconds). 

 

VI. CONCLUSION 

Diffusion effect on NPs penetration into a cell has been 

studied in 1D and 2D space dimensions. It is mainly shown 

that diffusion has an important direct impact on NP 

spenetration into the cell at early time. This is a consequence 

of smallness of diffusion coefficients for actual NP 

considered size which does not produce any shielding effect 

against NP entrance into the cell. So cell structure is not 

protected against high level impact of NPs of considered 

sizein present paper. As present  study is focused on human 

cells, it is thus important to take into account both the 

specific nature of cell organizes (ribosome, etc.) and 

exocytose (as particles can get out of the cell) to have a finer 

balance of possible NP effect at early time. 

Present model gives diffusion effect as a function of NP 

size, and can be completed by introducing other NP 

parameters such as load or shape. Also convection, which 

implies a material motion in local environment, can be 

considered for the cell in present case. This would mean to 

take cell motion into account at a certain speed and therefore 

to apply a velocity gradient to the cell. 

Aside still unclear nonlinear diffusion processes, another 

potential improvement is to develop implicit schemes for 

spatial diffusive models. This implies to represent the time 

vector as a solution of the system and therefore to get rid of 

dependence on time step conditions which from (14) are the 

stricter as the system is a stiffer one, due to smallness of 

diffusion coefficients for actual value of NP dimension. This 

is shown by very sharp variation of <L>and <M> on Fig. 4 

and Fig. 6, indicating possible and convenient system 

reduction by multi-time asymptotic analysis. 
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