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Abstract—Illumina sequencing platform is widely used in 

genetics research. Due to the complex andlong-term library 

construction and DNA sequencing, samples can be 

contaminated with different sources, which can lead to 

false-positive SNP calling. To identify the contaminated samples, 

we built a model of mappability score to quantitatively 

measurethe accessibility of different parts ofhuman genome. By 

characterizing the genomic region with high probability of 

uniqueness and counting the discordant reads against genotypes 

on the unique region, we could detect outliers as the 

contaminated samples in a population scale. Totest the 

effectiveness of our method, we manually mixed the sequencing 

reads of two clean samples. With the prior knowledge of 

mixture rate, we concluded that ourmethodis quite sensitive for 

female samples contaminated even slightly by male samples, 

accurate for male samples with moderate contamination by 

female samples and powerful for severe cross-individual 

contamination with the same gender. This method is easily 

understood but fairly effective in population-scale sample 

quality control. 

 

Index Terms—Contamination, mappability score, sample 

quality control, unique region. 

 

I. INTRODUCTION 

Next-generationsequencingis well known for its higher 

throughput, lower costs and reduced error rates [1], which 

allows for studying genetic variation that causes human 

disease and traits. Since the sequencing flow is not totally 

automated, i.e, few robots are used to automate the library 

preparation, samples may be contaminated by experimenters’ 

DNA. Besides, samples are often pooled together to reach the 

enough sequencing concentration, resulting in DNA from 

more than one individual end up in the same well or prepared 

library. These reasons account for the major classes of 

within-species contamination, which can greatly reduce the 

accuracy of genotype calling and lead to false positive SNPs 

and genes associated with disease. 

Unlike cross-species contamination, within-species 

contamination could not be easily identified by aligning reads 

to published genomes [2] or searching the database like 

tRNAdb [3]. Generally among a population, unusually high 

ratio of heterozygous to homozygous variant genotypes 

(HET/HOM ratio) across all SNP sitesin a sample suggests 
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cross individual contamination may happen. However, we 

can’t figure out what the HET/HOM ratio should be because 

populations with recent admixture will skew towards 

heterozygosity while populations with inbreeding will skew 

towards homozygosity. 

Besides the HET/HOM ratio method, Cibulskis et al. [4] 

uses a Bayesian approach to calculate theposterior 

probability of the contamination level with known genotypes 

from genotyping array. And Jun et al. [5] demonstrates a 

likelihood-based method that could detectDNA sample 

contamination either using sequence data alone or with 

array-based genotypes. Although both methods are sensitive 

for estimating levels of contamination as low as 1%~1.5%, 

neither of them considers the genomic feature of large 

proportion of repeated sequences and pseudoautosomal (PAR) 

gene region on sex chromosomes. Reads may not be mapped 

onto the exact position on these un-unique regions, resulting 

in an overrated contamination level. 

Though unique genomic region are much accessible or 

mappable than the un-unique region, unique and 

un-uniqueterminology are too simple to provide a 

quantitative measurement of the accessibility of different 

parts ofhuman genome. In this paper, we attempt to design a 

mappability score that could give us a 

probabilisticmeasurement of the accessibility of human 

genome, given current sequencing settings. Once the 

boundaries of the unique genome were fixed, we could detect 

cross-gender and within-gender sample contamination. 

 

II. MODELING THE MAPPABILITY OF HUMAN GENOME 

We firstly introduced a parameter ϵ, which represents the 

probability a base mis-sequenced when sequencing an 

individual genome. Suppose no error bias exists, the 

probability that a base is miscalled to one of the other 3 bases 

is ϵ /3. The probability that a base is sequenced to itself 

is1 − ϵ. 

Given a genomic site, its mappability can be defined asthe 

probability that the read really comes from the site. Let 𝑈 be 

the genomic sequence the read came from, 𝐶0be the genomic 

sequence the read mapped and 𝐶𝑖  , 𝑖 = 1, 2…𝑛  be 𝑛  high 

similar copies of 𝐶0 across the human genome, 𝑑𝑖 be the 

mismatch number between 𝐶𝑖  and 𝐶0. By Bayesian formula, 

 

𝑀𝑎𝑝𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑃𝑟 𝑈 = 𝐶0 𝑅 =
𝑃𝑟 𝑅 𝑈=𝐶0 ×𝑃𝑟 𝑈=𝐶0 

 𝑃𝑟 𝑅 𝑈=𝐶𝑖 ×
𝑛
𝑖=0 𝑃𝑟 𝑈=𝐶𝑖 

  (1) 

 

Pr 𝑅 𝑈 = 𝐶𝑖  is the likelihood that read 𝑅 comes from 𝐶𝑖 . 
Here 𝑅 is a generic read, i.e. the mismatch number between 

𝑅 and 𝐶0 (denoted as𝜐) can be any value between 0 and its 

maximal value 𝑚𝑎𝑥 𝜐 . In practice, 𝑚𝑎𝑥 𝜐  is a common 
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setting of read aligners which specifies the maximal 

mismatch number allowed when map short reads to reference 

genome. The likelihood that read 𝑅  comes from 𝐶𝑖 can be 

expressed as: 

 

𝑃𝑟 𝑅 𝑈 = 𝐶𝑖 =  𝑃𝑟 𝜐 = 𝑗 𝑈 = 𝐶𝑖 
𝑚𝑎𝑥  𝜐 
𝑗=0               (2) 

 

𝑃𝑟 𝜐 = 𝑗 𝑈 = 𝐶𝑖 isthe probability that there are mismatches 

between 𝑅  and 𝐶0 , given the read comes from𝐶𝑖 . To get 

mappability, we have to find a way to solve this conditional 

probability first. The difficulty is sites that differ between 

𝐶𝑖and 𝐶0 may overlap with mismatches between 𝑅 and 𝐶0, so 

the mismatch number between 𝑅  and 𝐶𝑖  is uncertain. 

Suppose there are 𝑘 sites at which both 𝑅 and 𝐶𝑖  differ from 

𝐶0 , given 𝑅 comes from 𝐶𝑖 , we could get the following 4 

items: 

1) There are 𝑑𝑖 − 𝑘 sites at which 𝑅 is same with 𝐶0, but 

𝐶𝑖  differ from 𝐶0. The base generating probability is ϵ/3. 

2) There are 𝑗 − 𝑘 sites at which 𝑅 differ from  𝐶0, but 𝐶𝑖 is 

same with𝐶0 . These sites can be at any positions along 

the read except 𝑑𝑖  fixed sites where 𝐶𝑖 differ from 𝐶𝑖 . 
The base generating probability is ϵ. 

3) Of 𝑘sites where both 𝑅 and 𝐶𝑖  differ from 𝐶0 ,𝑎of them 

are identical between 𝑅  and 𝐶𝑖 , the generating 

probability is  1 − ϵ . The remaining 𝑘 − 𝑎 bases in 𝑅 

differ from both 𝐶𝑖 and 𝐶0 , the base generating 

probability is 2ϵ/3 . 

4) If the read length is 𝐿 , the remaining 𝐿 − 𝑑𝑖 − 𝑗 +
𝑘bases in 𝑅  are identical to 𝐶𝑖 . The base generating 

probability is1 − ϵ. 

Given above information, we could obtain the value of 

𝑃𝑟 𝜐 = 𝑗 𝑈 = 𝐶𝑖 when there are 𝑘overlaps and  𝑎of them in 

𝑅 are identical to 𝐶𝑖 , denoted as 𝑓𝑘𝑎 : 

 

𝑓𝑘𝑎 =  
𝑑𝑖

𝑑𝑖 − 𝑘
  

𝜖

3
 
𝑑𝑖−𝑘

 
𝐿 − 𝑑𝑖

𝑗 − 𝑘
 𝜖𝑗−𝑘  

𝑘

𝑎
  1

− 𝜖 𝑎  
2𝜖

3
 
𝑘−𝑎

 1 − 𝜖 𝐿−𝑑𝑖−𝑗+𝑘  

(3)

 

Here, 𝑘 ∈  0,𝑚𝑖𝑛 𝑑𝑖 , 𝑗  .The mismatch number between 

𝑅  and 𝐶𝑖 (denoted as 𝑡𝑖 )is 𝑑𝑖 + 𝑗 − 𝑘 − 𝑎 . As aligners 

always report the best or one of the equal best hits of a 

sequencing read, so 𝑡𝑖 ≥ 𝑗 holds. We could get 𝑎 ≤ 𝑑𝑖 – 𝑘. It 
is obvious that 𝑎 also is less than or equal to 𝑘, so the upper 

bound of 𝑎 is 𝑚𝑖𝑛 𝑘, 𝑑𝑖 − 𝑘 . The lower bound of 𝑎 is 0. 

Now, we could express𝑃𝑟 𝜐 = 𝑗 𝑈 = 𝐶𝑖 as: 

 
𝑃𝑟 𝜐 = 𝑗 𝑈 = 𝐶𝑖 

=   𝑓𝑎𝑘

𝑚𝑖𝑛  𝑘,𝑑𝑖−𝑘 

𝑎=0

𝑚𝑖𝑛  𝑑𝑖 ,𝑗  

𝑘=0

=    
𝑑𝑖

𝑑𝑖 − 𝑘
  

𝜖
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𝑑𝑖−𝑘

𝑚𝑖𝑛  𝑘,𝑑𝑖−𝑘 

𝑎=0

𝑚𝑖𝑛  𝑑𝑖 ,𝑗  

𝑘=0

 
𝐿 − 𝑑𝑖

𝑗 − 𝑘
 𝜖𝑗−𝑘  

𝑘

𝑎
  

2𝜖

3
 
𝑘−𝑎

 1

− 𝜖 𝐿−𝑑𝑖−𝑗+𝑘+𝑎  
 

(4)

 

𝑃𝑟 𝜐 = 𝑗 𝑈 = 𝐶𝑖  is a function of 𝑑𝑖 , 𝑗. From (2), we could 

calculate 𝑃𝑟 𝑅 𝑈 = 𝐶𝑖 . 
In order to compute mappability, we also need to 

know 𝑃𝑟 𝑈 = 𝐶𝑖 , the prior probability that 𝑅 comes from 𝑈. 

For simplicity, we use a uniform prior, assuming that 𝑅 has 

the same chance to come from each genomic copy, although 

it is naive.  

In practical calculation, we set 𝐿 to 90 bp and ϵ to0.01 

which are canonical parameters for Illumina sequencing 

platform. Mappabilitycan be computed according to the 

following steps: 

1) Tabulate 𝑃𝑟 𝜐 = 𝑗 𝑈 = 𝐶𝑖 with 𝑑𝑖 ∈  0, 1, 2, 3 and 

 𝑗 ∈  0, 1, 2, 3 . 
2) Cut 90 bp short sequences from reference genome with a 

step of 3 and map them to reference genome allowing 3 

mismatches by bowtie [6]. We use bowtie because it can 

report all genomic hits with 3 or less than 3 mismatches. 

3) For each genomic site, we calculate and average 

mappability scores of all short sequence that cover this 

site according to (1)to get the mappability score of the 

site. 

Generally for a specific site, if there is another copy 

present in the genome, the estimated mappability scoreshould 

be close to 0.5. And a mappability score of 1indicatesthat the 

site is unique (We call the integration of these sites 

Mappability-based unique region, Muniqnom). As a result 

(Table I), we found 85.1%of human genome sites are unique, 

i.e, 85.1%of sites have no more than one copy across the 

genome. This number is close to the Uniqnom that Koehler et 

al. [7] estimated in 2010 simply usingthe ISAS aligner, which 

is 87.5%, respectly. Morever, Koehler’s Uniqnom shared 

98.5% of the unique region detected by our method.  
 

TABLE
 
I:

 
COMPARISON BETWEEN MUNIQNOM AND UNIQNOM

 

Chro

mo--s

ome 

# Sites
 

except N 

(Mb) 

# Sites in 

Muniqnom 

(Mb) 

# Sites in 

Uniqnom 

(Mb) 

# Shared 

sites 

(Mb) 

Shar

ed 

rate 

(%) 

1 225.28 191.18 196.85 188.30 98.5 

2 238.20 207.15 212.27 204.50 98.7 

3 194.80 172.65 176.80 170.33 98.7 

4 187.66 164.74 168.62 162.51 98.6 

5 177.70 154.59 158.34 152.54 98.7 

6 167.40 147.50 151.19 145.43 98.6 

7 155.35 129.15 133.43 126.99 98.3 

8 142.89 126.20 128.99 124.57 98.7 

9 120.14 95.40 98.21 94.04 98.6 

10
 

131.31 112.19 115.35 110.48 98.5 

11
 

131.13 112.97 116.13 111.25 98.5 

12
 

130.48 113.98 117.26 112.17 98.4 

13
 

95.59 85.51 87.43 84.44 98.7 

14
 

88.29 76.89 79.01 75.76 98.5 

15
 

81.69 66.82 69.06 65.74 98.4 

16
 

78.88 64.20 66.46 63.08 98.3 

17
 

77.80 63.22 66.15 61.87 97.9 

18
 

74.66 66.78 68.23 66.01 98.9 

19
 

55.81 43.84 46.50 42.38 96.7 

20
 

59.51 52.76 54.21 52.02 98.6 

21
 

35.11 29.67 30.58 29.25 98.6 

22
 

34.89 27.84 29.11 27.28 98.0 

X 151.10 120.80 124.61 118.53 98.1 

Y 25.65 9.00 9.79 8.57 95.3 

M 0.0166 0.0054 0.0059 0.0047 86.4 

Total 2861.34 2435.03 2504.57 2398.07 98.5 

Percen

t*
 

100%
 

85.1% 87.5% 83.8%  

*: The overall unique rate with respect to the total length of the non-gapped 

genome. 

As we know, repeats comprise at least 50% of the human 
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genome [8], so unique region rate seems to be far more less 

than what we estimated here. This misunderstanding can be 

explained by the different definition of similarity. For 

example, two Alu elements is similar despite of a dozen 

mismatches while they can be unique since only 3 

mismatches are tolerated in a read length in our definition. 

When defining the boundary of the unique region, we only 

considerthose pieces whose length is larger than the read 

length. Thus we obtain a 9.00 Mb unique region of 

Ychromosome and 120.80 Mb unique region of 

Xchromosome, which will be used in detecting 

contamination afterwards. 

 

III. THE PRINCIPLE OF CONTAMINATION DETECTION 

Among cross-individual contamination, a female 

contaminated by a male sample is relatively easy to detect 

since no Y chromosome in female genome. By calculating 

reads mapped onto the unique region of Y, we could easily 

distinguish normal female sample from contaminated ones. 

However, this method is not applicable in cases of male 

sample contaminated by female ones and within-gender 

contamination since no new chromosomes added. Luckly, 

there are still signs to be tracked. Unlike HOM/HET ratio 

which takes all SNPs into account and may not be so 

sensitive to slight contamination, we only consider 

homogenous genotypes. If we have high confidence about the 

homozygosity of a SNP in unique region, then reads 

discordant with the genotype might be result from 

contamination allowing for the sequencing error. 

In detail, since male has only one X chromosome, SNPs on 

X are homozygous. To test whether a male sample A is 

contaminated by female one, e.g. sample B, we denote𝐴𝑖and 

𝐵𝑖  be the underling genotypes at avariable site 𝑖  on X 

chromosome,  𝐴𝑖can take value 𝑀 and𝑚, while 𝐵𝑖can take 

value 𝑀𝑀 , 𝑀𝑚  and𝑚𝑚.  Among which 𝑀 stands for the 

reference allele and 𝑚  is the mutant allele. If sample𝐴 is 

contaminated by 𝐵and 𝐴𝑖 is 𝑀  and 𝐵𝑖 is 𝑚𝑚or𝑀𝑚 , for a 

sequencing read covering this site, we have a higher 

probability to observe an 𝑚 in contrast with that 𝐴 is not 

contaminated. By calculating the discordant reads number of 

all the SNPs on unique region of X chromosome, we could 

easily obtain the discordant fraction 𝐹 of a given male sample 

using the equation below: 

 

𝐹 =
 𝑁𝑖 𝑚 𝑀 +𝑁𝑖(𝑀|𝑚)𝑖

 𝐷𝑖𝑖
                                 (5) 

 

where 𝑁𝑖  is the discordant reads number of variable site 𝑖 and 

𝐷𝑖 is the total reads number covering the site. 𝐹is then the 

estimated contamination rate. For population-scale 

sequencing, samples show heavy deviation of 𝐹 should be 

contaminated. However, the power of this method decreases 

with the reduced sample size. In this case, we recommend to 

take the sequencing error rate as the referred baseline, which 

is 1% for Illumina sequencing. 

Besides male X chromosome, homozygous SNP sites in 

unique region of autosomes can be used in detecting 

within-gender contamination. The principle is quite similar 

except that 𝐴𝑖 and 𝐵𝑖 can take value 𝑀𝑀 , 𝑀𝑚  and𝑚𝑚 , 

corresponding to homozygote of reference allele, 

heterozygote and homozygote of mutant allele. And the 

equation to calculate 𝐹 is: 

 

𝐹 =
 𝑁𝑖 𝑚 𝑀𝑀 +𝑁𝑖(𝑀|𝑚𝑚 )𝑖

 𝐷𝑖𝑖
                                 (6) 

 

The only problem is to guarantee the homozygosity of 

SNPs. Assuming a sample that has been genotyped at 

thousands of or more SNP sites of autosomes, we can 

calculate the fraction of reads that disagree with known 

genotypes at homozygous sites( 𝐹) and classify the outliers 

as contaminated samples. 

 

IV. DETECTING FEMALE SAMPLE CONTAMINATION ON Y 

CHROMOSOME UNIQUE REGION 

For a normal female sample, few reads should be mapped 

onto the Y chromosome except the long homologous regions 

between X and Y chromosome. The higher the abnormal 

reads rate is, the severer the contamination will be. And the 

severest condition is the gender mistake. As the abnormal 

reads rate is too small to be compared among samples, we 

useread counts which were scaled with the total reads number 

across the wholegenome normalized to 10 Mb. If we 

observed that the normalized reads counts per 10 kb (denoted 

as CY ) of females are much smaller than that of males, which 

coincided with our expectation, it can prove the feasibility of 

this method. 

As our method is based on reads count, low coverage 

sequencing may induce reduced power of contamination 

detection, so we sequenced two (a male and a female) exomes 

(Agilent v2, 44Mb) into a deep depth of 36X and 41X. To 

exclude the probability that these samples may be 

contaminated, we performed genotyping of 18Kb sites of the 

two samples and compared with genotypes called by 

samtools [9] using sequencing reads. As a result, both 

samples reached a fairly high genotype concordance of 

99.88%, indicating little contamination during library 

preparation and Illumina sequencing.  

We next selected reads randomly from the two samples 

and mixed together, manually making a contaminated sample 

with known mixture rate.By aligning reads onto the unique 

region of Y chromosome and normalized to 10 Mb, we 

counted the CY value of unique region. As Fig.1a shows, only 

3out of 10 Mbreads can be mapped onto 10 kb unique Y 

chromosomeregion of the female sample (mixture rate is 0). 

While formale sample (mixture rate is 100%), this statistic is 

as high as888, indicating a good differentiation degree of 

CY.As for mixture samples, the CY value increases with the 

contamination rate increase. (Pearson correlation coefficient, 

PCC=0.9997). If samples were extremely contaminated, one 

can suspect the real gender of the sample. i.e, this method 

could also be used to discriminate genders.  

As for application, we sequenced 2,000 exomes (1000 

males and 1000 females, unpublished) and performed the 

method. The result (Fig.1b) shows most female samples are 

not contaminated by males. If we set cutoff of contamination 

level as 0.05, that isCY=45, we got 3 outliers. Specifically, 

CY of the extremlycontaminated sample was quite close to 

the males and we suspect the real gender of this sample. As 

for the other two outliers, the estimated conmination rates are 
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0.4 and 0.1. 

 

V. DETECTING MALE SAMPLE CONTAMINATION ON X 

CHROMOSOME UNIQUE REGION 

In order to detect male sample contaminated by female one, 

we did similar mixture to generate the in-silico contaminated 

sample with female mixture rate ranges from 0.01 to 0.9. For 

each sample, we did calculation at 1,959 HapMap SNP sites 

(CEU dataset, since sample used above are Europeans.) in X 

unique regions, requiring the sequencing depth ≥  8X. 

Restricting on HapMap high coverage sites guarantees its 

polymorphism. The average number of reads that 

disagreewith the consensus base generated by samtools [9] 

(the so-called sequence calls) are calculated and plotted in 

Fig. 1 (c). Different from the result of female sample 

contamination method, the estimated contamination level is 

not linearly associated with the mixture rate. In fact, the 

method is sensitive for low level of contmination but weak to 

detect severve contamination with rate more than 0.5. The 

reason that the estimated contamination level was greater 

than 0 on clean samples can be explained by the sequencing 

error. We also applied this method on the 1000 male exomes 

and found the fraction of reads that disagree with sequence 

calls of most samples are closed to 0.5% (Fig. 1 (d) ), which is 

the average error rate of the sequencing on our machine. The 

only one exception reaches a rate as high as 0.04, indicating a 

contamination level > 0.2 of this sample. 

 
Fig. 1. Simulation and application result of three method for contamination detection. (a) Reads count on unique regions of Y chromosome (CY) of 

contaminated samples.Each dot represents a manually-made contaminated sample, with mixture rate as the percent of reads from the male sample. Specifically, 

the sample with 0 mixture rate is the sequenced female sample while the 100% one is the sequenced male sample. (b) CY of 1,000 female and 1,000 male 

samples. The dashed line is corresponding to the contamination level of 0.05. (c) Fraction of readsdisagree with the consensus bases on known HapMap SNP 

sites of the X chromosome unique region of contaminated samples. (d) Fraction of reads disagree with sequence calls on 1,000 male samples. (e) Fraction of 

readsdisagree with known homozygous genotypes on autosomes unique region of contaminated samples. (f) Fraction of readsdisagree with known genotypes 

on 2,000 samples.  
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VI. DETECTING MALE AND FEMALE 

SAMPLECONTAMINATION ON AUTOSOME UNIQUE REGION 

With the same principle described above, but not limited to 

male samples, we did calculation at 7,219 homozygous 

SNPsites in unique regions of 22 autosomes. This method 

could be performed on samples without gender information, 

yet reliable genotype data is needed. The SNP set was 

selected strictly from the 18 Kb genotyping sites. Reads that 

disagree with these known homozygous genotypes were 

counted and the fraction was plotted (Fig. 1 (e) ). SNP sites 

with sequencing depth < 8X were skipped.  

Although this method can be applied to all samples 

without prior knowledge of the gender, it has two main 

limitations. The first one is the referred known accurate 

genotypes. And the second one is from the method itself. As 

seen from Fig. 1 (e), we could conclude that the method is 

quite sensitive to severe pollution of the sample but less so 

when the samples is slightly polluted. The lack of power of 

the method applied to autosomes can be easily explained as 

follows: the genetic difference between humans are rather 

small except on sex chromosomes. Besides the homologous 

regions, X chromosome and Ychromosome are enormously 

differed, so male DNAcontamination can be easily detected 

from female samples, even at extremely amount.Similarly 

female DNA contamination can bring in largeheterogeneity 

to male X chromosome, making it a clear signof 

contamination. However, pollution between samples 

withsame sex is the most difficult to detect. Only 

severecontamination with high heterogeneity can be caught 

by our method. Even so, when applying our method on the 

2000exomes, the resultswere better than had been looked for. 

Allcontaminated female samples detected by method 1 

andcontaminated male samples detected by method 2 

areevidently outliers in Fig. 1f, indicating that our method 3 

is practical. Besides, two more outliers which cannot be 

detected by method 1 and 2 are identified, probably result 

from within-gender contamination. 

 

VII. CONCLUSION 

Taking advantage of the deep sequencing, our method is 

powerful to detect contaminated samples and ensure the 

accuracy of genotype calling. However, limitations still exist. 

The biggest one is that focusing on sequencing reads rather 

than genotypes makes it possible to detect slight 

contamination but can be biased estimation of the 

contamination rate when sequencing depth is low. To avoid 

the bias, we restricted the smallest covered reads count on a 

SNP site as 8. Another limitation is the relatively low 

detection power of contamination with same gender. To solve 

this problem, we strongly recommendedto apply our method 

in a population scale. 

Although much to be done to the improvement of our 

ethod, the application can be expanded in addition to sample 

contamination detection. For example, the mappability score 

can be applied to the SNP quality control. Low mappability 

score suggests more than one copy on the genome and SNPs 

at this site might be the result of mis-alignment. As seen 

above, reads count on unique region of Y chromosome can be 

used to sex determination. Actually, we also counted reads on 

unique region of X chromosome and found the normalized 

count was similar to that of Y chromosome for male samples, 

consistent with the fact that male has one X chromatid and 

one Y chromatid. While for female samples, the reads count 

on X chromosome was double. 

Within-species contamination is harder to detect and can 

result in greatly reduced genotype quality for sequencing 

studies, making it a great force to the improvement of sample 

quality control method. 
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