
  

 

Abstract—The design of current-mode multiphase sinusoidal 

oscillator (MSO) for biomedical tissue measurement system is 

presented. The odd phase system can be realised using current 

controlled current differencing transconductance amplifier 

(CCCDTA)-based lossy integrators. The condition of oscillation 

and frequency of oscillation can be controlled electronically and 

independently through adjusting the current of the CCCDTA. 

The high output impedances facilitate easy driving an external 

load without additional current buffers. The proposed MSO 

provides odd phase signals that are equally spaced in phase and 

equal amplitude. The circuit requires one CCCDTA and one 

grounded capacitor per phase without external resistor and 

additional current amplifier. The results of PSPICE simulations 

using BJT CCCDTA are included to verify theory.  

 

Index Terms—CCCDTA, multiphase sinusoidal oscillator, 

integrated circuit.  

 

I. INTRODUCTION 

Multiphase sinusoidal oscillator (MSO) is important 

blocks for various applications. For example, in 

telecommunications it is used for phase modulators, 

quadrature mixers [1], and single-sideband generators [2]. In 

measurement system, MSO is employed for vector generator 

or selective voltmeters [3]. It can also be utilized in power 

electronics systems [4]. Recently, current-mode circuits have 

been receiving considerable attention of due to their potential 

advantages such as inherently wide bandwidth, lower 

slew-rate, greater linearity, wider dynamic range, simple 

circuitry and low power consumption [5]. Many active 

building blocks (ABBs) have been proposed to realize the 

current-mode circuit. The interesting active element, called 

current controlled current differencing transconductance 

 

 

The purpose of this study is to introduce a new 

current-mode multiphase sinusoidal oscillator. The features 

of the proposed circuit are the following: 1) Use of grounded 

capacitors and identical circuit configuration for each section 

in the MSO topology which are suitable for integration. 2) 

The electronic tunability of oscillation condition and 

oscillation frequency. 3) High-impedance current outputs. 4) 

The possibility of generating multi-phase signals for both an 

even and odd number of equally-spaced in phases. 5) 

Independent tuning of the oscillation frequency and the 

oscillation condition. 6) Equality of amplitudes of each phase 

due to utilizing identical sections. 7) Requirement for only 

one CCCDTA as the active element for each phase without 

any additional current amplifiers. 

 

II. PROPOSED MULTIPHASE SINUSOIDAL OSCILLATOR 

The main active element used to design the proposed 

inductance simulator is CCCDTA. Thus, the review of it will 

be shown here. The principle of CCCDTA was introduced in 
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amplifier (CCCDTA) [6], [7], is introduced to provide new 

possibilities in the current-mode circuit. It is really 

current-mode element whose input and output signal are 

currents. In addition, output currents of CCCDTA can be 

electronically adjusted.

Several realizations of current-mode MSOs using different 

active building blocks are available in the literature. These 

include realizations using current follower (CF) [8], CCCII 

[9]-[11], CDTA [12]-[14], CDBA [15], CFOA [16], and 

CCCCTA [17] and CCCDTA [18], [19]. The CF-based MSO 

in [8] requires two current followers, one floating resistor, 

and one floating capacitor for each phase and thus the circuit 

is not suitable for monolithic integration. Moreover, it cannot 

be electronically controlled. The CCCII-based MSOs [9]-[11] 

enjoy high-output impedances and electronic tunability. 

However, the first one requires a large number of external 

capacitors. In addition, the oscillation condition can be 

provided by tuning the capacitance ratio of external 

capacitors, which is not easy to implement. The second 

reported circuit requires additional current amplifiers, which 

makes the circuit more complicated and increases its power 

consumption. CDTA-based current-mode MSOs in [12] is 

based on lossy integrators, where as the circuits in [13] and 

[14] contain CDTA-based allpass sections. They exhibit 

good performance in terms of electronic tunability, 

high-output impedances, and independent control of the 

oscillation frequency and the oscillation condition. However, 

MSOs in [12], [13] require an additional current amplifier, 

which is implemented by two CDTAs. Moreover, the output 

currents of the MSO, utilizing the CDTA-based lossy 

integrators, are of different amplitudes. The MSO employing 

CDTA-based allpass sections [13] requires two CDTAs in 

each allpass section, and the circuitry becomes more 

extensive. While MSO using CDTA-based allpass sections 

[14] requires floating capacitor. Consequently, it occupies a 

larger chip area for VLSI design. In addition, its power 

consumption is also increased.

[7]. Its symbol and equivalent circuit are shown respectively 

Manuscript received September 17, 2013; revised November 21, 2013.

This work was supported in part by Faculty of Industrial Education, King 

Mongkut’s Institute of Technology Ladkrabang (KMITL) under Grant 

25570203021. 

The authors are with Department of Engineering Education, Faculty of 

Industrial Education, King Mongkut’s Institute of Technology Ladkrabang, 

Bangkok, Thailand (e-mail: kssurapo@kmitl.ac.th, kspeeraw@kmitl.ac.th, 

ktsunti@kmitl.ac.th, kawinai@kmitl.ac.th).

in Fig. 1 a) and Fig. 1 b). The p and n which have finite 

resistances (Rp and Rn) are the current input terminals. z and x
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Here VT is the thermal voltage. IB1 and IB2 are the bias 

currents used to control the intrinsic resistances and 

transconductance, respectively. The internal construction of 

BJT CCCDTA is shown in Fig. 2. 
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Fig. 1 a) Electrical circuit symbol and b) Equivalent circuit of CCCDTA. 
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Fig. 2. Internal construction of BJT CCCDTA. 
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From Eqs. (4) and (5), if Rp=Rn=VT/2IB1 and gm=IB2/2VT, 

the FO and CO is modified as 
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From Eqs. (6) and (7), it can be seen that the CO can be 

adjusted electronically/independently from the FO by 

varying IB2. 
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Fig. 3. Proposed MSO. 

 

III. SIMULATION RESULTS 

To prove the performances of the proposed MSO, the 

PSpice simulation program was used for the examination. 

The PNP and NPN transistors employed in the proposed 

circuit were simulated by using the parameters of the 

PR200N and NR200N bipolar transistors of ALA400 

transistor array from AT&T [20]. The CCCDTA has been 

simulated using the bipolar technology structure of Fig. 2. 

The circuit was biased with ±3V supply voltages.  
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Fig. 4. Sinusoidal output currents at initial time. 
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are the output terminals. The difference of input currents (ip-in) 

will send to z terminal. The voltage at z terminal is converted 

to the x-terminal current via a transconductance gm. The 

characteristics of CCCDTA can be described by:

If the CCCDTA is realized using BJT technology, Rp, Rn

and gm can be written as

The generalized structure of MSO is designed by 

cascading the n identical stages (n≥3) which contains the 

lossy integrator (first order low pass filter) for each phase. 

The output of nth stage is fed back to the input of the first 

stage. The system can provide one phase per one lossy 

integrator without any additional external amplifier. The 

current-mode odd phase MSO is shown in Fig. 3. It is found 

from Fig. 3 that the current mirrors are required to split the 

bias currents IB1 and IB2 to each lossy integrator section. In 

addition, it can be seen that the proposed MSO enjoy high-

output impedances which facilitate easy driving an external 

load without additional current buffers. From circuit in Fig. 3

for 3, 5, 7, ...n  , the frequency of oscillation (FO) and 

condition of oscillation (CO) are expressed as [16]

An odd three-phase sinusoidal oscillator (n=3) based on 

the structure in Fig. 3 has been designed. The component 

values are as follows: IB1=40µA, IB2=630µA, C=0.5nF. The 

simulated output waveforms, IO1, IO2 and IO3 are shown in Fig. 

4 and Fig. 5. The frequency of oscillation achieved from the 

simulation was 1.41MHz, while the calculated FO from (6) 

are 1.69MHz. The frequency spectrum of output currents are 



  

shown in Fig. 6. The total harmonic distortion for IO1, IO2 and 

IO3 are 1.13%, 1.18% and 1.14% respectively. 
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Fig. 5. Sinusoidal output waveforms. 
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Fig. 6. Spectrum of wave forms in Fig. 5. 

 

IV. CONCLUSION 

New current-mode multiphase sinusoidal oscillators using 

CCCDTA-based lossy integrators with grounded capacitors 

have been presented. The features of the proposed circuit are 

that: oscillation frequency and oscillation condition can be 

independently tuned; the proposed oscillator consists of 

merely 1 CCCDTA and 1 grounded capacitor for each phase 

and no additional current amplifier and availability of 

explicit-current outputs from high-output impedance 

terminals. PSPICE simulation results agree well with the 

theoretical anticipation. 
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