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 

Abstract—A protein that lacks a three-dimensional (3-D) 

structure in its intrinsic state has been called natively unfolded 

or intrinsically disordered. The observation that many 

intrinsically disordered protein regions play a key role in many 

essential functions has promoted increased interest in studies on 

the structural identification of intrinsically disordered proteins 

in the field of bioinformatics. Since amino acid sequence have 

been widely used for the determination of protein structure, it 

has been theorized that the sequence could also determine 

disorder. To improve the quality of prediction, recent studies 

have focused on finding more useful features and developing 

more robust predictors. Machine learning techniques are 

ideally used for extracting the complex relationships and 

correlations hidden in large data sets. In the study, several 

features of the chosen proteins were combined together in 

different ways to obtain an optimized dataset and prediction 

was accomplished by using the most common method, SVM, 

resulting in significant increase in success rate with the modeled 

data. Besides, the feature selection method, ERGS, was used to 

explore the optimum features that have the adequate 

information on finding disorder. In the research, 37 attributes 

were found to be the most influential features in predicting 

disordered regions. 

 

Index Terms—Effective range based gene selection, 

intrinsically disordered proteins, support vector machine, 

structural prediction. 

 

I. INTRODUCTION 

The rapid pace of genomic sequencing and the abundance 

of the sequence data have motivated the studies on structure 

prediction of the protein from its amino acid sequence. These 

predictions are then used to deduce function. This scheme 

assumes that tertiary structures are a prerequisite for function 

[1]. Generally, the loss of protein function is associated with 

the lack of specific three-dimensional (3D) structure. 

However, this view ignores numerous proteins that utilize 

unfolded or incompletely folded regions for function [2]. 

Proteins that lacks 3D structures in its intrinsic state has been 

called natively unfolded or intrinsically disordered [3]. Many 

proteins that have disordered regions of amino acid 

sequences are also involved in a variety of biological 

functions [4]. 

Intrinsically disordered protein regions have been found to 
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play a key role in many vital functions including DNA 

binding, cell signaling, protein modification and also in some 

diseases such as Alzheimer and Parkinson diseases [5]. These 

discoveries have induced interest in identification of 

intrinsically disordered proteins. Afterwards, they are 

thought to be used in drug design, protein expression and 

functional recognition.  

Since amino acid sequence attributes have been widely used 

for determining protein structure, it has been theorized that 

the sequence would also determine disorder. Thus, as 

alternatives to experimental methods, several computational 

methods have been suggested for disorder prediction based 

on the amino acid sequence. Most preferred machine learning 

techniques can be cited as neural networks [6]-[8] and 

support vector machines [9], [10].  

In most studies, the input patterns have been mostly 

derived from a variety of sequence properties that 

characterize disorder namely, flexibility, amino acid 

frequency, complexity, charge, and secondary structure [11], 

[12]. To improve the quality of prediction, recent studies 

have sought to find more useful features and to develop more 

robust predictor [7], [10], [13] For instance, Su et al. have 

used a condensed position specific scoring matrix profile by 

merging associated columns of the matrix concerned with 

several physicochemical properties of amino acids [14]. They 

achieved rather successful prediction via training a Radial 

Basis Function (RBF) neural network with their proposed 

PSSMP patterns. Position specific scoring matrix profiles 

obtained from Psi-Blast execution involve the evolutionary 

information with the level of position conservation. As a 

result specific disorder prediction tools were developed such 

as PONDRs [5], [15], DisEMBL [16] GlobPlot [17] 

DISOPRED2 [2], FoldIndex [18], RONN [7], DisPRO [8], 

PreLink [6] and DisPSSMP [14]. 

Machine learning techniques are ideal for use in extraction 

of complex relationships and correlations hidden in large data 

sets, since, the methods are well suited for the typically 

multidimensional, noisy, and complex data of computational 

biology. In this study, our aim is to determine an efficient 

computational way that can provide information about the 

structural class of ordered and disordered proteins using 

different biochemical and physical features of amino acids. 

To achieve an accurate prediction of disordered data, several 

features of the chosen proteins were combined together in 

different ways to obtain an optimized dataset and Support 

Vector Machine (SVM) that is one of the successful methods 

in computational prediction was used to explore the success 

rate with the optimized data. Subsequently, the dimension of 

the data was reduced by using the most informative features 

that were selected by the Effective Based Range Gene 

Selection method [18].  
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II. DATASETS AND METHODS 

A. Datasets 

In this study, two data sets were used. The first data set, 

containing 80 completely ordered proteins, was obtained 

from PONDR® website by Yang et al. For the second data 

set, 79 out of 91 proteins from a study conducted by Uversky 

et al. were used [19]. They reported 91 completely disordered 

proteins defined through spectroscopic methods in the 

literature. The compositions of the two protein sets named as 

CO80 and CD79, respectively, are shown in Table I. 
 

TABLE I: THE COMPOSITIONS OF DATASETS 

 CO80 CD79 

Number of Chains 80 79 

Number of Ordered Regions 80 0 

Number of Disordered Regions 0 79 

Number of Ordered Residues 16568 0 

Number of Disordered Residues 0 14462 

Total Residues 16568 14462 

 

A dataset constituted from the two chosen protein sets, was 

developed by balancing equal amounts of completely ordered 

(CO) and completely disordered (CD) protein sets, named as 

COD159. This dataset was used for training and then 

subsequently used to test the methods to measure the 

performances. 

In the study, an input pattern was derived by using the 

several physicochemical properties, the evolutionary 

knowledge and the compositions of amino acids in the 

window, as given in the study of Ersöz Kaya et al. [20]. The 

120 attributes of each pattern were chosen based on the 

following criteria: forty-nine (49) property scales of amino 

acids from the literatures and AAIndex; the measure of 

sequence complexity called K2 entropy; the first order 

statistics of 20 known amino acids; the compositions for 30 

different property groups of amino acids; and the 20 columns 

of the position-specific scoring matrix representing 

probabilities of conservation against mutations to 20 

different amino acids. An attribute value for an amino acid in 

a given position is calculated by averaging the values 

regarding the related information of all the amino acids in the 

window. 

The final pattern comprise of 50 composition-based 

attributes, 50 property-based attributes and 20 

evolution-based attributes. Whole list that contain the 

contents and the references of all properties are given in the 

thesis of Ersöz Kaya [21]. For each attribute, the values of the 

input patterns were rescaled between 0-1 by min-max 

normalization technique.  

In order to achieve successful models in predicting the 

protein structure, it is preferable to consider neighboring 

amino acids in the knowledge representation [12]. Thus, 

information about an amino acid in a protein was obtained by 

using all the amino acids surrounding it within a 

predetermined residue length window. In addition, the real 

value representations of amino acids and the average 

information of all the amino acids within the window were 

used to represent each feature with only one attribute in a 

pattern. Thus, dependency on the window size and the 

nuisance of dimensionality were prevented.  

B. Performance Measure 

Sensitivity, Specificity, Accuracy, and Matthews’ 

Correlation Coefficient are widely used indices to quantify 

the prediction performance [14]. Unfortunately, all given 

measures are fairly affected by the relative frequency of the 

target, and they are not sufficient in an isolated evaluation.  

Therefore, probability excess has been proposed as an 

unbiased measure for evaluating the performance of 

prediction [7]. Using probability excess provides an 

independent measure opportunity of the relative class 

frequencies by means of the evaluation of sensitivity and 

specificity values cooperatively, sensitivity + specificity − 1. 

Probability excess measure can be graphed by a plot of 

sensitivity versus specificity. It is defined by the following 

equation; 

 

Probability Excess (probEx) = 
)()( FPTNxFNTP

FPxFNTPxTN




(1) 

 

According to the probability excess criteria, the values 

greater than 0.5 reveal is an acceptable prediction 

performance. 

C. Support Vector Machines 

A support vector machine is a statistical learning technique 

based on the Structural Risk Minimization (SRM) principle. 

The algorithm which was introduced by Vapnik is originally 

designed to deal with linear binary classification problems 

[22]. The basic idea of the SVM is to find an optimum 

hyperplane that yields the largest margin between the two 

classes. Afterwards, SVM was extended to solve nonlinear 

cases by applying kernel techniques [23]. 

Let   niyx ii ,,1,   where
n

i Rx   denotes the 

input vectors and  1, 1iy     specifies the class labels 

belonging to the samples.  Solving the following quadratic 

optimization problem provides the optimum separating 

hyperplane; 

 

minimize  



n

i

iCw
1

2

2

1
  (2) 

subject to   iii bxwy  1  if 1iy  

 

   iii bxwy  1  if 1iy  

 

 0i  

where i  is called a slack variable used for measuring the 

occurred error at point  ii yx , . C is the penalty parameter 

that trades off the margin size for the number of misclassified 

data points.  

The solution of the quadratic optimization problem is 

given by the saddle point of the Lagrange function [24]. 
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is applied [18]. They described ERGS algorithm based on 

effective range which is defined using statistical inference 

theory [27]. 

According to statistical inference theory, there is a 

negative correlation between magnitude of the confidence 

interval and reliability of the estimate. Since presence of 

outliers and high class variance causes wider range of 

confidence interval, ERGS was designed to overcome these 

problems. ERGS algorithm also uses Chebyshev’s inequality 

which gives a distribution independent bound.  

The effective range takes into account of statistical 

inference theory, Chebyshev’s inequality and class prior 

probabilities. The ERGS algorithm basically tries to find the 

feature weights by using this effective range of each class.  

The discrimination is determined according to these weights. 

If the decision boundaries between classes are far away from 

each other, the weights that are calculated for features will be 

higher. Effective ranges of these features do not overlap or 

have smaller overlapping area. 

There are two major differences between the ERGS and 

most of the existing feature selection algorithms; there is no 

search requirements and iterative process for feature subset 

selection in the nature of ERGS algorithm. 

 

III. RESULTS 

One of the goals of this study was to measure the 

effectiveness of the SVM method on locating the disordered 

regions of proteins that exist within a modeled dataset. For 

this purpose, the sequence of chosen proteins was first 

modeled by way of a scheme in which several features of 

amino acids are combined together by locally coding at each 

position in order to obtain an optimized protein dataset. The 

method was then implemented on the dataset labeled 

COD159. The results obtained were compared to the eleven 

methods presented in the literature as publicly available. 

In the study, the dataset was partitioned into six different 

subsets, each of which had approximately equal sequence 

lengths and a balanced number of ordered and disordered 

residues. One of the subsets was designated as the validation 

set to find the optimum parameters. The remaining subsets 

were used to derive the prediction performance scores via a 5 

fold cross validation. The subsets are called CV1, CV2, CV3, 

CV4 and CV5. While performing the cross validation, the 

success of the training performance for four combined 

subsets was validated against the remaining subset, with the 

process being repeated for each subsequent subset. The 

success rates from the five subsets were then averaged to 

obtain a measure of the model’s performance.  

Before the performance trials of the methods, the series of 

runs on the validation dataset were executed to determine the 

optimal values for the parameter C and σ of the SVM. For 

this purpose it is performed grid search on penalty parameter 

C and kernel parameter σ using cross validation. Initially, the 

penalty parameter C was tried by increasing the values 

between 1 and 100 in steps of 10. Because of more favorable 

results in low levels of C values, the increment reduced to 1 

between 1 and 30.  

During the trials, trainings were performed for all values of 

C accompanying each value of σ, which was initially 
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i denotes Lagrange multipliers in (3) where 0i . The 

problem is simplified into the Lagrangian dual problem by 

using Karush-Kuhn-Tucker (KKT) conditions [25].

To find the optimal solution, a dual Lagrangian must be

maximized with respect to nonnegative multipliers i , as 

given in (4)

maximize jijij

n

ji

i

n

i

iD xxyyL  



1,1 2

1
(4)

subject to   0
1




n

i

ii y

Ci 0

The solution occurs when iii xyw **  [26]. This 

leads to expressing the optimal decision function as

  







 



*

1

*sgn bxxyxf
n

i

iii                 (5)

To succeed in nonlinear classification tasks, the input 

space is mapped into a higher-dimensional (Hilbert) feature 

space via a nonlinear mapping function, HRn : [25].

The computation of the dot product 

   xxxx ii   can be reduced by using a kernel 

function that returns the inner product of the feature mapping, 

stated as      xxxxK ii  , . Thus, the decision 

function can be expressed as

    







 



*

1

* ,sgn bxxKyxf
n

i

iii                (6)

Each nonzero i indicates that the corresponding ix is a 

support vector. 

D. Effective Range Based Gene Selection

In this study, an input pattern is defined by using 120 

features as given detailed above. Besides the main purpose of 

the study, it is also aimed to select the features that are 

potentially useful to distinguish disorder and order proteins.  

Selection subset of features also effects the computational 

time and complexity of this high dimensional dataset. 

In the selection process of more informative features 

subset, a novel and efficient feature selection and ranking 

approach called Effective Range Based Gene Selection 

(ERGS) which is introduced by Chandra and Gupta in 2011 



  

assigned values between 1 and 30 in increments of 5. The 

interval was later diminished to 0.5, regarding to the highest 

values obtained for the success rate. Finally, C and σ was set 

at 10 and 3, respectively. 

In this study, the SVM was trained with the exponential 

kernel function for mapping the decision surface. After the 

learning phase, which was performed with the selected 

parameters, the testing phase was executed on the test data of 

each subset.  

The results of the SVM with the modeled data 

(SVM_COD159) were given in terms of the following 

measures: Sensitivity (Sens), Specificity (Spec), Accuracy 

(Acc), Matthew’s Correlation Coefficient (Mcc) and 

Probability Excess (probEx). However, they were arranged 

according to the order of the probEx criteria in the tables.   
 

TABLE II: THE PERFORMANCE OF SVM_COD159  

 
CV1 CV2 CV3 CV4 CV5 Mean 

Acc 0.913 0.712 0.834 0.813 0.825 0.819 

probEx 0.825 0.423 0.667 0.626 0.650 0.638 

Mcc 0.826 0.427 0.669 0.626 0.656 0.641 

Spec 0.918 0.781 0.866 0.810 0.894 0.854 

Sens 0.907 0.643 0.801 0.816 0.756 0.786 

AUC 0.971 0.781 0.906 0.904 0.920 0.897 

 

The performances attained after testing the modeled data 

are presented in Table II. The average of the accuracy rates of 

the SVM_COD159 reaches a level of 81.9% yielding the 

probEx values over 0.5 for all subsets except subset 2.  
 

TABLE III: THE PERFORMANCE COMPARISON OF SVM_COD159 VS. THE 

ELEVEN PREDICTION TOOLS 

Methods Sens Spec Acc Mcc probEx 

SVM_COD159 0.786 0.854 0.819 0.641 0.638 

DisPSSMP 0.825 0.765 0.795 0.589 0.590 

RONN 0.675 0.888 0.782 0.580 0.563 

FoldIndex 0.722 0.815 0.769 0.540 0.536 

DISOPRED2 0.469 0.981 0.725 0.543 0.449 

PONDR 0.632 0.782 0.707 0.420 0.414 

DisPro 0.383 0.982 0.683 0.467 0.365 

DisEMBL(465) 0.348 0.978 0.663 0.430 0.327 

PreLink 0.319 0.991 0.655 0.430 0.310 

DisEMBL(hot) 0.502 0.749 0.626 0.260 0.251 

DisEMBL(coil) 0.719 0.446 0.583 0.170 0.165 

GlobPlot 0.308 0.821 0.565 0.151 0.129 

 

The performance of the SVM with the modeled data was 

compared with several known structural prediction tools. 

Performance evaluations were conducted on the results 

obtained with the aid of eleven disorder prediction tools 

referenced in the literature - PONDRs, DisEMBL, GlobPlot, 

DISOPRED2, FoldIndex, RONN, DisPRO, PreLink and 

DisPSSMP. In Table III, the order of success for each of the 

methods was given with regard to the measure, probEx. 

The four methods - SVM, DisPSSMP, RONN, and 

FoldIndex - performed significantly better than the other 

methods. These are the only methods that have a probability 

excess value over 0.5. According to the results, it can be seen 

that the SVM_COD159, DisPSSMP and FoldIndex 

accomplished a more balanced prediction than the others. 

This indicates the tendency to predict order i.e. 

under-prediction of disorder. For example, PreLink yields the 

best score of specificity in predicting disorder with 99%, but 

it attains this at the expense of missing estimated data, with a 

significant number of disordered residues. On the other hand, 

the DisEMBL (coil) has a good performance of sensitivity 

but reveals a significant over-prediction. 

Consequently, a comparison of the performances of the 

various methods demonstrates that the SVM_COD159 

provides a considerable increase in classification 

performance with respect to the other common methods 

given in the literature. As is evident from these results, it can 

be concluded that the SVM with the modeled data is an 

effective way to achieve accurate predictions of disorder in 

proteins with the modeled data  

In this research, feature selection was carried out as an 

alternative study. The purpose here was to find the more 

effective features in determining a disordered structure. In 

this way, a more productive and successful study could also 

be achieved by removing the features that do not carry 

adequate information. For this reason, the new and successful 

ERGS method of feature selection was chosen. 

In order to select these features, the ERGS method was 

implemented on the validation set. At the end of the 

implementation, it was determined that prediction success 

was increased when the 37 attributes with average factor 

values larger than 0.4 were used. As a consequence, the data 

set was rearranged in such a way as to accommodate only 

these 37 features, and titled ERCOD159. The success values 

of the SVM with the new reduced data set are given in Table 

IV. 
 

TABLE IV: THE PERFORMANCE COMPARISON OF SVM_COD159 VS. 

SVM_ERCOD159 

 

 

 

 

 

 

 

 

 

 

 

Upon examination of the values given in Table IV, it was 

seen that an increase in the success rate by approximately 1% 

was achieved when compared to the results of the execution 

on the data set containing all 120 characteristics. Even 

though this figure appears to be small, an increase in the 

probEx value demonstrates that more balanced results were 

obtained for each of the two classes. When comparing the 

results in Table IV, it can be seen that the value for AUC 

increased from 0.897 to 0.91. It is obvious that the 

elimination of the unnecessary features enhances the learning 

capability of the method. In addition to an increased rate of 

success and more balanced scores, factor reduction also 

results in lessening computational time and memory 

 COD159 ERCOD159 

Acc 0,819 0,831 

probEx 0,638 0,662 

Mcc 0,641 0,664 

Spec 0,854 0,862 

Sens 0,786 0,800 

AUC 0,897 0,910 
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consumption. The results are also confirmed by the ROC 

curve (Fig. 1). Fig. 1 illustrates that ERGS yields better 

classification performance than the cases in which the feature 

selection was not performed. 
 

 
Fig. 1. The ROC curves for SVM_COD159 and SVM_ERCOD159. 

 

According to the findings obtained in the study, it can be 

said that the 37 features selected carry sufficient information 

necessary to identify the disordered regions. The designated 

traits identified by the ERGS results are listed in the 

supplementary file (Appendix). 

 

IV. CONCLUSION 

Studies on structural genomics indicate that numerous 

protein segments fail to fold into a fixed 3D structure under 

physiological conditions. Contrary to the structure–function 

paradigm, these proteins comprise the disordered regions, yet 

exhibit function.  Over the years, it has been confirmed that 

these proteins play key roles in vital functions and also in 

some diseases, such as Alzheimer’s disease, Parkinson 

disease, and certain types of cancer. Thus, structure 

prediction and functional characterization of the proteins has 

become a challenging area of research.  

Since amino acid sequence attributes have been widely 

used for determining protein structure, it has been theorized 

that the sequence would also determine disorder. Hence, as 

alternatives to experimental methods, several computational 

methods have been suggested for disorder prediction based 

on the amino acid sequence.  Recent studies have focused on 

finding more useful features and developing more robust 

predictors to improve the quality of prediction.  

A dataset was constructed organizing the amino acid 

sequence according to several physicochemical properties, 

evolutionary knowledge, and compositions, and a method 

was developed for predicting disorder regions within the 

modeled dataset in the study. Eleven specific tools, including 

PONDRs, DisEMBL, GlobPlot, DISOPRED2, FoldIndex, 

RONN, DisPRO, PreLink, and DisPSSMP, were used for 

comparison to test the classification performance of the 

method. 

When compared with these most common disorder 

predictors, the proposed SVM_COD159 method achieves the 

best performance on prediction of disordered regions in 

proteins which were represented by specific features. This 

method outperforms the other ten methods significantly, 

without either under-predicting or over-predicting the 

disordered regions. Furthermore, the method accomplishes 

significantly more balanced classifications. 

The results of this study demonstrated that SVM with 

optimal parameters can be used successfully in disorder 

prediction. The model provides a significant increase in 

success among the other eleven tools. As a result, the 

demanding problem of accurate prediction was significantly 

improved.  

Furthermore, feature selection was carried out as an 

alternative research in the study. The most informative 

features for separating the disordered/ordered regions in 

proteins were determined by using the ERGS method. The 

obtained results corroborate much of the previous findings in 

literature. The new data set that was created with the selected 

features increased the prediction accuracy of the proposed 

method. This indicates that the selection procedure resulted 

in eliminating correlation and in discovering the 

necessary-sufficient properties that can be used to predict 

intrinsically disordered structure in proteins. 

APPENDIX 

The features found with ERGS was given by the following 

list. 

 

X(2) Amino acid composition 

X(3) Amino acid distribution 

X(5) Localized electrical effect 

X(10) Polarity [Grantham] 

X(11) Polarity [Zimmerman] 

X(24) Beta-sheet propensity derived from designed sequences 

X(27) Turn propensity 

X(30) Normalized frequency of alpha-helix 

X(32) Normalized frequency of beta-turn 

X(33) Hydrophilicity scale 

X(34) Average flexibility indices 

X(35) Normalized flexibility parameters (B-values), average 

X(36) Location parameters of the fit of the B factors 

X(37) Hydrophobicity index [Engelman et al.] 

X(38) Hydrophobicity index [Prabhakaran] 

X(43) Hydrophobicity  

X(54) First order statistics of E 

X(72) Disorder Promoting (R+K+E+P+S) 

X(74) Flexibility (G+T+R+S+N+Q+D+P+E+K) 

X(76) Beta Strand Related (E+B) 

X(78) Best Helix Formers (E+M+A+L) 

X(81) Best Sheet Breakers (S+G+K+P+D+E )  

X(83) External (R+N+D+Q+E+H+K) 

X(85) Acidic (D+E) 

X(95) Most Hydrophilic (D+E+N+Q+R+K)  

X(98) Helix Propensity (A+E+Q+H+K+M+L+R) 

X(101) Position-specific score for A 

X(102) Position-specific score for C 

X(103) Position-specific score for D 

X(104) Position-specific score for E 

X(106) Position-specific score for G 

X(107) Position-specific score for H 

X(108) Position-specific score for I 

X(112) Position-specific score for N 

X(115) Position-specific score for R 

X(116) Position-specific score for S 

X(117) Position-specific score for T 
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