
  

 

Abstract—Clarifying the interaction between cytochrome 

P450 (P450) and food-related compounds that affect the 

metabolic activity of P450 allows to effectively predict the 

toxicity of food-related compounds. Currently, we are 

developing a fluorescence P450 sensor to evaluate the metabolic 

reactions of food-related compounds. The amount of 

fluorescent metabolic products for various P450 species can be 

easily measured using sensors.  

In this paper, a method of constructing models to predict 

toxicity of food-related compounds from the amount of 

fluorescent metabolic product using a machine learning 

technique is proposed. Since the precision of the measurement 

of the amount of fluorescent metabolic products is not high 

enough to quantitatively predict the toxicity value, multiple 

regression analysis is not always appropriate. We consider the 

toxicity prediction problem to be a toxicity classification 

problem. In this framework, however, it is difficult to determine 

the precise boundary values for separating one toxicity class 

from another.  In our proposed method, fuzzy sets are 

introduced not only to the attributes for dividing instances but 

also to the classes that give the prediction results to solve the 

difficulty of determining the boundary values. The performance 

of our proposed method was confirmed by comparing the mean 

error and the cosine similarity with those of other methods. 

 

Index Terms—Fluorescence sensor, fuzzy decision tree, P450, 

toxicity prediction. 

 

I. INTRODUCTION 

In recent years, as the development of such food-related 

compounds as functional food and food additives has been 

promoted, the safety assessment of food-related compounds 

has become more important. Instrumental analysis and 

animal experiments are usually used for such assessments. 

However, applying the results obtained by animal 

experiments to humans is not always appropriate, because the 

metabolic activation capability depends on animal species or 

physiological differences between males and females. In 

addition, it is difficult to address the interaction among the 

great varieties of food compounds by such methods, which 

also require high cost and a long time to get results. In recent 

years, a quite new technology for safety assessment has been 

developed by focusing on the P450 enzymes that perform the 

metabolic activation of food-related compounds. The 

metabolic activation is a phenomenon in which nontoxic 
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compounds become toxic metabolites by metabolism in 

human body. Specifying the interaction between P450 and 

food compounds that affect the reaction of metabolic activity 

allows us to effectively predict the toxicity of food 

compounds. An oxygen sensor measurement system has been 

developed that can directly evaluate the metabolic reaction 

between food compounds and P450, and predicting 

mutagenicity has been attempted by only analyzing the 

reaction patterns of enzymes obtained by sensors [1]. 

However, oxygen sensors show extremely low sensitivity 

and require a precise measurement environment in which the 

inflow of oxygen has to be blocked completely. As an 

alternative to oxygen sensors, we are developing a 

fluorescence sensor to evaluate the metabolic reactions of 

foods more sensitively and easily. Therefore, a model is 

required that predicts the toxicity from the amount of 

fluorescent metabolic product for each P450. 

In this paper, a method of constructing models that can 

predict the toxicity of food-related compounds from 

fluorescence sensor data using a machine learning technique 

is proposed. Multiple regression analysis is often used to 

estimate a formula that predicts the value of an objective 

variable (toxicity) from continuous variables (amount of 

fluorescent metabolic product). However, since the precision 

of the measurement of the amount of fluorescent metabolic 

products is not high enough to quantitatively predict the 

toxicity value, multiple regression analysis is not always 

appropriate. Therefore, we consider the toxicity prediction 

problem to be a toxicity classification problem, in which each 

food compound is classified into a toxicity class, such as high 

or low. In the classification problem, each toxicity class has 

to be defined in advance. However, it is difficult to decide the 

precise boundary values for separating one toxicity class 

from another. To cope with this problem, we introduce a 

fuzzy decision tree. 

Many approaches have constructed fuzzy decision trees. 

Lee et al. constructed a fuzzy decision tree for fuzzy data [2]. 

This method can automatically generate membership 

functions for continuous numeric attributes. Yuan and Shaw 

constructed a fuzzy decision tree that focused on ambiguity 

[3]. This method evaluated how suitably the value belongs to 

each attribute and then the attribute with minimum ambiguity 

is selected to divide instances. 

Fuzzy decision trees ambiguously classify instances by 

introducing fuzziness to the attributes. In our proposed 

method, fuzzy sets are introduced not only to the attributes 

for dividing instances but also to the classes that give the 

prediction results, since it is difficult to strictly decide the 

boundaries to discriminate between toxicity classes. 

The remaining sections are organized as follows. Section 

II describes the data obtained from umu tests and a 
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fluorescence sensor. Section III presents a fuzzy decision tree 

algorithm for toxicity prediction. The evaluation of our 

experimental result is shown in Section IV. Two types of 

experiments are performed in terms of different points. 

Finally Section V provides discussions and conclusions of 

this study. 

 

II. UMU TEST AND SIGNATURES 

A. Genotoxicity Assessment by Umu Test  

P450 enzymes are metabolic activators for food-related 

compounds, such as food additives and mycotoxins. By 

metabolic activation, compounds with no toxicity often 

become toxic metabolites. Fifty seven types of P450 in 

humans have been identified [4]. The umu test quantitatively 

evaluates the reaction of metabolic activation using P450 in 

rats. The results of umu tests are conventionally classified 

into three categories. If the value is less than 1.0, the 

compound does not greatly affect our bodies. If it is more 

than 2.0, the compound shows toxicity in the body, that is the 

compound has a mutagenic property. If it is between 1.0 and 

2.0, the compound has some influence on our bodies. 

Boundary values 1.0 and 2.0 are usually used for 

convenience.  However, they have been defined not from 

theoretical evidence but from experiential aspects. 

Examples of toxicity values are shown in Table I. 
 

TABLE I: UMU TEST RESULTS 

Name of compound Value of umu test 

Caffeine  1.28 

Feric acid 0.98 

Methylegenol 1.65 

Linalool 1.26 

Cineol 1.22 

 

B. Signature from Fluorescence Sensors 

Umu tests have problems: high cost and long processing. 

On the other hand, sensors have been developed that can 

measure the amount of enzymatic metabolites by P450 

enzymes, and the data obtained from them can be applied to 

evaluate the toxicity of food-related compounds [5]-[7]. 
 

TABLE II: SIGNATURE 

  Kind of P450 

Name of 

compound 

Presence or absence of 

compound 
2C8 3A4 … 

2C1

8 

Caffeine 

Without compound 
579

1 

647

2 
… 2234 

With compound 
511

5 

743

0 
… 2149 

 

Several P450 enzymes are located on one fluorescence 

sensor plate, and the intension of the fluorescence of 

fluorescent metabolites that is metabolized by each P450 can 

be simultaneously measured with the fluorescence sensor. 

Competitive enzymatic reaction between a food-related 

compound and each P450 are measured using the 

fluorescence sensor, and the results are viewed as a 

competitive enzymatic reaction that consists of all the 

enzyme reactions, called a signature for this compound. An 

example of a signature for a food-related compound, caffeine, 

is shown in Table II. “Without compound” indicates the 

amount of the product generated by metabolizing the 

fluorogenic substrate by each P450, and "with compound" 

means the amount of fluorescent metabolites when caffeine 

inhibits the metabolism of the fluorogenic substrate. The 

safety of the compounds is evaluated at low cost and quickly 

by predicting the toxicity from the signature. 

 

III. PROPOSED METHOD 

A. Construction of a Fuzzy Decision Tree 

As mentioned above, we consider a toxicity assessment 

problem to be a toxicity classification problem. In the 

classification problem, several classes, which each instance is 

classified into, have to be defined beforehand based on the 

intensity of the toxicity. To define the classes, the boundary 

values of the toxicity are required to distinguish each class, 

but they cannot be decided theoretically. 

In general, constructed decision trees provide good 

evaluations, if the correct classes for the given instances are 

predicted accurately. Since the values of the boundaries 

between classes are not absolute, however, it is not 

appropriate that only one class is deemed a correct class for 

the instances that are positioned near the boundaries. So the 

concept of fuzzy decision trees was introduced. 

A fuzzy decision tree can handle data ambiguity. In a fuzzy 

decision tree, the attributes that describe each instance are 

defined using fuzzy sets.  A fuzzy set is defined as a set 

whose elements have degrees of membership [8]. Fuzzy 

decision trees can show the degree to which an instance 

belongs to a class, instead of showing an instance that 

belongs or does not belong to a class. In them, fuzzy sets are 

usually used as attributes to represent instances. Additionally, 

in our method, they are used as a class to which an instance 

belongs. 

An algorithm for constructing a fuzzy decision tree is 

shown in Fig. 1:  
 

 
Fig. 1. Algorithm. 

 

In this algorithm, the fuzzy classes to which an instance in 

the training set belongs are decided using membership 

functions; they provide the grade value in the interval [0, 1] 

for each class based on the toxicity values in step 1. In this 

study, trapezoidal membership function ),,,,(  xC
 is 

used to simplify the calculation [2]: 
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An instance, which can belong to more than one fuzzy 

class, is given a grade value as confidence degrees (degree of 

belonging to the class) for each fuzzy class. Thus an instance 

belonging to two fuzzy classes is regarded as two instances 

that belong to each class. After step 1 is applied to all the 

instances in the training set, all are assigned to the root node 

in step 2. Parameter t1 introduced in step 3 is a threshold for 

the degree of separation, defined as follows: 
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where ci is an i-th class of class set C and |S| is the sum of the 

confidence degrees of the instances included in instance set S. 

The set of instances is usually divided into more than one 

subset to get a higher degree of separation. However, if the 

current degree of separation exceeds t1, the instances are not 

divided. Parameter t2 is the threshold for the sum of the 

confidence degrees, and if the sum of the confidence of the 

current node is less than t2, the set of instances is not divided 

any more.  

In step 4a, the dividing attribute and the boundary value 

are selected. To determine the attribute for the dividing 

instances, our proposed method uses a gain ratio, which is 

calculated as follows based on a conventional manner [9]. 

First, the gain is defined as  

 

    )|()(),( ASESEXAgain   ,                 (3) 

 

where E(S) is the entropy for all the instances in a node and 

E(S|A) is the entropy for the case where the set of instances is 

divided into subsets by attribute A.  Entropy E(S) of a set of 

training instances in a node is defined as 
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where X(ci) is the ratio of the sum of the confidence degrees 

of instances that belong to ci to the sum of  the confidence 

degree of all the instances in the node. Entropy E(S|A) is 

defined as  
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where aj is the j-th attribute value of attribute A and X(ci | aj) 

is a ratio of the sum of the confidence degrees of instances 

belonging to ci and having aj to that of the instances having aj. 

Finally, when the set of instances is divided into subsets by 

attribute A, information gain ratio gain_ratio(A,S) is defined 

as 

),(
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SAgain
SAratiogain  ,                (6) 

where divide(A, S) is the amount of divided information 

obtained by dividing the set of instances, defined as     
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u
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           (7) 

The numeric attribute domains are discretized by 

determining the boundary points. Numerical attribute value a 

is divided into attribute values {t < a} and {a   t} by 

boundary value t. The gain ratio is calculated for all the 

attributes, and an attribute (a dividing attribute) and a 

boundary value are selected to maximize the gain ratio.  

It is insufficient to consider the ambiguity of the 

continuous attributes that are divided into two crisp values {a 

  t}, {t < a} at boundary value t of selected attribute A. 

Therefore, fuzzy sets are generated to ambiguously classify 

instances with attribute values near the boundary values as 

follows: 
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As stated above, boundary value t is decided that 

maximizes the gain ratio. Then two fuzzy sets with 

membership functions ),,(
1

wtwtxA  and 

),,(
2

wtwtxA   are generated using (8) and (9) to 

ambiguously evaluate an instance that has an attribute value 

in the range w  from boundary value t, where w is a 

parameter given in advance. If an instance is divided based 

on the generated fuzzy sets, a grade provided by each set is 

calculated by the membership functions, and the confidence 

degree is updated: 

 

gradecdnowcdnew  __  ,                (10) 

 

where now_cd represents the confidence degree before the 

update and new_cd represents it after the update. If the 

confidence degree of an instance shows 0.0, it is removed 

from the instance set. Steps 3 and 4 are recursively applied to 

the set of instances in the child node. 

B. Toxicity Prediction by the Fuzzy Decision Trees 

The signature obtained from the fluorescence sensors is 

used as input data. The difference between the amount of 
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fluorescent products metabolized with and without a 

compound is used as the value corresponding to each P450 

enzyme in the input signature. An example of input data is 

shown in Table III. 
 

TABLE III: INPUT DATA 

 Kind of P450 

Name of 

compound 
2C8 3A4 … 2C18 

Caffeine -676 958 … 266 

 

The degree of belonging to each fuzzy set (class), which is 

defined based on the intensity of the toxicity, is calculated for 

the input instance and is presented as a predicted result. For 

example, if five classes are prepared, the prediction result is 

shown as [0.0, 0.3, 0.5, 0.2, 0.0] and corresponds to [classes 1, 

2, 3, 4, and 5]. 

Fig. 2 shows an example of the prediction process using 

fuzzy decision trees. Instance A is given 1.0 as a confidence 

degree in the beginning and goes down based on first 

dividing attribute 2C8. For example, if the value of 2C8 of an 

instance is 20, the value of attribute 2C8 of the instance is 

considered "high" with 0.2 of confidence degree by 

membership functions. The instance whose value of 2C8 is 

considered "high" goes down to a next node that is labeled 

3A4 as a dividing attribute. If the value of 3A4 of the instance 

is 200, the value is considered completely "high," and the 

instance reaches the leaf node labeled class 3 (1.0) with a 0.2 

confidence degree. On the other hand, an instance whose 

value of 2C8 is considered "low" goes down to a next node 

that is labeled 2C18 as a dividing attribute, and then the 

instance goes down based on a branch labeled "low," since 

the value of 2C18 is -500, and the instance reaches the leaf 

node labeled classes 1 (0.4), 2 (0.4), and 3 (0.2) with a 0.8 

confidence degree. Instance A obtains the following 

prediction results: [0.32 ( = 0.8 × 0.4), 0.32 ( = 0.8 × 0.4), 

0.36 ( = 0.2 × 1.0 + 0.8 × 0.2), 0.0, 0.0]. 
 

 
Fig. 2. Example of prediction process in fuzzy decision tree. 

 

IV. EXPERIMENTS 

A. Evaluation Experiments 

In the experiments, twelve important P450 species taking 

part in drug metabolism in human were used to obtain 

signatures from a fluorescence sensor. Signatures were 

obtained four times for each compound. The differences 

between the amount of fluorescent products metabolized 

with and without a compound for each P450 enzyme were 

used as attributes. In addition, the toxicity value examined by 

the umu test in advance was added. Totally 324 instances 

were used, since they were obtained four times for each of 94 

kinds of compounds, but some instances were removed that 

were missing values. Examples of instance are shown in 

Table IV. 
 

TABLE IV: EXAMPLE OF INSTANCES 

 Kind of P450  

Name of 

compound 
2C8 3A4 … 2C18 

Umu 

test 

Caffeine -676 958 … 266 1.28 

Catechol 125 22  -1222 1.47 

…  …  …  …  …  …  

 

In this paper, our proposed method is evaluated from the 

following two points. 

1) Accuracy of toxicity value prediction  

2) Accuracy of class prediction    

In the experiments, the number of classes was four, and the 

other parameters are shown as follows: 

 Membership functions for defining the classes: 

)0.1,7.0,7.0,4.0,(
1

xc )5.1,9.0,9.0,6.0,(
2

xc  

 
)9.1,3.1,3.1,9.0,(

3
xc  

)1.2,9.1,9.1,5.1,(
4

xc  

 Margin from the boundary value on the membership 

function generated for each attribute: w = 215 

 Threshold of degree of separation: t1 = 0.8 

 Threshold of confidence concentration: t2  = 9.0 

Our proposed method was compared with three 

conventional methods: multiple regression analysis, a 

decision tree, and an overlapped decision tree. In the decision 

tree and in the overlapped decision tree, the classes were 

defined as follows. The number is just four, like in the 

proposed method. In the decision tree, the boundary points 

for distinguishing the classes are the median between two 

adjacent representative values, which are the gravity points 

of the membership function for defining classes in our 

proposed method. The overlapped decision tree allows 

classes to overlap. The range of each class is [ , ] and 

corresponds to membership function ),,,,(  xc
 in our 

proposed method. The representative points are gravity 

points.  

In our proposed method, each instance belongs to one or 

more classes with the confidence degree. Similarly, in the 

decision tree and in the overlapped decision tree, each 

instance belongs to one class (in the decision tree) or one or 

more classes (in the overlapped decision tree) with a 1.0 

confidence degree.  

In the first experiment (experiment 1), the accuracy of 

predicting the toxicity value was compared for each method 

using the average error of the predicted value to the actual 

value obtained from the umu test. For that purpose, the 

predicted classes of an instance are defuzzified; the classes 

were quantified by totaling for all the classes what was 
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obtained by multiplying the rate at which the instance 

belongs to a class by its representative value. 

In the second experiment (experiment 2), the accuracy of 

the class prediction was evaluated by cosine similarity, which 

represents the closeness of the angle between vectors, and is 

defined as follows: 

 

1

2 2

1 1

cos( , ) ,
n

i i i

n n

i i i i

x yx y x y
x y

x y x y x y



 


   

  

   
 

    (11) 

 

where n represents the number of the dimensions of the 

vector. The prediction result and the actual classes are 

represented as a four-dimensional vector that consists of the 

degree of belonging to each class to apply (11). 

In each experiment, a 10-fold cross validation (CV) was 

used for comparing the results of the methods. Moreover, the 

average of ten 10-fold CVs was also evaluated. 

B. Discussion 

Fig. 3 and Fig. 4 show the results of experiment 1. Fig. 3 

shows the average error in one trial of a 10-fold CV by each 

method. Fig. 4 shows the result of performing a 10-fold CV 

ten times, and Table V shows their average. 
 

 
Fig. 3. 10-fold CV results (error). 

 

 
Fig. 4. Ten 10-fold CVs results (error).  

 

TABLE V: AVERAGE OF TEN 10-FOLD CVS RESULTS (ERROR) 

Multiple 

regression 
Decision tree 

Overlapped 

decision tree 

Proposed 

method 

0.1896 0.2319 0.2133 0.1728 

 

In Fig. 3, multiple regression analysis and our proposed 

method show comparatively few errors, but the decision tree 

and the overlapped decision tree have many errors. In most 

cases, the error of our proposed method is less than the error 

of multiple regression analysis. 

In Fig. 4 the proposed method shows the fewest errors, and 

the multiple regression analysis shows the second fewest 

errors. The decision tree and the overlapped decision tree 

have more errors. Furthermore, as shown in Table V, the 

average error of the proposed method is 0.1728, which is less 

than 0.05 compared to the decision tree. Our proposed 

method outperforms the other methods in terms of toxicity 

value prediction.  

Fig. 5 and Fig. 6 and Table VI show the results of 

experiment 2, where the cosine similarity was evaluated 

instead of the average error in Figs. 3 and 4 and Table V.  
 

 
Fig. 5. 10-fold CV results (cosine). 

 

 
Fig. 6. Ten 10-fold CVs results (cosine). 

 

TABLE VI: AVERAGE OF TEN 10-FOLD CVS RESULTS (COSINE) 

Decision tree 
Overlapped 

decision tree 

Proposed 

method 

0.5113 0.8253 0.8346 

 

In Fig. 5, the overlapped decision tree and our proposed 

method have relatively stable similarity around 0.7-0.9, and 

the decision tree has similarity over a wider range: 0.2-0.8. 

Fig. 6 shows that the overlapped decision tree and our 

proposed method have high similarity around 0.8-0.85, in 

contrast, the decision tree has comparatively low similarity in 

0.45-0.6. As shown in Table VI, the similarity of our 

proposed method is 0.8346, which is higher than the 

similarity of the overlapped decision tree. Thus, higher 

similarity is shown when instances belong to more than one 

class rather than a single class. 

In summary, our proposed method with defuzzification 

shows the highest accuracy when predicting the toxicity 

value in comparison with other typical methods. As for the 

toxicity classification problem, our proposed method can 

predict a class that closely resembles the actual class. 

 

V. CONCLUSION 

In this paper we discussed a framework for predicting 
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toxicity by P450. Our proposed method is based on fuzzy 

decision trees since the amount of fluorescent metabolites is 

not allowed to have a crisp boundary point for classification. 

Our proposed method also considers the class ambiguity 

since the toxicity value to define each class is also not 

allowed to have crisp boundary points.  

From the results of our experiments, our proposed method 

shows smaller average error than any other methods and 

higher cosine similarity. Therefore, our method, which 

considers the ambiguity, is superior to others for the 

prediction of toxicity. 
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