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Abstract—Cancer stem cells (CSCs) are cancer cells that 

exhibit stem cell-like properties. They are immune to standard 

chemotherapy and are often implicated for relapse and 

metastasis.  Modeling of CSC-caused relapse is difficult as 

organisms tend to die before the relapse can be studied, and 

thus in silico models are ideal but are in development. Two 

kinds of CSC-induced tumor growth were modeled 

mathematically and visually using the mass-action and spatial 

models. Mathematical models of population growth and a 

better understanding of cancer stem cell population dynamics 

and neural networks can be achieved by applying discrete 

stochastic models, automata theory, and cellular automaton. 

Due to its wide range of possibilities, cellular automata theory 

opens up new field of mathematical applications in cancer 

modeling and providing a bridge between bioinformatics and 

individualized cancer modeling. 

 

Index Terms—Cancer stem cell, cellular automata, 

tumorigenesis, stochastic, gompertzian growth. 

 

I. INTRODUCTION 

Cancer Stem cells (abbreviated as CSCs) are cancerous 

cells that exhibit properties similar to normal stem cells. This 

means that CSCs are multipotent and are able to differentiate 

into cancer cells and can undergo self-renewal. CSCs 

essentially are tumorigenic, meaning they are capable of 

creating tumors, a quality other cancerous cells do not 

possess. Another quality of CSCs is immortality; whereas 

other cells have a limited number of times they can divide 

(Hayflick limit) CSCs are able to divide indefinitely [1]. 

One of the main problems of CSCs in cancer treatment is 

that they are generally unaffected by chemotherapy used to 

kill most differentiated cancer cells (which make up most of 

the tumor). CSCs generally make up about 1-3% of a tumor 

[2]. Thus, following chemotherapy, CSCs left behind would 

be able to replenish a tumor and cause a relapse of the cancer 

[3]. In addition, tumor modeling and understanding relapse 

due to CSCs are currently ill understood because most 

organisms with relapse cancers in vitro die before they can be 

further studied. 

If unheeded, CSCs can, in theory, cause continual relapses 

of a tumor, and are capable of metastasis – the migration 

cancerous cells including CSCs to other organs or tissues in 

the body to create new tumors (carcinogenesis). By applying 

discrete stochastic models, automata theory, and cellular 

automaton programming to create more accurate models of 

population growth and a better understanding of population 

dynamics and neural networks. 
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Due to discrepancies in the presence of CSCs, differences 

in various types of cancers, and variations in individuals, 

there are few general mathematical models that describe 

CSC-induced tumor proliferation. However, using 

compartmental methods and predictive mathematical models 

as well as cellular automaton, CSC-induced tumorigenesis is 

possible [4]-[6]. 

 

II. MATERIALS AND METHODS 

The Java programs were written on the BlueJ integrated 

development system (IDE) and resultant data points were 

graphed on Mathematica. The cellular automaton models 

were plotted using Mathematica's and ArrayPlot functions 

for analysis. 

Two programs were written on BlueJ to simulate the mass 

action and spatial cell growth models. Because the Random 

package provided by Oracle is not as cryptographically 

secure, the SecureRandom package was used instead when 

determining stochastic processes. 

Because the programs need to account for both stem and 

differentiated stem cell, each automaton has three states: 

empty (value of 0), stem (value of 1), progenitor (value of 

1.5), and differentiated (value of 2) (see Fig. 1). Cancer stem 

cells primarily undergo self-renewal (mitosis) or divide into a 

progenitor cell which still has CSC qualities but is slightly 

more differentiated. This adds a value of 0.5 to the CSC value. 

These progenitor cells can divide or differentiate further by 

adding 0.5 to create a differentiated cell. Differentiated cells 

can continue to proliferate or undergo apoptosis as a method 

of cellular control and balance. However, due to the 

cancerous nature of cancer cells, these cells divide or 

differentiate indefinitely and have their proliferation controls 

(such as the Hayflick limit) and apoptosis processes 

inhibited. 

 

Fig.
 
1.

 
Schematic diagram of the cancer stem cell induced tumor growth 

process. The circle (stem_1) represents a stem cell, the smaller circle (prog) 

represents a progenitor cell,
 
and the double circle (diff_2) represents a 

differentiated cell.
 

Because the finite state machines studied are CSCs, these 

cell population control methods are ignored and cells are left 

to proliferate or differentiate at constant rates defined by 

stochastic processes.
 

A.
 

Mass-Action Model 
 

The mass-action model is a cancer growth model proposed 
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by Dr. Ting-Chao Chou in 2011 [7]. The mass-action model 

is based off of the chemical and epidemiological laws of 

mass-action in which any individual in a homogenous 

mixture has an equal probability of interacting with any other 

individual in the grid (see Fig. 2).  

Essentially, the mass-action model allows for a randomly 

chosen cell to place its resultant offspring from self-renewal 

or differentiation on another randomly chosen location on the 

grid. These processes are determined stochastically. 

 

 
Fig. 2. The red cell is a randomly chosen cell and the yellow cells represent 

all locations the cell can interact with. 

 

B. Spatial Model 

The spatial model is another commonly used model in 

cancer modeling [8], [9]. The spatial model differs from the 

mass-action model in that a randomly chosen cell can only 

place its offspring on a random location in its neighborhood. 

The selected neighborhood for a cell in the spatial model is a 

Moore neighborhood with range r=1; this is also known as a 

Chebyshev distance of 1. The spatial model functions 

similarly to the mass-action model but a randomly chosen 

cell is only able to interact with randomly chosen cells in its 

neighborhood. 

 

 
Fig. 3. The red cell is a randomly chosen cell and the yellow cells represent 

the red cell's Moore neighborhood with range r=1. The diagram to the left 

demonstrates the torus-nature of the spatial model. 

 

The Moore neighborhood contains the cell and the 

surrounding cells with Chebyshev distance 1 (see Fig. 3). The 

area of the Moore neighborhood can be described by the area 

equation (2r+1)2. These numbers, such as 9, 25, 49, etc., are 

odd squares. In the spatial model, with a neighborhood with 

range r=1, the total area is 9. In addition, the spatial model is 

able to wrap over and around itself to create a torus. With no 

axis of rotation, the torus mathematically degenerates to 

represent a sphere (Fig. 3). 

The Moore neighborhood is defined by the following set: 
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III. RESULTS 

After hundreds of plots describing 10,000 generations of 

cell processes were averaged using the law of large numbers 

and graphed on Mathematica, it was noted that the 

differentiated cancer cells (which naturally make up the 

majority of the tumor) had the highest population and 

exhibited a Gompertzian growth model. The progenitor cell 

population made up about 5% of the total population and 

exhibited a far more gradual Gompertz function (varying r 

parameter). The CSC population, as expected, remained at 

about 3% of the total population and followed the Gompertz 

function as well. 

The Gompertz function is defined by the equation 

 

 0( )   exp log exp
N

N t K t
K
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in which N(t) is the function describing the size of the tumor 

at time t, N(0) would thus be the initial size of the tumor, K is 

the carrying capacity, and α is the proliferation constant of 

the cancerous cells. 

The Gompertz function is characterized by a more gradual 

approach from the inflection point to carrying capacity 

(future asymptote) than from initial growth to the inflection 

point. 

 

 
Fig. 4. A superimposition of the mass-action and spatial CSC, progenitor, 

and differentiated cancer cell plots. 

 

 
Fig. 5. CA model describing the progression of a tumor starting with 5 CSCs 

in the mass-action model through stochastic processes. 

 

Fig. 4 represents the graphical plots of the mass-action and 

spatial CSC, progenitor, and differentiated cancer cell 

populations. 

The cellular automaton arrays were also printed out over 

various intervals of generations (after every 500 generations) 
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and plotted on Mathematica to visualize and compare the 

growth of CSC-induced tumors in the mass-action (Fig. 5) 

and spatial (Fig. 6) models. 
 

 
Fig. 6. CA model describing the progression of a tumor starting with 5 CSCs 

in the spatial model through stochastic processes. 

 

IV. DISCUSSION 

Ultimately, the mass-action and spatial models provide 

relatively similar results in that differentiated cells (similar to 

clinical scenarios) exhibited the largest population and 

comprised of the majority of the tumor.  

It was noticed that although the spatial model reached 

equilibrium at a slower rate, it reached a higher carrying 

capacity. This is because the Moore neighborhood confines 

the CSC and progenitor growth by forcing these cancer stem 

cells to create a cell niche and thus any cell from these cell 

niches would have to be differentiated cancer cells. Thus, the 

majority of these cells exist in cell niches of CSCs 

surrounded by progenitor cells.  

Though the spatial model provides a closer Gompertzian 

growth model and cellular automaton imaging to lifelike 

scenarios, this does not completely discredit the mass-action 

model as it may still be used as a base comparison for 

variations on the spatial model (such as applying a von 

Neumann neighborhood or using an extended Moore 

neighborhood). In respect, these variations on the spatial 

model may better fit CSC-induced tumor growths of various 

cancers. However, further clinical trials may have to be done. 

CSCs exhibit a classic Gompertz tumor growth model with 

a much more gradual slope to carrying-capacity than the 

Gompertz growth models of differentiated and progenitor 

populations. Though this does not make much difference in 

the outcome, this provides interesting future research in CSC 

size relative to tumor size or cancer type. In addition, other 

growth models such as the Janoschek, Weibull, and Richards 

curves may be fitted against these stochastic plots for 

comparison.  

As shown in the Mathematica cellular automaton model of 

the spatial cancer cell populations, the CSCs generated 

progenitor cells surrounding them which then divided into 

more progenitor cells or eventually differentiated into 

differentiated cancer cells. This models the lifelike case of 

cancer stem cell niches which remain after chemotherapy and 

differentiated cancer cells become necrotic [10].  

The Mathematica cellular automaton arrays of the 

mass-action cancer cell populations show randomness. 

However, this randomness might disappear as certain 

conserved structures may be found or lists of Turing 

machines at different generations may be compared to see 

whether these models follow any elementary cellular 

automaton “rules” proposed by Stephen Wolfram. 

V. CONCLUSION 

The mass-action and spatial models of microbiological 

population dynamics were applied in cancer stem cell 

modeling. The two cell compartmental models of cell 

population dynamics demonstrate that cancer progenitor cell 

and differentiated cancer populations exhibit a Gompertzian 

growth model which is typical in tumor modeling. 

Interestingly, cancer stem cell populations remained at 

life-like percentages and also resembled the Gompertz 

growth model. It was also observed that the total progenitor 

and cancer stem cells reached a dynamic equilibrium at 

which cells could no longer proliferate but progenitor cells 

continued to differentiate. Thus, the differentiated cell 

populations exhibited a double Gompertz function whereas 

the stem-progenitor populations returned to the 1-3% CSC 

population in a tumor. It is important to note that the current 

model includes all progenitor cells as cancer stem cells rather 

than as their individual graphs. 

The mass action and spatial models can be expanded to 

become three dimensional grids and thus neighborhoods 

would become three dimensional as well. This can be 

accomplished as the current Java code is written as a Turing 

machine, meaning information is stored on a one dimensional 

array and one cell on the array is able to interact with and 

change other cells. Thus in languages with 2D arrays such as 

Java and Python, a 3D model is possible with arrays of 

Turing machines. However, when coding in the C++ 

language, it is possible to use 3D arrays, so a Turing machine 

in this case would not be necessary. 

The 3D Moore neighborhood takes the shape of a cube 

with 27 locations including the chosen cell and can be 

defined by the set 
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The model can be transposed into a von Neumann 

neighborhood with range r=1 and, more interestingly, range 

r=2 (Fig. 7). Because the range of a von Neumann 

neighborhood is diagonal, the distance in which a cell can 

interact is known as the Manhattan distance. The von 

Neumann neighborhood is defined by the equation 
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Fig. 7. The red cell is a randomly chosen cell and the yellow cells represent 

 

Cell motility may be applied to these models as the process 

is very similar to the current cellular processes except a cell 
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the red cell's von Neumann neighborhood with range r=2. The diagram to the 

left demonstrates the torus-nature of the spatial model.



  

removes itself from its current location and places itself on 

another location in a defined neighborhood. Study in cell 

motility would help in the moving of cancer cells that is 

implicated in causing metastasis. 

Using cellular automaton arrays, various stochastic trials 

may be run and compared with one another to see if there are 

any conserved structures (similar to those in Conway's Game 

of Life) may be found in the models. 

As aforementioned, each individual Turing machine can 

be printed and graphed by generations using Mathematica's 

ArrayPlot function and compared with Stephen Wolfram's 

proposed rules and codes of elementary cellular automaton. 

Currently, it is expected that due to the stochastic nature of 

the current models, these cellular automaton models may be 

classified as being Class 3 automata in that they will appear to 

be random states. 

Bioinformatics can potentially be bridged with CA 

modeling as each gene can be considered an individual rule 

for every cell on the grid. Genes may be turned into boolean 

structures which would then be applied as a rule for each 

individual cell [11], [12]. This should create more 

individualized cell models and be directly applicable in 

clinical situations by creating individualized tumor models. 

This could also potentially help with tumor prediction in 

early stages of detection as well as predicting metastasis. 
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