
   

 

Abstract—Due to the high-throughput of mass 

spectrometry-based phosphoproteomics experiment, the desire 

to annotate the catalytic kinases for in vivo phosphorylation 

sites has motivated. Many researches are undertaken to develop 

a computational method for the identification of kinase-specific 

phosphorylation sites using linear amino acid sequences. With 

an increasing interest in the structural environment of protein 

phosphorylation sites, herein, a new scheme has been developed 

for identifying kinase-specific phosphorylation sites on protein 

three-dimensional (3D) structures. For a large-scale 

investigation on 3D structures, all of the experimental 

phosphorylation sites are mapped to the protein entries of 

Protein Data Bank by sequence identity. In this work, a support 

vector machine (SVM) is applied to generate the predictive 

model learned from the information of spatial amino acid 

composition and structural alphabet. After the cross-validation 

evaluation, most of the kinase-specific models trained with the 

consideration of structural information outperform the models 

considering only the sequence information. Moreover, the 

independent testing set which is not included in training set has 

demonstrated that the proposed method could provide a stable 

performance. This study has demonstrated that the 

consideration of spatial context could improve the predictive 

performance compared to the model only considering the local 

sequence motifs. 

 

Index Terms—Phosphorylation, protein kinase, 

three-dimensional structure, structural alphabet, spatial amino 

acid composition. 

 

I. INTRODUCTION 

Protein phosphorylation catalyzed by kinases plays crucial 

regulatory roles in many essential cellular processes 

including cellular regulation, cell death, transcriptional 

regulation, cellular signal pathways, metabolism, growth, 

differentiation, and membrane transport [1]. It has been 

estimated that one-third to one-half of all proteins are 

phosphorylated in a eukaryotic cell [2] and around half of 

kinome are disease- or cancer-related by chromosomal 

mapping [3]. Mass spectrometry-based identifications of 

phosphorylation sites on substrates in vivo and in vitro are the 

foundation of understanding the mechanisms of 

phosphorylation dynamics and important for the biomedical 
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drug design [4]. However, the effort to experimentally verify 

the catalytic kinases remains time-consuming, 

labor-intensive, and expensive. Consequentially, many 

researches are undertaken to develop a computational method 

for the identification of kinase-specific phosphorylation sites, 

including NetPhosK [5], Scansite 2.0 [6], PredPhospho [7], 

GPS [8]-[10], PPSP [4], MetaPredPS [11], NetPhorest [12] 

and KinasePhos [13]-[15]. Particularly, Linding et al. [16] 

have proposed an excellent method, namely NetworKIN, that 

augments motif-based predictions with the network context 

of kinases and phosphoproteins. With most of the existing 

phosphorylation site prediction tools requiring prior 

knowledge of experimentally verified substrates and its 

kinase, a method is developed to be able to predict 

kinase-specific phosphorylation sites based solely on protein 

sequence [17]. 

Although over 20 methods have been developed for the 

accurate prediction of kinase-specific phosphorylation sites, 

most of them rely solely on the local amino acid sequence 

surrounding the phosphorylated sites. Blom et al. [18] were 

the first to propose a method with limited data for sequence 

and structure-based prediction of protein phosphorylation 

sites in eukaryotes. While one-dimensional amino acid 

sequence was observed to harbor most of the predictive 

power, Predikin [19] has proposed a method that applied the 

structure-based information for improving the prediction of 

phosphorylation sites in proteins. With an increasing interest 

in the structural environment of protein phosphorylation sites, 

Phospho3D database [20], [21] was proposed for 

characterizing the structural properties of phosphorylation 

sites on three-dimensional (3D) structures. Additionally, 

Phos3D [22] has extracted 3D-signature motifs from 750 

experimentally verified phosphorylation sites with 3D 

structures available in Protein Data Back (PDB) [23] and 

applied them to implement a web server for structure-based 

detection of phosphorylation sites. 

With the desire to comprehensively and accurately 

annotate the catalytic kinases for in vivo phosphorylation 

sites, this work has developed a new scheme for identifying 

kinase-specific phosphorylation sites on 3D structures. To 

investigate the spatial environment of phosphorylation sites, 

all of the experimental phosphorylation sites are mapped to 

the PDB protein entries using sequence identity. In this work, 

the linearly sequenced substrate motifs are combined with the 

information of spatial amino acid composition and structural 

alphabet, which is a new scheme for encoding a 3D structure 

fragment of protein backbones into 23 structural alphabets, to 

identify kinase-specific phosphorylation sites on 3D 

structures. Moreover, an independent testing set which is 

blind to the cross-validation process has been generated for 
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the evaluation of stability and reliability of our method.  

 

 
Fig. 1. The analytical flowchart of this study. 

 

II. MATERIAL AND METHODS 

 

TABLE I: DATA STATISTICS OF EXPERIMENTALLY VERIFIED 

PHOSPHORYLATION SITES IN EACH RESOURCE 

Data set Data Resource 

Number of phosphorylation 

sites 

S T Y 

Training set 

Phospho.ELM 26,136 6,316 3,118 

UniProtKB 92,221 23,289 14,337 

Combined (NR1) 98,376 25,269 15,188 

Independent 

testing set 

PhosphoSitePlus 73,969 19,946 14,696 

PHOSIDA 7,391 1,300 278 

HPRD 34,273 10,761 4,121 

Combined (NR1) 97,753 27,421 16,531 

 

Fig. 1 depicts the analytical flowchart including data 

collection, features investigation, model training and 

evaluation, and independent testing. The experimentally 

verified phosphorylation sites are mainly extracted from 

dbPTM [24], [25] which has integrated the data from version 

9.0 of Phospho.ELM [26], release 20120711 of UniProtKB 

[27], release 20120730 of PhosphoSitePlus [28], version 1.0 

of PHOSIDA [29], version 1.1 of SysPTM [30] and version 

9.0 of HPRD [31]. In this work, the data set extracted from 

Phospho.ELM and UniProtKB is regarded as the training set 

for sequenced and structural investigation of phosphorylated 

substrate sites. After removing the redundant sites between 

Phospho.ELM and UniProtKB, the number of serine (S), 

threonine (T), and tyrosine (Y) substrate sites are 98376, 

25269, and 15188, respectively, as given in Table I. 

According to the annotations of kinase families extracted 

from RegPhos [32], the substrate sites of protein 

phosphorylation could be further categorized into more than 

200 kinase groups. 

As for classification, the prediction performance of the 

constructed models may be overestimated owing to the 

over-fitting of a training set. The experimental 

phosphorylation sites that collected from PhosphoSitePlus, 

PHOSIDA and HPRD were regarded as the independent 

testing set.  

A. Sequence-Based Investigation of Phosphorylation Sites 

Since the flanking sequences of the substrate sites 

(position 0) are graphically visualized as the entropy plots of 

sequence logo [33], the conservation of amino acids 

surrounding the phosphorylation sites could be easily 

observed. The 13-mer sequences (from -6 to +6) of 

kinase-specific phosphorylation sites are extracted as the 

positive data of training sets, while all other residues (S, T 

and Y) in the phosphorylated proteins are regarded as the 

negative data. With reference to the method of SulfoSite [34], 

the positional weighted matrix (PWM), which specifies the 

relative frequency of amino acids surrounding substrate sites, 

was utilized in encoding the fragment sequences. A matrix of 

m × w elements was used to represent each residue of a 

training dataset, where w stands for the window size and m 

consists of 21 elements including 20 types of amino acids and 

one for terminal signal. 

B. Structural Characterization of Phosphorylation Sites 

With an attempt to study the spatial context of 

phosphorylation sites and evaluate its effectiveness for 

improving the predictive performance, all of the collected 

phosphorylation sites are mapped to the protein entries of 

Protein Data Bank (PDB) by sequence identity. It resulted in 

a total of 4508 phosphorylation sites (covering over 40 kinase 

groups) containing the protein 3D structures. DSSP [35] is 

then utilized to calculate the solvent accessibility and 

standardize the secondary structure of PDB entries with the 

mapped phosphorylation sites. Instead of the sequential 

amino acid composition (AAC), this work investigates the 

propensities for the different amino acid types to occur in the 

spatial vicinity of the phosphorylated sites. A spatial amino 

acid composition (Spatial AAC) is determined for each 

kinase grov ups by calculating the relative frequencies of 20 

amino acid types within radial distances ranging from 3 to 12 

Å from central phosphorylated amino acid residue. A radial 

cumulative propensity plot [22] was applied to display the 

spatial AAC. In order to identify the significant difference of 

spatial AAC between phosphorylation sites (positive data) 

and non-phosphorylation sites (negative data), a 

measurement of F-score [36] has been applied to calculate a 

statistical value for each radial distance. The F-score of the 

ith value of 11 radial distances is defined as:  

  F-score (i) =
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ix  denote the average value of the ith 

distance value in whole, positive, and negative data sets, 

respectively; n  denotes the number of positive data set and 
n  denotes the number of negative data set; )(
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ith distance value of the kth positive instance, and )(
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denotes the ith distance value of the kth negative instance 

[36]. 
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In order to generate a predictive model that physically 

utilizes the local structures of phosphorylation sites, the 

kappa-alpha (, ) plot derived structural alphabet (SA) has 

been developed to encode the three-dimensional (3D) local 

structural fragments based on Ca coordinates into a 

one-dimensional (1D) representation based on 23 letters. 

These letters are used to describe three-state secondary 

elements, namely helix, strand, and random coils in detail, 

and identify protein 1D sequence that represent the local 

structures of protein backbones with 3D information. We 

defined the local structure with five residues long as a 

segment and various segments are encoded into 23 SAs based 

on their kappa () and alpha () angles. The angle , ranging 

from 0° to 180°, of residue i is a bond angle formed by three 

Ca atoms of residues i-2, i ,and i+2. The angle α ranging 

from -180° to 180°, of a residue i is a dihedral angle formed 

by the four Ca atoms of residues i-1, i, i +1, and i +2. These 

23 SAs are roughly divided into five categories: Helix 

alphabets (A, Y, B, C, and D), helix-like alphabets (G, I, and 

L), strand alphabets (E, F, and H), strand-like alphabets (K 

and N), and others. A recent success with this approach was 

the development of the tool and web-site, named as 

3D-BLAST [37], [38] and fastSCOP [39], for the rapid 

structure database searching and recognition of protein 

structural domains. 

C. Model Training and Evaluation 

This work incorporates support vector machine (SVM) 

with the sequenced and structural features to generate the 

predictive models for the identification of kinase-specific 

phosphorylation sites. Based on binary classification, the 

concept of SVM is to map the input samples into a higher 

dimensional space using a kernel function, and then to find a 

hyper-plane that discriminates between the two classes with 

maximal margin and minimal error. A public SVM library, 

namely LIBSVM [40], is applied for training the predictive 

models. The radial basis function (RBF) 

2
( ,  ) exp( )K S S S Si j i j    is selected as the kernel 

function of SVM. Five-fold cross-validation is used to 

evaluate the predictive performance of the models trained 

from the large data sets such as PKA, PKC, CK2, and MAPK 

groups, while Jackknife cross-validation is applied for 

models trained from the data size smaller than 30 substrate 

sites. We balance the positive set and negative set and the 

sizes of positive data and negative data are equal during the 

cross-validation processes. The cross-validation is performed 

for ten times to obtain an average accuracy for each kinase 

group. The following measures of predictive performance of 

the trained models are defined: Precision (Pre) = TP / 

(TP+FP), Sensitivity (Sn) = TP / (TP+FN), Specificity (Sp) = 

TN / (TN+FP) and Accuracy (Acc) = (TP + TN) / 

(TP+FP+TN+FN), where TP, TN, FP and FN are true 

positive, true negative, false positive and false negative 

predictions, respectively. The models trained with various 

features that yield the highest accuracy in each kinase group 

are utilized to implement the prediction system and are 

further evaluated by independent testing set. For a 

meaningful comparison with other published tools, the ratio 

of data size between positive set and negative set is 1:2 [22]. 

III. RESULTS AND DISCUSSIONS 

A. Sequenced and Structural Amino Acid Composition of 

Phosphorylation Sites Involved in Different Kinases 

Most of the kinase groups have conserved amino acids 

surrounding the phosphorylation sites. The solvent 

accessibility and secondary structure computed from a 

full-length protein sequence are also presented. With the 

comprehensive mapping between the collected 

phosphorylation data and PDB protein 3D structures, the 

spatial environment of phosphorylation sites was investigated 

in detail, as well as the sequential neighborhood. Fig. 2 shows 

the sequence logos (sequential neighborhood) and radial 

cumulative propensity plots (spatial neighborhood) of six 

well-known kinase-specific substrate groups. 

 

 
Fig. 2. Sequence logos and radial cumulative propensity plots of six 

kinase-specific substrate groups. 

 

According to the observation from sequence logos, PKA 

and PKC have the significant enrichments of Arginine (R) 

and Lysine (K) in the sequential neighborhood of substrate 

sites, which is the hallmark sequence motif for AGC kinase 

families. However, the radial cumulative propensity plots 

present that there is an additional enrichment of amino acid 

residues in the spatial neighborhood. For instance, PKA 

exhibits the enrichments of Methionine (M), Glutamine (Q) 

and Aspartic acid (D) in the spatial neighborhood, 

accompanied by a remarkable depletion of Leucine (L) 

residue. For tyrosine kinase families, both EGFR and SRC 
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have the enrichments of Aspartic acid (D) and Glutamic acid 

(E) in the sequential and spatial neighborhood. In particular, 

EGFR has a significant depletion of Threonine (T) according 

to the radial cumulative propensity plot, but SRC is enriched 

in T residue instead. In summary, the radial cumulative 

propensity plot reveals spatial preferences of amino acids 

composition which cannot be identified by inspecting the 

sequence logo alone. 
 

    

 

 
 

  
 

         

 

            

            

            

             

            

            

            

            

            

            

            

            

 

  

 

           

            

            

            

            

 

            

            

            

            

            

            

 

B. Predictive Performance of Kinase-Specific SVM 

Models 

For finding the best predictive performance of SVM 

models in each kinase-specific group, the SVM models 

trained with linear sequence motifs or structural 

characteristics are evaluated based on cross-validation. To 

obtain a stable performance for each kinase-specific 

prediction models, the cross-validation process is performed 

for ten times and the average sensitivity (Sn), specificity (Sp), 

and accuracy (Acc) of the SVM models. As given in Table II, 

the overall cross-validation performance of SVM models 

trained with the hybrid combination of sequenced and 

structural characteristics, whose average accuracy is close to 

90.0%, is performing better than the SVM models trained 

with only amino acid composition. Most of the SVM models 

have a predictive accuracy approaching to their 

cross-validation performance, while several kinase-specific 

SVM models trained with small data size of training set have 

an unstable predictive accuracy.  

With the consideration of data sufficiency in structural 

investigation, the kinase-specific groups containing more 

than ten phosphorylation sites on 3D structures are studied in 

this work. In general, the kinase-specific SVM models 

trained with structural information yield a better predictive 

accuracy than the SVM models trained with only sequence 

information. Additionally, the SVM models trained with the 

combination of sequence and structural characteristics were 

observed to perform at comparable or even slightly better 

performance levels compared to the SVM models trained 

with structural information. In summary, for all 

kinase-specific phosphorylation sites prediction, a consistent 

increase in performance was obtained suggesting that 

including 3D structural information does indeed improve the 

sensitivity and specificity. 

C. Effect of Including Structural Information for 

Identifying Kinase-Specific Phosphorylation Sites with 

Similar Sequence Motifs 

It would be noticed that some of kinase groups have 

similar substrate motifs. For instance, several kinases (PKA, 

PKB, PKC, PKG, GRK, RSK, ) of AGC family prefer to 

recognize the substrate sites with basic amino acids (Arginine, 

Lysine or Histidine) at positions of -2 or -3 relative to the 

phosphorylation sites (position 0). Assessing the cross 

classifying specificities among the kinase-specific models 

containing the similar substrate site motifs, a particular group 

is regarded as the positive set and the other groups are 

regarded as the negative sets one by one. As given in Table 

III, in the first row the classifying specificity (Sp) of PKA 

model corresponding to the PKC, PKB and PKG data sets are 

51.4%, 27.5% and 38.6%, respectively. This investigation 

indicates the cross classifying specificities are relatively 

lower among the kinases PKA, PKC, PKB, and PKG in 

basophilic group. Similarly, the Sp values marked in blue are 

relatively lower between the kinases CDK and MAPK in 

proline-directed group. We observe that the cross classifying 

specificities corresponding to the kinase-specific models in 

the same kinase group, such as basophilic, acidophilic, and 

proline-directed groups, are relatively lower than the 

specificities corresponding to the kinase-specific models in 

different groups. To investigate the effect of including 
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TABLE II: CROSS-VALIDATION EVALUATION OF SEQUENCE AND STRUCTURE-BASED PHOSPHORYLATION SITE PREDICTIONS ON 3D STRUCTURES

Kinase group

Number 

of 

positive 

data

Number of 

negative 

data

Sequence-only Structural information
Combination of sequence and 

structural information

Sn Sp Acc Sn Sp Acc Sn Sp Acc

Phosphorylated Serine (pSer)

All serine data 1554 3108 61.4% 62.0% 61.8% 66.9% 68.1% 67.7% 72.9% 71.1% 71.7%

CDK 11 22 72.7% 81.8% 78.8% 90.9% 86.8% 87.9% 90.9% 86.8% 87.9%

CK1 10 20 20.0% 90.0% 66.7% 100% 95.0% 96.7% 100% 95.0% 96.7%

CK2 24 48 66.7% 87.5% 80.6% 87.5% 87.5% 87.5% 91.7% 89.6% 90.3%

MAPK 17 34 52.9% 94.1% 80.4% 76.5% 97.1% 90.2% 82.4% 97.1% 92.2%

PIKK 15 30 26.7% 83.3% 64.4% 80.0% 86.7% 84.4% 73.3% 83.3% 80.0%

PKA 56 112 79.1% 78.8% 78.9% 83.6% 84.3% 84.1% 89.1% 91.4% 90.7%

PKB 12 24 75.0% 66.7% 69.4% 75.0% 83.3% 80.6% 83.3% 83.3% 83.3%

PKC 50 100 77.3% 78.0% 77.8% 81.2% 80.0% 80.4% 85.3% 86.0% 85.8%

PKG 10 20 80.0% 80.0% 80.0% 80.0% 85.0% 83.3% 80.0% 85.0% 83.3%

PLK 10 20 60.0% 80.0% 73.3% 70.0% 90.0% 83.3% 70.0% 90.0% 83.3%

STE20 10 20 70.0% 75.0% 73.3% 80.0% 90.0% 86.7% 80.0% 90.0% 86.7%

Phosphorylated Threonine (pThr)

All Threonine

data

603 1206 60.9% 59.7% 60.1% 67.8% 67.2% 67.4% 70.1% 72.5% 71.3%

MAPK 13 26 69.2% 76.9% 74.3% 69.2% 76.9% 74.3% 69.2% 76.9% 74.3%

PKA 10 20 70.0% 90.0% 83.3% 80.0% 85.0% 83.3% 80.0% 95.0% 90.0%

PKC 13 26 61.5% 76.9% 71.8% 69.2% 88.5% 82.1% 69.2% 88.5% 82.1%

STE20 10 20 40.0% 95.0% 76.7% 70.0% 70.0% 70.0% 70.0% 90.0% 80.0%

Phosphorylated Tyrosine (pTyr)

All tyrosine data 629 1258 62.0% 63.3% 62.8% 64.1% 63.4% 63.8% 67.6% 68.6% 68.3%

Abl 18 36 50.0% 88.9% 75.9% 66.7% 80.6% 75.9% 66.7% 80.6% 75.9%

EGFR 10 20 60.0% 80.0% 73.3% 60.0% 95.0% 83.3% 60.0% 95.0% 83.3%

InsR 15 30 73.3% 83.3% 80.0% 80.0% 80.0% 80.0% 80.0% 90.0% 86.7%

Src 57 114 77.2% 75.4% 76.0% 79.1% 83.3% 81.9% 79.1% 84.9% 82.9%

Syk 11 22 63.6% 90.9% 81.8% 72.7% 86.4% 81.8% 72.7% 95.5% 87.9%



   

structural characteristics for identifying kinase-specific 

phosphorylation sites with similar substrate motifs, the cross 

classifying specificities among the kinase-specific models 

trained with the combination of sequence and structural 

information are evaluated. Almost all of the Sp values are 

increased, especially for the Sp values marked in red, green, 

and blue. This investigation demonstrates that the 

consideration of structural information could improve the 

predictive specificity when identifying the kinase-specific 

phosphorylation sites with similar sequence motifs. 
 

   

 

 
         

  

 

      

  

 

      

 

 

      

 

 

      

 

 

      

  

 

      

 

IV. CONCLUSION 

The aim of this work is to develop a computational method 

for effectively identifying the kinase-specific 

phosphorylation sites on protein three-dimensional structures. 

With the high-throughput mass spectrometry (MS)-based 

experiment, the desire to comprehensively annotate the 

catalytic kinases for in vivo phosphorylation sites has been 

highly motivated. Herein, the proposed method could provide 

a large-scale prediction of kinase-specific phosphorylation 

sites with reliable accuracy and stable performance. This 

study has demonstrated that the kinase-specific models 

trained with the consideration of 3D structural information 

could perform better than the models trained with only the 

sequence information, especially improving the cross 

classifying specificities among the kinase groups containing 

similar sequence motifs. Additionally, the proposed method 

was compared with several popular phosphorylation 

prediction tools, including GPS 2.0, PPSP, and KinasePhos 

2.0. The number of kinase groups, sensitivity and specificity 

of four well-known kinase groups (PKA, PKC, CK2 and SRC) 

are compared. Particularly, GPS 2.0 and our method could 

provide more than 100 kinase-specific groups for 

phosphorylation sites prediction. In the independent testing 

performance of PKA, PKC, CK2 and SRC groups, our 

method is comparable with other tools. 
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