
   

 

Abstract—Protein phosphorylation in viruses plays crucial 

regulatory roles in enhancing progression, replication, and 

inhibition of host cell functions. Due to the difficulty of mass 

spectrometry-based identification of viral phosphorylation sites, 

we are motivated to develop a new method to investigate the 

substrate motifs and identify protein phosphorylation sites on 

viruses. The experimentally verified phosphorylation data were 

extracted from a public resource and a recursively statistical 

method is applied to cluster whole data set of phosphorylated 

sequences into subgroups containing remarkably sequence 

motifs around the phosphorylation sites. Two-layered Support 

Vector Machine (SVM) is then applied to learn a predictive 

model by integrating the detected sequence motifs. A five-fold 

cross validation evaluation on the SVM model yields an average 

accuracy of 0.88 for Serine and 0.83 for Threonine. 

Furthermore, the independent testing data collected from 

UniProtKB and Phospho.ELM indicates that the proposed 

method is comparable with three popular kinase-specific 

phosphorylation site prediction tools. The cross validation and 

independent testing demonstrated that the sequence motifs are 

informative for the prediction of potential kinases for virus 

protein phosphorylation sites. Furthermore, the proposed 

method is a practical means of preliminary analysis for virus 

phosphorylation dynamics. 

 

Index Terms—Virus, protein phosphorylation, substrate 

motif, support vector machine. 

 

I. INTRODUCTION 

A virus is a biological agent that is capable of interrupting 

and manipulating normal cellular functions [1]. They infect 

humans and progress inside the body leading to various 

diseases and complications. Most viruses interact with its 

host-cell proteins in order to gain control of its cellular 

machinery [2]. By perturbing the cellular regulatory 

networks, these viruses interfere with the normal cellular 

processes, such as cell growth and gene expression [3]. 

Viruses have been reported to undergo the process of 

phosphorylation by host-cell kinases as a means of enhancing 

replication and inhibition of normal cellular functions. 

Protein phosphorylation is one of the well-studied 

post-translational modification (PTM) in eukaryotic cells [4]. 

The process involves the transfer of a phosphate group by a 

 

Manuscript received March

 

15, 2013; revised May

 

25, 2013.

 

We 

sincerely appreciated

 

the National Science Council of the Republic of China 

for financially supporting this research under Contract Number of NSC 

101-2628-E-155-002-MY2.

 

Cheng-Tsung Lu, Kai-Yao Huang,

 

Neil Arvin Bretaña,

 

and Tzong-Yi 

Lee

 

are

 

with the Department of Computer Science and Engineering, Yuan Ze 

University, 135 Yuan-Tung Road, Chungli, Taoyuan 32003, Taiwan (e-mail: 

francis@saturn.yzu.edu.tw).

 

Wen-Chi Chang is with the Institute of Tropical Plant Sciences, National 

Cheng Kung University. 

 

 

protein kinase to a target protein substrate – commonly on 

Serine (S), Threonine (T), and Tyrosine (Y) residues [5]. 

Protein kinases recognize short linear motifs for initiating 

phosphorylation. These linear motif signatures are shown to 

be vital in further investigating kinase-substrate interactions 

[6]. Short linear motif signatures found in phosphorylated 

virus proteins can be used to further elucidate interactions 

between host-cell kinase and virus protein substrates. 

Although not yet clearly elucidated, these interactions are 

linked to viral progression in the human body. 

A better understanding of virus phosphorylation is 

essential due to its importance with regard to viral 

progression. The identification of kinases is deemed 

important as these are heavily pursued pharmaceutical targets 

due to their mechanism role in various diseases [7]. Moreover, 

identifying kinases responsible for phosphorylation would be 

beneficial for selective inhibition therapies and the 

development of kinase inhibitors for treatment. However, 

there is a great deal of difficulty in experimentally identifying 

virus phosphorylation sites using mass spectrometry-based 

techniques. Furthermore, most studies that experimentally 

identify virus phosphorylation sites do not include the 

consideration of its corresponding substrate site specificities 

of catalytic kinases [8]. With regard to the current state of 

research in virus phosphorylation, this study aims to further 

analyze experimentally identified virus phosphorylation sites. 

We present a novel method for identifying phosphorylation 

sites and its substrate motifs. First, experimentally verified 

phosphorylation sites are obtained. A statistical method is 

then employed to detect virus phosphorylation substrate 

motifs. Next, support vector machine (SVMs) are trained 

according to the MDD-identified substrate motifs.  

 

II. MATERIAL AND METHODS 

A. Data Construction 

With an attempt to maintain the genuineness of the data set, 

only literature-based virus phosphorylation data are collected 

from virPTM version 1.0 which contains 329 experimentally 

verified phosphorylation data on 111 virus proteins. As this 

study aims to analyze substrate specificities of viral protein 

phosphorylation sites, virPTM entries annotated as 

phosphorylated by virus kinases were disregarded in this 

study. This resulted to 233, 54, and 14 phosphorylated S, T, 

and Y sites from 104 virus proteins as shown in Table I. In 

UniProtKB, the experimentally verified virus 

phosphorylation data are obtained by filtering out entries 

annotated as by similarity, potential, and probable resulting 

to 57 phosphorylation data on 23 virus proteins. The 

collected data is further refined by removing entries 

annotated to be phosphorylated by virally-encoded kinases 
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resulting to 43, and 12 phosphorylated S, and T sites from 22 

virus proteins as shown in Table I. Another set of virus 

phosphorylation data are collected from Phospho.ELM [9] 

version 0910 containing 42575 phosphorylated protein 

entries from 47 species. Experimentally verified virus 

phosphorylation data in humans are obtained by extracting 

only entries annotated as LTP which stands for as having 

been identified by using low-throughput processes.  

In order to avoid obtaining overlapping phosphorylation 

data from the three databases, each data obtained from one 

database is compared to the data obtained from the remaining 

two using the phosphorylation site position and the 

UniProtKB accession number utilized by all three databases. 

If duplicate data is found from two or more datasets, only one 

record is retained and the redundant data is removed. This 

resulted to the same number of phosphorylated virus proteins 

from virPTM, 12 phosphorylated proteins with 24 pSer, and 

10 pThr from UniProtKB as well as 4 phosphorylated 

proteins with 2 pSer, and 2 pTyr from Phospho.ELM. 
 

TABLE I: STATISTICS OF DATA USED FOR THIS STUDY 

Data set pSer pThr pTyr 

Training set virPTM 

Positive data 233 54 14 

Negative data 2588 1170 65 

Balanced 

negative data 
233 54 14 

Independent 

testing set 

UniProtKB 

Positive data 24 10 - 

Negative data 217 159 - 

Balanced 

negative data 
24 10 - 

Phospho.EL

M 

Positive data 2 - 2 

Negative data 
67 - 16 

Balanced 

negative data 
2 - 2 

 

In order to investigate the surrounding amino acids 

composition, with reference to KinasePhos [10], [11], 

sequence fragments are extracted using a window size of 11 

centered on the phosphorylated residue. Fragments centered 

on phosphorylated residues are obtained and regarded as 

positive data while fragments centered on 

non-phosphorylated residues are regarded as negative data. 

As shown in Table I, 233, 54, and 14 positive S, T, and Y 

fragments as well as 2588, 1170, and 65 S, T, and Y negative 

fragments are obtained from virPTM. From the dbPTM 

resource, 42, 12, and 1 positive S, T, and Y fragments are 

obtained as well as 679, 186, and 11 negative S, T, and Y 

fragments. From the UniProtKB dataset, 24, and 10 positive 

S and T fragments are obtained as well as 217, and 159 

negative S and T fragments. Furthermore, 2 positive S and Y 

fragments as well as 67, and 16 negative S and Y fragments 

are obtained from the Phospho.ELM dataset. Since the 

number of negative fragments is much greater than the 

number of corresponding positive fragments, the data is 

balanced. This is done in order to avoid a biased prediction 

performance. With reference to previous phosphorylation 

prediction methods [10], [12]-[15], a smaller number of 

negative fragments are obtained to match the number of 

positive fragments. This resulted to an equal number of 

positive and negative S, T, and Y fragments respectively in 

the three data sets as shown in Table I. Finally, the balanced 

non-redundant data from virPTM is regarded as the training 

set while the balanced non-redundant data from UniProtKB 

and Phospho.ELM are regarded as the independent testing 

set. 

B. Motif Detection 

The phosphorylated fragments from the training set are 

used to investigate the motif signatures in phosphorylated 

virus proteins. In order to explore the conserved motifs from 

a large data set, maximal dependence decomposition (MDD) 

is applied to cluster all phosphorylated fragments into 

subgroups that show statistically significant motifs. This is 

done using the model training set acquired from virPTM. 

MDD is a methodology that groups a set of aligned signal 

sequences to moderate a large group into subgroups that 

capture the most significant dependencies between positions. 

Previous studies [12], [16] have proposed the grouping of 

protein sequences into smaller groups prior to 

computationally identifying PTM sites. For this study, MDD 

is applied using MDDLogo [16]. MDD adopts chi-square test 

to evaluate the dependence of amino acid occurrence 

between two positions, Ai and Aj, which surround the 

phosphorylation site. In order to extract motifs that have 

conserved biochemical property of amino acids when doing 

MDD, we categorize the twenty types of amino acids into 

five groups: neutral, acid, basic, aromatic, and imino groups. 

Then, a contingency table of the amino acids occurrence 

between two positions is constructed. The chi-square test is 

defined as:  

25 5
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where Xmn represents the number of sequences that have the 

amino acids of group m in position Ai and have the amino 

acids of group n in position Aj, for each pair (Ai, Aj) with i

≠j. Emn is calculated as 
X

XX CnmR  , where XmR = Xm1+ …+Xm5, 

XCn = X1n+ …+X5n, and X denotes the total number of 

sequences. If a strong dependence is detected (defined as X2

that is larger than 34.3, corresponding to a cutoff level of 

P=0.005 with 16 degrees of freedom) between two positions, 

then the process is continued as described by Burge and 

Karlin [17]. MDD clustering is a recursive process which 

divides the positive set into tree-like subgroups. When 

applying MDD to cluster the sequences in the positive set, a 

parameter, i.e., the minimum-cluster-size, should be set. If 

the size of a subgroup is less than the minimum-cluster-size, 

the subgroup will not be divided any further. The MDD 

process terminates until all the subgroup sizes are less than 

the value of the minimum-cluster-size. With reference to 

previous works that utilize MDD [12], [16], there exists no 

set values for the parameters of MDD clustering. In order to 

obtain an optimal minimum cluster size, MDD clustering is 

executed using various values. Each subgroup is represented 

using WebLogo [18] to graphically visualize the 

corresponding substrate motif. The resulting clusters are then 

analyzed as to whether or not they contain significant 

conserved motifs. Finally, resulting MDD subgroups with 

highly similar amino acid conservations at specific positions 

are further grouped together into a single cluster as shown in 



   

the motif detection step. By combining similar clusters, the 

MDD clusters are further refined resulting to a non-redundant 

set of virus phosphorylation motifs [12]. 

 

 
Fig. 1. The conceptual diagram of two-layered SVMs with MDD-clustered 

motif. 

 

C. Model Construction and Evaluation 

In this work, the support vector machine (SVM) is 

generated from the positive data and negative data of training 

set. Based on the binary classification, the concept of SVM is 

to map the input samples into a higher dimensional space 

using a kernel function, and then to find a hyper-plane that 

discriminates between the two classes with maximal margin 

and minimal error. A public SVM library, LibSVM [19], is 

employed to train the predictive model with MDD-clustered 

substrate motifs which are encoded according to amino acid 

composition (AAC). Following, the output values of each 

SVM trained with the MDD-identified motif are adopted to 

form an input vector for second-layered SVM, as shown in 

Fig. 1. The radial basis function (RBF) 
2

( ,  ) exp( )i j i jK S S S S    is adopted as the kernel 

function of SVM. 

phosphorylation sites and non-phosphorylation sites. The 

following measures of predictive performance of the trained 

models are defined: Sensitivity (Sn) = TP / (TP+FN), 

Specificity (Sp) = TN / (TN+FP), Accuracy [3] = (TP + TN) / 

(TP+FP+TN+FN), and Matthews Correlation Coefficient  

 

( ) ( )
)=

( ) ( ) ( ) ( )

TP TN FN FP
MCC

TP FN TN FP TP FP TN FN

  

      
（  

 

where TP, TN, FP and FN represent the numbers of true 

positives, true negatives, false positives and false negatives, 

respectively. Subsequent to the construction of the predictive 

model, an independent test using the data set obtained from 

UniProtKB and Phospho.ELM is carried out to further 

evaluate the predictive performance of each SVM. 

 

III. RESULTS AND DISCUSSION 

A. Sequence Motifs of Viral Phosphorylation Sites 

 

TABLE II: MDD-IDENTIFIED MOTIFS OF VIRUS PHOSPHORYLATION DATA 

Resid

ue 

MDD 

Cluster 
Motif Fragments 

pSer 

S1 

 

66 

S2 

 

17 

S3 

 

37 

S4 

 

34 

S5 

 

20 

pThr 

T1 

 

19 

T2 

 

19 

pTyr Y1 

 

9 

 

Phosphorylated sequences in each MDD-clustered 

subgroup show a conserved motif, which represents 

particular substrate site specificity. The flanking amino acids 

(-5 ~ +5) of the non-redundant phosphorylation sites, which 

are centered on position 0, are graphically visualized as 

sequence logos using WebLogo. Maximal dependence 

decomposition is executed multiple times with varying 

values in order to obtain the most optimal minimum cluster 

size. Setting the minimum cluster size to 50 for pSer data 

yielded five clusters as shown in Table II. Increasing the 

minimum cluster size did not result to any clusters and further 

lowering of the minimum cluster size resulted to several 

similar clusters; therefore, the minimum cluster size is set to 

50. After MDD, further refinement is done by analyzing these 
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Prior to the construction of a final model, the predictive 

performance of the models with varying parameters are 

evaluated by performing k-fold cross validation. In doing 

k-fold cross validation, the training data is divided into k

groups by splitting each dataset into k approximately equal 

sized subgroups. In one round of cross-validation, a subgroup 

is regarded as the test set, and the remaining k-1 subgroups 

are regarded as the training set. The cross-validation process 

is repeated k rounds, with each of the k subgroups used as the 

test set in turn. Then, the k results are combined to produce a 

single estimation. The advantage of k-fold cross-validation is 

that all original data are regarded as both training set and test 

set, and each data is used for testing exactly once [20]. In this 

study, k is set to five. The impact of using the following 

features: amino acid sequence, accessible surface area, and 

secondary structure, is evaluated by five-fold 

cross-validation to determine which features are best utilized 

to establish models that can effectively differentiate between 



   

groups through its corresponding entropy plots. It is observed 

that some groups contain very similar motifs, some show no 

conserved motif, and some groups have too little data which 

makes the motif unreliable. Some of these groups are further 

combined together and visualized using WebLogo. For the 

resulting pSer MDD clusters, S2 and S3 which shows very 

similar motifs are combined into S2. 

For virus pThr and pTyr data, the minimum cluster size 

was set to 10. Similar to the process of selecting the minimum 

cluster size for pSer, increasing the minimum cluster size did 

not result to any clusters and further lowering of the 

minimum cluster size resulted to several similar clusters. This 

resulted to two subgroups in pThr and one subgroup in pTyr 

as shown in Table II. However, due to the very low number of 

pTyr data, the resulting MDD clusters show no conserved 

motif and contain very few fragments to be considered 

reliable. Therefore, for this study, pTyr is not further 

clustered using MDD prior to training a pTyr model. MDD 

could identify new motifs for virus phosphorylation sites and 

is comparable to other methods. 

B. Cross-Validation Evaluation of SVM Models 

 

TABLE III: FIVE-FOLD CROSS VALIDATION RESULTS ON PSER 

MDD-CLUSTERED SVMS 

SVM model Pos. Neg. C G Sn Sp Acc MCC 

All data 233 233 0.5 0.125 0.76 0.72 0.74 0.49 

Subgroup S1 66 66 2 0.125 0.98 0.87 0.93 0.71 

Subgroup S2 54 54 8 0.03125 0.94 0.92 0.93 0.74 

Subgroup S3 34 34 0.5 0.03125 0.93 0.79 0.85 0.61 

Subgroup S4 20 20 2 0.125 0.9 0.84 0.88 0.63 

Subgroup S5 15 15 2 0.125 0.88 0.82 0.84 0.62 

Combined 

performance 
- - - - 0.9 0.85 0.88 0.68 

*Pos. : Number of positive data; *Neg. : Number of negative data; *C : Cost 

value; *G : Gamma value. 

 

The cross-validation process includes the selection of the 

threshold parameter for each model. The threshold is tuned to 

a specific value which allows an SVM to yield a high and 

balanced Specificity and Sensitivity for a specific 

classification. Table III shows the threshold score selected for 

each model of pSer together with its individual predictive 

performance and the predictive performance of all 

MDD-clustered models. It can be observed that MDD 

clusters featuring an obvious conserved motif are able to 

yield high predictive accuracies. For instance, cluster S1 

containing a conserved Proline residue in positions +1 yields 

an accuracy of 0.93 when used individually. On the other 

hand, MDD clusters that do not seem to have an obvious 

conserved motif yield a significantly lower predictive 

performance. For instance, cluster S6 which does not show a 

strongly conserved motif based on its WebLogo only yields 

an accuracy of a 0.68 when used individually. According to a 

five-fold cross-validation evaluation, the predictive 

performance of MDD-clustered SVMs performs significantly 

better than non-MDD clustered SVM in overall. As shown in 

Table III, the SVM model trained with the combined 

MDD-clustered motifs yields a higher performance with a 

sensitivity of 0.90, a specificity of 0.85, an accuracy of 0.88, 

and a MCC of 0.68 as compared to the SVM with all pSer 

data which yields a sensitivity of 0.76, a specificity of 0.72, 

an accuracy of 0.74, and a MCC of 0.49. 

Table IV shows the threshold score selected for each 

model of pThr together with its individual predictive 

performance and the predictive performance of using all 

models together. The pThr SVM model trained with the 

combined MDD-clustered motifs yields a higher 

performance with a sensitivity of 0.82, a specificity of 0.84, 

an accuracy of 0.83, and a MCC of 0.65 as compared to the 

SVM model with all pThr data which yields a sensitivity of 

0.71, a specificity of 0.71, an accuracy of 0.71, and a MCC of 

0.47. Due to a lack of virus pTyr data, MDD clustering could 

not be performed to form SVM model for computationally 

identifying pTyr sites; thus, a single SVM is used for pTyr 

until sufficient experimentally-verified virus pTyr sites are 

acquired. The SVM models containing the best predictive 

performance could be used to construct the prediction tool of 

virus phosphorylation sites. 
 

TABLE IV: FIVE-FOLD CROSS VALIDATION RESULTS ON PTHR 

MDD-CLUSTERED SVMS 

SVM model Pos. Neg. C G Sn Sp Acc MCC 

All data 54 54 2 0.125 0.71 0.71 0.71 0.47 

Subgroup T1 19 19 2 
0.125 

0.95 0.91 0.94 
0.75 

Subgroup T2 19 19 2 0.03125 0.98 0.96 0.97 0.81 

Combined 

performance 
- - - - 0.82 0.84 0.83 0.65 

*Pos. : Number of positive data; *Neg. : Number of negative data; *C : Cost 

value; *G : Gamma value. 

 

C. Independent Testing 

The data set obtained from UniProtKB and Phospho.ELM 

which do not have overlapping data with the training set is 

utilized for further evaluating the MDD-clustered SVMs. A 

total of 36 viral protein phosphorylation sites (in 23 viral 

protein sequences), which are not included in the training 

data, are regarded as the positive set of the independent test 

data. In order to evaluate the predictive specificity, the S and 

T residues, which are not annotated as the phosphorylation 

sites in the 23 viral protein sequences, are regarded as the 

negative set of the independent testing data. As a result, the 

independent testing data consisting of 36 positive sites and 

474 negative sites are used to compare the predictive 

sensitivity, specificity and accuracy between the Single SVM 

and MDD-clustered SVMs. As shown in Fig. 2A, the SVM 

model trained with all pSer data (Single SVM) yields a 

sensitivity of 0.54, a specificity of 0.66, an accuracy of 0.60, 

and the MCC of 0.29. Additionally, using all the pSer 

MDD-clustered SVMs altogether yields a sensitivity of 0.92, 

a specificity of 0.79, an accuracy of 0.86, and the MCC of 

0.61. On the other hand, Fig. 2B shows that using the 

independent data on Single pThr SVM model yields a 

sensitivity of 0.64, a specificity of 0.82, an accuracy of 0.73, 

and the MCC of 0.38. Furthermore, the combined model 

using all pThr MDD-clustered SVMs yields a sensitivity of 

0.95, a specificity of 0.90, an accuracy of 0.93, and the MCC 

of 0.73. 
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Fig. 2. Comparison of independent testing performance. 

 

To further demonstrate the effectiveness of the proposed 

method, the independent testing set is used to make a 

comparison between the performances of three popular 

kinase-specific phosphorylation site prediction tools, PPSP 

[15], KinasePhos 2.0 [10], and GPS 2.1 [21]. Without any pr 

ior information of catalytic kinases for the testing data, all of 

the kinase-specific models in the prediction tools are chosen 

for predicting the phosphorylation sites. The independent 

testing indicates that all of the prediction tools containing 

multiple models have a high predictive sensitivity. However, 

it is notable that the proposed method is able to yield a higher 

specificity compared to the other tools. Since potential kinase 

information for viral protein phosphorylation sites are still 

unknown, PPSP yields a higher specificity than KinasePhos 

and GPS. Overall, the proposed method outperforms the 

other three tools. With reference to the comparison of 

independent testing, the high sensitivity and specificity of 

MDD-clustered SVMs show that the substrate site motifs are 

effective for the identification of viral protein 

phosphorylation sites. 

D. Motifs Comparison  

In order to identify potential host kinases for virus 

substrates, the motif of each MDD-generated virus 

phosphorylation cluster is compared with the well-discovered 

kinase substrate motifs of Phospho.ELM. Cluster S1 is 

matched to be potentially phosphorylated by CDK group and 

MAPK group due to a strong similarity with regard to the 

conserved Proline in positions +1. CK2 group is also matched 

to be a potential host kinase that phosphorylated virus 

substrates in cluster S2 due to a similarly conserved Aspartic 

acid and Glutamic acid residues at position +3. Furthermore, 

cluster S4 is matched to be potentially phosphorylated by 

PKB group due to a conserved Arginine in position -5 as 

shown in its respective motifs. In terms of pThr, cluster T1 is 

matched to be potentially phosphorylated by CDK group and 

MAPK group due to a conserved Proline in position +1. 

Cluster T2 is then matched to be potentially phosphorylated 

by CK2 group due to a similarly conserved Aspartic acid and 

Glutamic acid residues in position +3.  

In a further investigation of the matched motifs, a literature 

survey was done in order to find studies that experimentally 

identify host kinases which phosphorylate specific virus 

protein substrates. Reports have been published that CDK 

group, especially the CDK2, is involved in the transcription 

and replication of Human Immunodeficiency Virus - 1 by 

means of phosphorylation [22], [23]. Previous studies [8], [24] 

also show that CK2 group phosphorylates Hepatitis C Virus 

NS5A proteins and Human Immunodeficiency Virus - 1 

gp120, gp41, p27, and p17 proteins to name a few, on both S 

and T residues. These findings support the matching of MDD 

groups S2 and T2 with CK2 group. With regard to PKB 

which is matched with cluster S4, it is reported to be involved 

in the regulation of the Herpes Simplex virus - 1 [25]. 

Additionally, experimental research also claims that PKB 

signaling benefits coxsackie virus B3 replication [26]. 

 

IV. CONCLUSION 

In this study, virus phosphorylation sites catalyzed by host 

kinases are further elucidated by means of identifying its 

potential substrate site specificities. According the motif 

comparison, this study has identified the informative motifs 

that matched to several well-studied kinase groups including 

CDK, MAPK, CK2 and PKB as potential catalytic kinases 

for virus protein substrates. The identified substrate motifs 

are further exploited to identify virus phosphorylation sites. 

A five-fold cross validation evaluation shows that the 

proposed method can identify virus phosphorylation sites 

based on the MDD-identified motifs. Furthermore, an 

independent test done using data not included in the model 

training confirms the ability of our MDD-clustered SVMs.  

The proposed approach offers the scientific community 

some clues regarding host kinases that may be responsible for 

the phosphorylation of human virus proteins. It is important 

to note, however, that the further acquisition of 

experimentally verified virus phosphorylation sites is 

required to identify more meaningful virus phosphorylation 

motifs. Also, a more abundant set of experimentally verified 

kinase-catalyzed virus phosphorylation sites could be 

extracted by literature survey. These developments could 

benefit this work by allowing a more accurate identification 

of phosphorylation sites on virus proteins. 
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