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Abstract—Heart rate variability (HRV) analysis attempts to 

assess cardiac autonomic regulation through quantification of 

sinus rhythm variability. The sinus rhythm times series is 

derived from the QRS to QRS (RR) interval sequence of the 

electrocardiogram (ECG), by extracting only normal sinus to 

normal sinus (NN) interbeat intervals. Relatively high 

frequency variations in sinus rhythm reflect parasympathetic 

(vagal) modulation, and slower variations reflect a combination 

of both parasympathetic and sympathetic modulation and 

non-autonomic factors. The paper focuses on the Neuro-fuzzy 

system. It is used to recognize the HRV signals for diagnosis by 

extract the QRST zone of ECG signals using Discrete Cosine 

Transform (DCT). The result is exciting as much as we have 

used only one of ECG lead to records input data, while the 

current diagnosis approaches require the set of 12 lead ECG 

signals! 

 

Index Terms—Heart rate variability, neuro-fuzzy, discrete 

cosine transform.  

 

I. INTRODUCTION 

Traditional heart rate variability (HRV) measures are 

usually divided into two broad categories: time domain 

measures and frequency domain measures [1]. The time 

domain heart rate variability statistics commonly calculated 

are defined in Table I.  
 

TABLE I: COMMONLY USED TIME-DOMAIN MEASURES  

Name Descriptions 

SDNN Standard deviation of all NN intervals 

SDANN 
Standard deviation of the averages of NN intervals in all 

5-minute segments of a 24-hour recording 

SDNNIDX 
Mean of the standard deviations of NN intervals in all 

5-minute segments of a 24-hour recording 

rMSSD 
Square root of the mean of the squares of differences 

between adjacent NN intervals 

pNN50 
Percentage of differences between adjacent NN intervals 

that are greater than 50 ms; a member of the larger pNNx 

family 

AVNN Average of all NN intervals 

 

Note, however, that computing pNNx with x < 50 ms in 

both long- and short-term recordings may provide a more 

robust index of fluctuations due to vagal tone than the 

standard pNN50 statistic [2]. Commonly used frequency 

domain measures are defined in Table II. The low frequency 

band (0.04 - 0.15 Hz) includes physiologic oscillations 
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associated with baroreceptor reflexes and the high frequency 

band (0.15 - 0.40 Hz) encompasses respiratory sinus 

arrhythmia. The powers in these bands have been used to 

provide indexes of autonomic function. Such measures must 

be interpreted with caution, however. As noted, oscillations 

in the "low" frequency bands appear to be mediated by 

parasympathetic and sympathetic components, while the 

"high" frequency power is mediated exclusively by the 

vagus. 
 

TABLE II: COMMONLY USED FREQUENCY-DOMAIN MEASURES 

Name Descriptions 

TOTPWR Total spectral power of all NN intervals up to 0.04 Hz 

ULF Total spectral power of all NN intervals up to 0.003 Hz 

VLF 

Total spectral power of all NN intervals between 0.003 

and 0.04 Hz 

LF 

Total spectral power of all NN intervals between 0.04 

and 0.15 Hz. 

HF 

Total spectral power of all NN intervals between 0.15 

and 0.4 Hz 

LF/HF Ratio of low to high frequency power 

Recently, there are many approaches involving techniques 

for computer processing of 12 lead electrocardiograms 

(ECG), in order to diagnose a HRV signal. A first group of 

methods to interpret the ECG significance uses a 

morphological analysis. For example, myocardial ischemia 

may produce a flat or inverted T wave, that is classical 

narrow and symmetrical. A second group of techniques for 

computer analysis of ECG uses statistical models. In a 

statistical model and the corresponding experimental results 

are presented for the classification of ECG patterns to 

diagnose the HRV signal. A third group of methods 

corresponding to neural models becomes a powerful 

concurrent to statistical ones for HRV signal classification 

[3]. 

The hybrid systems of fuzzy logic and neural networks [4] 

often referred as fuzzy neural networks represent exciting 

models of computational intelligence with direct applications 

in pattern recognition, approximation, and control. We 

further perform signal classification for HRV analysis using 

the neuro-fuzzy classifier called Neuro-fuzzy system.  

Neuro-fuzzy system has been obtained as a modified version 

of the fuzzy neural network described by Chen and Teng in 

[5], as identifier in control systems. We have applied this 

model here in an ECG recognition cascade for HRV analysis 

by extract HRV signal using either Principal Component 

Analysis (PCA) or Discrete Cosine Transform (DCT). 

 

II. METHODS 

A. Neuro-Fuzzy System 

In the field of artificial intelligence, neuro-fuzzy refers to 

combinations of artificial neural networks and fuzzy logic. 
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Neuro-fuzzy was proposed by J. S. R. Jang [6]. Neuro-fuzzy 

hybridization results in a hybrid intelligent system that 

synergizes these two techniques by combining the 

human-like reasoning style of fuzzy systems with the 

learning and connectionist structure of neural networks. 

Neuro-fuzzy hybridization is widely termed as Fuzzy Neural 

Network (FNN) or Neuro-Fuzzy System (NFS) in the 

literature. Neuro-fuzzy system (the more popular term is used 

henceforth) incorporates the human-like reasoning style of 

fuzzy systems through the use of fuzzy sets and a linguistic 

model consisting of a set of IF-THEN fuzzy rules. The main 

strength of neuro-fuzzy systems is that they are universal 

approximators with the ability to solicit interpretable 

IF-THEN rules. Neuro-fuzzy system has four-layer that 

described in in Fig. 1. 

 

 
Fig. 1. Structure of neuro-fuzzy system. 

 

The change affects only the equations of the fourth layer, 

while the structure diagram is similar. Its construction is 

based on fuzzy rules of the form: 

 

Rj: If x1 is A1j and x2 is A2j … and xm is Amj, then y1 is 

β1j, …, yM is βMj, 

(1) 

 

where m is the dimension of the input vectors (number of 

retained features), and j is the rule index (j=1… K). The 

number of output neurons (of the fourth layer) corresponds to 

the number of classes and it is equal to M. Neuro-fuzzy 

system keeps the advantages of the original fuzzy net 

described by Chen and Teng [7] for identification in control 

systems: a) its structure allows us to construct the fuzzy 

system rule by rule; b) if the prior knowledge of an expert is 

available, then we can directly add some rule nodes and term 

nodes; c) the number of rules do not increase exponentially 

with the number of inputs; d) elimination of redundant nodes 

rule by rule. 

Each neuron performs two actions using two different 

functions. The first is the aggregation function gk ( ), which 

computes the net input 

 

( ;  )k k kNetinput g x W                  (2) 

 
where the superscript indicates the layer number (k=1, .., 4), 

xk is the input vector and Wk is the weight vector. The second 

function is the nonlinear activation function  (), which gives 

)( kkk

i gfOOutput                    (3) 

 
where Oi

k is the i-th output of the k-th layer. 

Layer 1 is fuzzyifying inputs, 

 

            O1, i=Ai(x), for i=1, 2 and 

 

O1, i-2=Bi(y) for i=3, 4,                            (4) 

 

where O is the output of the layer l, node i 

Layer 2 calculates the firing strength of a rule, 

 

O2, i=wi=Ai(x) Bi(y), i=1, 2.                   (5) 

 

Layer 3 normalize firing strength of the node i, 

 

3,
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                 (6) 

 

Layer 4 calculates the conclusions, 

 

4, ( ),ii i i i io w f w p x q y r              (7) 

 

B. Heart Rate Variability Analysis 

The most widely used methods can be grouped under 

time-domain and frequency-domain. Other methods have 

been proposed, such as non-linear methods.  

Time-domain methods: These are based on the 

beat-to-beat or NN intervals, which are analyzed to give 

variables such as: SDNN, the standard deviation of NN 

intervals. Often calculated over a 24-hour period. SDANN, 

the standard deviation of the average NN intervals calculated 

over short periods, usually 5 minutes. SDANN is therefore a 

measure of changes in heart rate due to cycles longer than 5 

minutes. SDNN reflects all the cyclic components 

responsible for variability in the period of recording, 

therefore it represents total variability. 

Geometric methods: The series of NN intervals also can be 

converted into a geometric pattern such as the sample density 

distribution of NN interval durations, sample density 

distribution of differences between adjacent NN intervals, 

Lorenz plot of NN or RR intervals, and so forth, and a simple 

formula is used that judges the variability on the basis of the 

geometric and/or graphics properties of the resulting pattern. 

Frequency-domain methods: Several methods are 

available. Power spectral density (PSD), using parametric or 

nonparametric methods, provides basic information on the 

power distribution across frequencies. One of the most 

commonly used PSD methods is the discrete Fourier 

transform. Methods for the calculation of PSD may be 

generally classified as nonparametric and parametric. In most 

instances, both methods provide comparable results. The 

advantages of the nonparametric methods are the simplicity 

of the algorithm used (fast Fourier transform [FFT] in most of 

the cases) and the high processing speed, while the 

advantages of parametric methods are smoother spectral 

components that can be distinguished independent of 
kf



  

preselected frequency bands, easy post processing of the 

spectrum with an automatic calculation of low- and 

high-frequency power components with an easy 

identification of the central frequency of each component, 

and an accurate estimation of PSD even on a small number of 

samples on which the signal is supposed to maintain 

stationary. The basic disadvantage of parametric methods is 

the need of verification of the suitability of the chosen model 

and of its complexity (that is, the order of the model). 

In addition to classical FFT-based methods used for the 

calculation of frequency parameters, a more appropriate PSD 

estimation method is the Lomb–Scargle (LS) period gram 

[10]. Analysis has shown that the LS period gram can 

produce a more accurate estimate of the PSD than FFT 

methods for typical RR data. Since the RR data is an 

unevenly sampled data, another advantage of the LS method 

is that in contrast to FFT-based methods it is able to be used 

without the need to resample and detrend the RR data. 

A newly used HRV index, which depends on the wavelet 

entropy measures, is an alternative choice. The wavelet 

entropy measures are calculated using a three-step procedure 

defined in the literature. First, the wavelet packet algorithm is 

implemented using the Daubechies 4 (DB4) function as the 

mother wavelet with a scale of 7. Once the wavelet 

coefficients are obtained, the energy for each coefficient are 

calculated as described in the literature. After calculating the 

normalized values of wavelet energies, which represent the 

relative wavelet energy (or the probability distribution), the 

wavelet entropies are obtained using the definition of entropy 

given by Shannon. 

Non-linear methods: Given the complexity of the 

mechanisms regulating heart rate, it is reasonable to assume 

that applying HRV analysis based on methods of non-linear 

dynamics will yield valuable information. Although chaotic 

behavior has been assumed, more rigorous testing has shown 

that heart rate variability cannot be described as a chaotic 

process [11]. The most commonly used non-linear method of 

heart rate variability analysis is the Poincaré plot. Each data 

point represents a pair of successive beats; the x-axis is the 

current RR interval, while the y-axis is the previous RR 

interval. HRV is quantified by fitting mathematically defined 

geometric shapes to the data [12]. Other methods used are the 

correlation dimension, nonlinear predictability [13], 

pointwise correlation dimension and approximate entropy 

[14]. 

Long term correlations: Sequences of RR intervals have 

been found to have long-term correlations [15]. However, 

one flaw with these analyses is their lack of goodness-of-fit 

statistics, i.e. values are derived that may or may not have 

adequate statistical rigor. 

 

III. RESULTS 

We have used an ECG database from physonet of 30 

subjects: 15 patients of Heart rate variability and other 15 

normal subjects. The HRV database is divided into the 

training lot and the test lot. We have considered that the 

significant information for HRV analysis is concentrated on 

the QRST zone of the lead V5 only. The selected QRST zone 

The Discrete Cosine Transform (DCT) applied for feature 

extraction has the advantage of reducing the computational 

effort by using algorithms methods [16]. The simulation 

results given in Table III show that one can reduce the space 

dimension from 8 bit sample (m=128) to 5 bit sample (m=32) 

using DCT, by preserving 90% of the signal energy. 

 

 
Fig. 2. ECG-QRST prototype corresponding to a HRV subject. 

 

TABLE III: RECOGNITION SCORE OF THE NEURO-FUZZY SYSTEM 

CLASSIFIER AS A FUNCTION OF THE NUMBER OF FEATURES M. 

Data Number of sample m  

Number of retained 

principal components m 
16 32 48 64 

Type of feature 

extraction 
DTC DTC DTC DTC 

Recognition score for 

the training lot (%) 
95 100 100 100 

Recognition score for 

the test lot (%) 
85 90 94 95 

Number of training 

epochs 
375 755 359 185 

 

Examples of DCT are given in Fig. 3. 

 

 
Fig. 3. Examples of DCT (amplitude spectrum). 

 

IV. CONCLUSIONS 

This paper presents an ECG classification approach for 

HRV analysis using a neuro-fuzzy system. The HRV 

processing by extraction using either DCT method or 

classification using neuro-fuzzy system.  
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of the prototype has been normalized to 8 bit sample (m =128) 

as in Fig. 2 

If one chooses the DCT for the same space dimensionality 

reduction, the energy preservation ratio decreases to 90% as 

in Table III. For the same number of retained features “m”, 

the DCT usually leads to a less recognition (for example, for

m=48, one obtains a recognition score of 94% for DCT; for 

m=32, one obtains a recognition score of 90% for DCT). 

Usually, by increasing the number of retained features “m”, 



  

the recognition score increases. This is important to scope 

HRV test lost signals. 
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