
  

  

 
Abstract—Structural MRI offers anatomical details and high 

sensitivity to pathological changes. It can demonstrate certain 
patterns of brain changes present at a structural level. Research 
to date has shown that volumetric analysis of brain regions has 
importance in depression detection. However, such analysis has 
had very minimal use in depression detection studies at 
individual level. Optimally combining various brain volumetric 
features/attributes, and summarizing the data into a distinctive 
set of variables remain difficult. This study investigates machine 
learning algorithms that automatically identify relevant data 
attributes for depression detection. Different machine learning 
techniques are studied for depression classification based on 
attributes extracted from structural MRI (sMRI) data. The 
attributes include volume calculated from whole brain, white 
matter, grey matter and hippocampus. Attributes subset 
selection is performed aiming to remove redundant attributes 
using three filtering methods and one hybrid method, in 
combination with ranker search algorithms. The highest 
average classification accuracy, obtained by using a 
combination of both SVM-EM and IG-Random Tree 
algorithms, is 85.23%. The classification approach 
implemented in this study can achieve higher accuracy than 
most reported studies using sMRI data, specifically for 
detection of depression.  

 
Index Terms—MRI, brain image analysis, image feature 

selection, machine learning, depression detection. 
 

I. INTRODUCTION 
Depression is the most common mental disorder 

worldwide and currently the fourth largest contributor to the 
burden of disease as reported by the World Health 
Organization [1]. It is estimated that by 2020, depression will 
remain a leading cause of disability, second only to 
cardiovascular disease [1]. Depression is associated with 
widely varying psychological and physiological features, and 
this heterogeneity is acknowledged within classification 
systems [2]. Diagnostic criteria for major depressive disorder 
(MDD) are currently based on clinical and psychometric 
assessment. The main procedures for evaluation of patients in 
the field of MDD are neuropsychological screening tests. 
Some widely used screening tests for the evaluation of 
depression include Hamilton Rating Scale for Depression 
(HRSD), Diagnostic Interview Schedule, and Hospital 
Anxiety and Depression Scale.  
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The objective of this study is to provide an automated tool 
to help in diagnosis of depression by differentiating between 
healthy and depressed patients in sMRI data. Evaluation of 
sMRI of the brain is usually achieved through visual ratings 
performed by medical experts (i.e., radiologists, 
neuroradiologists). However, conventional evaluation of 
these scans often relies on manual reorientation, visual 
reading, and semiquantitative analysis of certain regions of 
the brain. These steps are difficult, time consuming, 
subjective, and prone to error. In practice, no clinical expert 
would diagnose brain diseases only by looking at the 
abnormality of a single region of the brain. Instead, clinical 
experts carry out a comprehensive visual inspection of every 
part of the brain. Therefore, an automated detection system is 
warranted. Automated tools can be applied to anticipate the 
diagnosis, and avoid the inter and intra rater variability 
observed when pathologists give different relative important 
to each of the grading criteria. The focus of this study is to 
investigate machine learning techniques, including attribute 
selection and classification. Attribute selection aims at 
retaining only the most relevant attributes and thus improve 
the generalization ability and the performance of the 
classifier [3].   

In this study, we explore various parts of the brain using 
the sMRI imaging data by extracting volumetric attributes 
from the regions and assessing the significance of each 
attribute during classification. The attributes extraction has 
been done by the database provider [4] whereas the purpose 
here is to focus on the attribute selection and classification. In 
this work, we also compare the performance of the attribute 
selection and classifier algorithms by using the accuracy rate. 
To the authors knowledge, this is the first study that explores 
machine learning algorithms for depression classification 
from volumetric attributes. In summary, the contributions of 
this paper include: 1) evaluating and determining the most 
discriminant sMRI volumetric attributes for single-subject 
classification of depression 2) identifying machine learning 
algorithms that automatically determine relevant attributes 
and are optimal for depression detection. 

This paper is organized as follows.  Section II describes the 
related works. Section III explains the methods and the 
algorithms, as well as the selected attributes. Section IV 
describes the proposed experimental procedure comprising 
the system flowchart. Section V presents the experimental 
results and discusses them. The conclusions are given in 
Section VI. 

 

II. RELATED WORKS 
In group-level analysis, depression is mainly characterized 

by volumetric reductions or increase in the hippocampus, 
amygdala, anterior cingulate cortex, orbitofrontal cortex, 
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dorsolateral prefrontal cortex, subgenual prefrontal cortex, 
putamen, and caudate. Also cerebrospinal fluid have been 
specifically associated with depression. However, the 
available individual depression detection studies based on 
sMRI (Costafreda et al. [5], Nouretdinov et al. [6], Gong et al. 
[7], Mwangi et al. [8], [9], Bao et al. [10]) have utilized 
different attributes for the detection. The attributes used are 
voxel based morphometry, brain shape and voxels value. 

Attribute selection processes still have not gained much 
attention in the available depression detection research. There 
are only few studies that reported on attribute selection 
process.  The reported studies on the investigation of attribute 
selection from sMRI depression data implemented ANOVA 
[92] and t-test on VBM [8]. Costafreda et al. [5] implemented 
the whole-brain analysis of variance filtering to select the 
areas of maximum group differences between patients and 
controls. Mwangi et al. [8] implemented an attribute 
selection t-test filter in VBM to identify the voxels that 
differed most in depressed patients versus healthy controls. 
They also investigated a wrapper method called Recursive 
Feature Elimination. In other brain imaging studies, Principal 
Component Analysis (PCA) was employed by Fu et al. [11] 
and Marquand et al. [12] for attribute selection. The PCA is 
appealing because it reduces the dimensionality of the data 
and therefore reduces the computational cost of analyzing 
new data. Mwangi et al. [8] used relevance vector regression 
(RVR) that is a sparse algorithm that employs only a fraction 
of its basis functions to make predictions. A study by 
Chyzhyk et al. [13] employed Lattice Independent 
Component Analysis (LICA) and the kernel transformation 
hybrid with dendritic computing classifiers. These previous 
studies did not specifically investigate attribute selection. 

At the classification, the SVM classifier was employed by 
Costafreda et al. [5], Gong et al. [7] and Bao et al. [10]. 
Besides the SVM classifier, Bao et al. [10] also investigated 
the K-Nearest Neighbor classifier for predicting treatment 
remission in MDD. Nouretdinov et al. [6] proposed a general 
probabilistic classification method to structural and 
functional MRI to investigate diagnostic and prognostic 
prediction in depression. The proposed method of 
classification is known as transductive conformal predictors 
(TCP). Mwangi et al. [9] used regression analysis based on 
relevance vector regression which is a sparse Bayesian 
leaning method to predict brain disease. In another published 
study, Mwangi et al. [8] investigated both RVM and SVM 
machine learning for diagnostic purpose. 

 

III. METHODS 

A. Description of the Data, Definition of ROIs and 
Attribute Extraction 
The 3-D volumetric attributes were extracted from sMRI 

data provided by Neuropsychiatric Imaging Research 
Laboratory at Duke University called MIRIAD [4], a 
NIMH-supported study that has enrolled older depressed and 
non-depressed adult participants.  A total of 115 brain data 
were included consisting of 88 healthy controls and 27 
depressed images. Forty-four volumetric attributes were used 
for investigation (i.e whole brain volume, gray matter volume, 
white matter volume, hippocampus volume and etc). A list of 
attributes and their definition is available in Appendix I. The 

extracted ROIs were manually traced by an expert 
neuroradiologist using the Analyze tool, and volumes 
measured using MrX tools. More detail on the pre-processing 
is given in ref. [14]. 

B. Attribute Selection, Ranker Search and Classifier 
Algorithms 
Four attribute selection algorithms are used including one 

rule (OneR), support vector machine (SVM), information 
gain (IG) and ReliefF. In this study we applied default setting 
for the algorithms run in WEKA, a non-commercial and 
open-source data mining system [15].  

The OneR algorithm creates one rule for each attribute in 
the training data, then selects the rule with the smallest error 
rate as its ‘one rule’.  To create a rule for an attribute, the most 
frequent class for each attribute value must be determined.  
The most frequent class is simply the class that appears most 
often for that attribute value. Finally, it chooses the attribute 
that offers rules with minimum error and constructs the final 
decision tree [16]. 

The SVM evaluates the worth of an attribute by using an 
SVM classifier [17]. The SVM is that the weights of the 
decision function are a function only of a small subset of the 
training examples, called “support vectors”. Those are the 
examples that are closest to the decision boundary and lie on 
the margin. The existence of such support vectors is at the 
origin of the computational properties of the SVM and its 
competitive classification performance.  

The IG evaluates the worth of an attribute by measuring 
the information gain with respect to the class. The 
information gain is equal to the total entropy for an attribute if 
for each of the attribute values a unique classification can be 
made for the result attribute.  

The ReliefF evaluates the worthiness of an attribute by 
repeatedly sampling an instance and considering the value of 
the given attribute for the nearest instance of the same and 
different class [18]. It can operate on both discrete and 
continuous class data.  

The Ranker Search algorithm is an extension of the 
standard forward selection/best first that allows for either a 
fixed set (i.e. select no more than n attributes) or a fixed width 
(consider only adding an attribute from the top n ranked 
attributes to the current subset at each step) approach to be 
used. Both these options result in a faster search than standard 
forward selection (they give similar and sometimes better 
results due to less overfitting) [15], [19]. 

There are many classification algorithms that can be used 
for classification. In this paper, we used ten different 
classifiers: Naïve Bayes, SVM RBF, SVM Sigmoid, J48, 
Random Forest, Random Tree, VFI, LogitBoost, Simple 
KMeans Classification Via Clustering (KMeans), and 
Classification Via Clustering EM (EM). 

 

IV. EXPERIMENTAL PROCEDURES 
The experiments are conducted using WEKA, a 

non-commercial and open-source data mining system [2], [3]. 
WEKA contains tools for data pre-processing, classification, 
regression, clustering, association rules, and visualization. It 
is also well suited for developing new machine learning 
schemes. Attributes selection is performed using a cross 
validation strategy with 10 folds and 1 seed.  
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1) Volumetric attributes are selected (see Appendix I) from 
the sMRI dataset (44 attributes are selected in this work). 
From the selected attributes we constructed a data matrix.  

2) Class values are assigned as nominal/binary (0, 1) values; 
0 represents healthy subjects and 1 stands for depressed 
subjects.  

3) All the attributes are ranked using four attribute selection 
methods. 

4) The attribute rankings are tabulated from highest to 
lowest for the four methods. 

5) New datasets are created from each attribute ranking 
result; A total of 17 new matrixes are formed out of the 
original data matrix as follows:  Top 1, Top 2, Top 3, Top 
4, Top 5, Top 6, Top 7, Top 8, Top 9, Top 10, Top 15, Top 
20, Top 25, Top 30, Top 35, Top 40, and Top 43.  

6) The new data subsets are named according to format; Top 
<Ranking No.>_<Attribute Selection Name>. Each 
attribute selection has 17 sets, thus, there are 68 new 
dataset formed from this combination. 

7) Ten classifiers are selected for the classification: Naïve 
Bayes, SVM RBF, SVM Sigmoid, J48, Random Forest, 
Random Tree, VFI, LogitBoost, Simple KMeans 
Classification Via Clustering, and Classification Via 
Clustering EM. The classification experiments were 
designed as training/test of 70/30. All together we have 68 
× 10=680 possible combination. Instances were 
“arranged to ensure balanced no of class in each sub set”. 
The classification rule set to follow the initial 
arrangement (with order preserved). 

8) The accuracies percentages for the classification were 
automatically calculated by WEKA. The results are 
ranked in descending order using the accuracy 
percentage.  

 

V. RESULTS AND DISCUSSIONS  

A. Classification Performances 
Table I shows the accuracy rates (percentage of correctly 

classified samples) and the average area under the receiver 
operating characteristic curve (AUC), respectively, for the 
combination that achieved accuracy greater than or equal to 
80%. The results are sorted from the highest to lowest 
accuracies. It can be seen that the hybrid evaluator SVM and 
the filter evaluator IG has the highest accuracy.  

The best accuracy for the attribute selection-classifier is 
displayed in Fig. 1. When the presented attribute selection 
methods were used in combination with an SVM 
RBF/Sigmoid, the results were consistent regardless of the 
attribute selection used. The evaluator OneR in combination 
with SVM RBF classifier produced slightly higher accuracy 
of 79.41% compared to the other methods. These results were 
comparable or better than those reported in previous works 
[5], [7], [8], [10] using the SVM. The existing works reported 
accuracies between 58.70% to 87.1% when using the SVM, 
while our classification showed stable results between 76.47% 
to 79.41%. However, the accuracy increased when an EM or 
Random Tree classifier was applied instead of the SVM. The 
hybrid evaluator SVM in combination with the EM classifier 
and the filter evaluator IG in combination with the Random 
Tree classifier recorded highest accuracy of 85.29%. The 
good performance of the EM classifier here attributed to the 

significantly small number of attributes, N=7 needed for the 
classification. Overall, it can be seen that the EM, J48, 
Random Forest and Random Tree classifiers achieved good 
performances and have the potential for depression detection 
classification problem. However, the Naïve Bayes and the 
VFI performances were very sensitive to the attribute 
selection used.  

Finally, the proposed attribute selection was compared 
against the previous works [5], [8] which used statistical filter 
method (ANOVA and t-test). The classification accuracy in 
ref. [5] is 67.6%, which is smaller than the accuracy of the 
proposed attribute selection. However, the classification 
accuracy in [8] is 87.1%, which is slightly higher than the 
accuracy of the proposed attribute selection. The 
performance difference may also be due to the difference in 
the attributes used. 

 
TABLE I: AVERAGE ACCURACY (ACC), NUMBER OF ATTRIBUTES (N), 

F-MEASURE AND AREA UNDER THE CURVE (AUC) 

Evaluator Classifier N Accuracy AUC 
SVM EM 7 85.2941 0.6875 

IG RandomTree 15 85.2941 0.6875 

ReliefF J48 30 82.3529 0.4856 

IG J48 35 82.3529 0.4856 

SVM Kmeans 1 82.3529 0.6683 

SVM Kmeans 7 82.3529 0.6683 

All NaiveBayes 44 82.3529 0.5962 

SVM RandomForest 8 82.3529 0.7163 

IG RandomForest 6 82.3529 0.7188 

IG RandomForest 15 82.3529 0.6875 

ReliefF RandomTree 3 82.3529 0.6250 

ReliefF RandomTree 5 82.3529 0.6250 

 

B. Evaluation of Attributes/Features 
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The attributes of the final set are different for each 

classification pair and each attribute selection method. Table 

II shows the most frequent selected attributes at certain 

achieved accuracy. The table tabulates the attributes with its 

corresponding frequency and ranked in descending order. 

From Table II, it can be seen that the Top 2 attributes

contributed to accuracy ≥ 75-85 are the same and the Top 4

attributes contributed to accuracy ≥ 75 and 80 are the same. 

For the accuracy score of 75 or above, the Top 1 (ltotgm) in 

the ranking doubled the frequency for attributes on ranked 

number 11 (rhippoc) and 12 (rtotgm).

Specifically, when the accuracy ≥ 80, the Top 1 and 2 have

significantly higher frequencies compared to the rest. The 

frequency reduced significantly from Top 2 to Top 3 

attributes. Interestingly, for higher accuracy (85%), we could 

perceive that only 18 attributes contributing and the 

frequency for the Top 4 attributes is actually doubled the 

remaining. Specifically for accuracy ≥ 85%, left-brain

dominated the contribution with total frequency of 14 

frequencies. Fig. 2 illustrates the most important brain 

attributes for the accuracy ≥ 85%. This result is in accordance 

to reported works in depression at group-level statistical 

analysis. For example, previous studies have shown a 

morphometric reduction of the hippocampus (bilateral 

hippocampus, left and right hippocampus, and hippocampus 



  

grey matter) in patients with depression compared to healthy 
controls [20]. It can be seen that on overall, the most 

important attribute was ltotgm. 
 

 

 
Fig. 1. Best classification accuracy of attribute selection-classifier combination. 

 
TABLE II: THE MOST FREQUENT SELECTED ATTRIBUTES AND THE 

CORRESPONDING FREQUENCY  

 
*ACC: accuracy 

 

 

Fig. 2. The most important brain attributes (ACC≥85%). 

VI. CONCLUSION 
In this study, several machine learning techniques for 

attribute selection and classification were examined for 
depression detection using the brain volumetric attributes. 
The potential of attributes extracted from the brain sMRI 
volumetric calculation was explored and the diagnostic value 
of each attribute was investigated. The performance results 
highlight the potential of depression detection from sMRI 
volumetric attributes. The SVM evaluator in combination 
with the EM classifier and the IG evaluator in combination 
with the Random Tree classifier have achieved the highest 
accuracy. However, the small sample sizes limits the ability 
to draw firm conclusions. Thus, further studies with larger 
datasets are necessary to generalize the results and improve 
the performance of the whole detection system. 

APPENDIX 
APPENDIX I: VOLUMETRIC ATTRIBUTES DESCRIPTIONS  

No Attributes Description

1 nonlgm
Non-lesion gray matter (GM) volume in whole 
brain

2 gmles
Subcortical gray matter lesion (GML) volume in 
cerebrum

3 totgm Total GM volume 
4 nvcsf Non-ventricular CSF volume in the whole brain
5 totvent Total Lateral ventricle volume 
6 totcsf Total CSF volume 

7 nonlwm
Non-lesion white matter (WM) volume in whole 
brain

8 wmles WM lesion volume in the cerebrum
9 totwm total WM volume 
10 totles total lesion volume 
11 wholebr whole brain volume 

12 lnonlgm
Non-lesion GM volume in left cerebral 
hemisphere

13 lgmles
Subcortical GML volume in the left cerebral 
hemisphere

14 ltotgm left hemisphere total GM volume 

15 lnvcsf
Non-ventricular CSF volume in left cerebral 
hemisphere

16 lvent
Lateral ventricle volume in left cerebral 
hemisphere

17 ltotcsf left hemisphere total CSF volume 

18 lnonlwm
Non-lesion WM volume in left cerebral 
hemisphere

19 lwmles WML volume in the left cerebral hemisphere
20 ltotwm left hemisphere total WM volume 
21 ltotles left hemisphere total lesion volume
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A ribute Selector‐Classifier 

  ACC≥75 ACC≥80 ACC≥85 

No Attributes f Attributes f Attributes f 
1 ltotgm 204 ltotgm 10 ltotgm 2 
2 lhemis 194 lhemis 9 lhemis 2
3 lnonlgm 182 lnonlgm 7 ltotcsf 2
4 ltotcsf 145 ltotcsf 7 nvcsf 2 
5 wholebr 144 nvcsf 7 lnonlgm 1
6 cerebrm 131 wholebr 6 wholebr 1
7 tothippoc 128 lnvcsf 5 lnvcsf 1
8 lnvcsf 127 lvent 5 lvent 1
9 nvcsf 116 rhippoc 5 rhippoc 1
10 lvent 113 ltotwm 5 ltotwm 1
11 rhippoc 109 lgmles 4 lgmles 1 
12 rtotgm 96 totgm 4 totgm 1
13 ltotwm 91 nonlgm 4 nonlgm 1 
14 lgmles 91 lnonlwm 4 lnonlwm 1
15 totgm 84 totvent 4 totvent 1
16 totcsf 82 cerebrm 3 ltotles 1 
17 nonlgm 80 tothippoc 3 rgmles 1
18 rgmltc 78 ltotles 3 lwmles 1
19 rnonlgm 76 rgmles 3 cerebrm 0
20 ltotles 75 lwmles 3 tothippoc 0
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