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Abstract—Breast cancer patients with pathological complete 

response (pCR) to taxane and anthracycline containing 

preoperative chemotherapy tend to have excellent distant-free 

and overall survival. However, most of current pCR predictors 

for guiding chemotherapy tend to perform poor in inter-

laboratory validation, most likely due to microarray 

experimental batch effects and insufficient training samples for 

feature selection. To tackle this difficulty, by merging three 

separate datasets of patients treated with paclitaxel, 

fluorouracil, doxorubicin, and cyclophosphamide, we extracted 

gene pairs with consistent relative expression ordering in 

patients not achieving pCR and with relative expression 

reversal in patients achieving pCR. Then, based on 

combination of these pairs, a pCR predictor was built.  The 

performance of this predictor achieved a sensitivity of 93% 

and specificity of 62% in an independent dataset, much better 

than the performances of three previously proposed predictors. 

In conclusion, the rank-based pCR predictor derived from a 

large cohort of samples can accurately and robustly predict 

patients with high probability of achieving pCR after 

chemotherapy. 

 

Index Terms—Preoperative chemotherapy, pathological 

complete response, gene expression profile, breast cancer. 

 

I. INTRODUCTION 

Preoperative chemotherapy is widely used in the 

treatment of patients with breast cancer and patients who 

achieve a PCR after chemotherapy have excellent disease-

free and overall survival [1]. For pCR in response to 

chemotherapy, especially for the most effective taxane and 

anthracycline containing regimens, although many drug 

targets-based predictors [2], [3] and discovery-based 

predictors using microarray gene expression profiles have 

been developed [4], [5], their performances often degrade 

greatly or fail to be validated in inter-laboratory datasets [6]- 

[8]. This irreproducibility could be due to that microarray 

measurement values of gene expression tend to be affected 

by experimental batch effects including differences in 

laboratory conditions, reagent lots and personnels [9]. 

More importantly, this irreproducibility could result from 

the conflict between enormous numbers of genes in 

microarray data and the relatively small numbers of samples 

used in the training set of each study [10]. Therefore, it is 

preferable to use a large number of samples to develop a 

robust predictor for pCR. Rank-based classifiers, that are 

 
 

  

 

  

 

 

built based on relative expression ordering of gene pairs, are 

rather robust to experimental batch effects on samples [11] 

and thus can be trained by using large samples from 

different data sources [10]. However, without refined feature 

combination, the current rank-based methods including the 

most widely used Top Scoring Pair (TSP) [11] and K 

disjoint Top Scoring Pair (KTSP) [12] method, may be 

unable to efficiently treat the molecular heterogeneity of 

breast cancers in responsiveness to treatments [13]. 

In this paper, we analyzed four microarray datasets of 

breast cancer patients treated with a standard taxane and 

anthracycline containing (paclitaxel, fluorouracil, 

doxorubicin, and cyclophosphamide) chemotherapy regimen. 

Firstly, we used three of the four dataset to extract a 

combination of gene pairs each showing a reserve relative 

expression ordering between patients with pCR and residual 

disease (RD). Then, we generated a pCR predictor based on 

this combination of gene pairs. The robustness and accuracy 

of the pCR predictor was validated by an independent data 

from a different clinical trail and by comparison with three 

other previously proposed predictors. 

 

II. METERIALS AND METHODS 

A. Microarray Datases 

The four gene expression microarray datasets using the 

Affymetrix GeneChip arrays, referred to as MDA133, 

MAQC100, MDA91 and ISPY79, were collected from the 

GEO database (http://www.ncbi.nlm.nih.gov/geo/). As 

described in Table I, the datasets of MDA133, MAQC100 

and MDA91 were used for generating the pCR predictor, 

and the independent dataset ISPY79 was used to validate 

this predictor. 

B. The Rank-Based Classifier for pCR 

For a single pair of genes (i, j), we indicated their relative 

expression as Ri>Rj (or Ri<Rj) in an RD class if the relative 

expression was consistent in the majority of RD samples. 

Accordingly, the inverse relative expression was used to 

characterize the pCR class. For a combination of pairs, we 

classified a patient as pCR if more than one pair had a 

'relative expression reversal', otherwise that patient was 

classified as RD. We used these rules to calculate the 

sensitivity and specificity scores for the pCR and RD classes, 

respectively. 

TABLE I: DATASETS ANALYZED FOR PCR PREDICTION 

Title Usage GEO acc. Sample size 

MDA133 Training GSE20194 34:99 

MAQC100 Training GSE20194 15:85 

MDA91 Training GSE20271 19:72 

ISPY79 validation GSE25055 14:65 
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The harmonic score calculated as the harmonic mean of 

the sensitivity and specificity was used to evaluate a single 

pair or a combination of pairs. The optimal combination of 

gene pairs was selected using a greedy algorithm that 

maximize the harmonic score in the training dataset. 

C. Evaluation of Response Predictors 

Three-fold cross validation was performed by repeated 

iteration (n=1000) of stratified random sampling to estimate 

the prediction performance of the different classifiers in the 

training data and to facilitate selection of a single classifier 

for independent validation. Stratification was performed to 

insure that the relative proportion of outcomes sampled in 

both cross-validation training and test sets was similar to the 

original proportions for the full training data. We performed 

complete cross validation including gene pairs selection and 

combination in each iteration to avoid selection bias [14]. 

Finally, the performances of the predictors in the cross 

validation test sets or independent validation dataset were 

presented as sensitivity and specificity scores or the area 

under the curve (AUC) score. The corresponding 95% 

confidence intervals (95% CIs) for the sensitivity and 

specificity scores were calculated based on the 

exact binomial confidence intervals estimate. 

 

III. RESULTS 

A. Development of a pCR Predictor 

Firstly, we estimate the prediction performances of 

different rank-based classifiers for pCR across three separate 

datasets by performing 1000 iterations of three-fold cross 

validations (see  Methods). As shown in Fig. 1, the median 

value of sensitivity and specificity scores were 75% and 

72%, the inter-quartile range (IQR) of sensitivity ranged 

from 70% to 83% and the IQR of specificity ranged from 

68% to 76%, respectively. These results showed that our 

rank-based classifier for pCR can performance well on a 

dataset from different sources, thus it's reasonable for us to 

merge these three separate datasets together to generate a 

robust pCR predictor. 

 
TABLE II: THE PERFORMANCES OF FOUR PCR PREDICTORS 

Predictor 
Sensitivity Specificity 

Estimate  95% CI Estimate  95% CI 

CTSP-6 0.93 0.66-1 0.62 0.49-0.73 

DLDA-30 0.71 0.42-0.92 0.63 0.50-0.75 

RNAi-6 0.93 0.66-1 0.40 0.28-0.53 

KTSP-4 0.50 0.23-0.77 0.66 0.53-0.77 

 

 
Fig. 1. The prediction performance scores for different classifiers generated 

across 1000 repeats of three-fold cross validation. 

Then, from the merged dataset containing 324 samples, 

we extracted 225 pairs with stable relative expression 

orderings among above 80% of patients in the RD class and 

a 'relative expression reversal' among over half of patients in 

the pCR class. Finally, from top 100 of these pairs ranked by 

the harmonic scores, we generated a CTSP-6 predictor using 

a combination of six top-scoring gene pairs 

(CCND1/LMO4), (PADI2/MYO5C), (BRPF1/KIAA0831), 

(CENPA/ZNF263), (GALNT1/DYNLT3) and 

(CENPA/ZNF552) by the method described in the Methods. 

The sensitivity was as high as 96% for the patients with pCR, 

and the specificity was 75% for the patients with RD in the 

training dataset, respectively. 

B. Evaluation of pCR Predictors in Independent Dataset 

Using an independent ISPY79 datasets from the I-SPY 

trial for validation, we compared our predictor with three 

other predictors, including a thirty-gene predictor generated 

by dimensional linear discriminant analysis (DLDA-30) [4],  

a six-gene relative predictor generated by RNAi screening 

(RNAi-6) [15] and a four-gene pairs predictor obtained by 

the KTSP algorithm (KTSP-4). Our predictor had a 

sensitivity of 93% and a specificity of 62% in the ISPY79 

dataset (Table II). 

In contrast, the DLDA-30 predictor generated from the 

first group of 82 samples of MDA133 showed a high 

sensitivity of 92% and a specificity of 71% in the second 

group of 51 samples [4]. However, its sensitivity and 

specificity scores decreased to 71% and 63% in the ISPY79 

dataset (Table II). Similarly, when using fixed sensitivity 

score the same as our predictor, the specificity score of the 

RNAi-6 predictor were as low as 40% in the ISPY79 dataset 

(Table II). Finally, the most applied ranked-based KTSP 

method obtained an optimal K at four gene pairs from the 

100 iterations of three-fold cross validation and achieved a 

sensitivity of 50% and a specificity of 66% in the training 

set. Low sensitivity and specificity score of the KTSP-4 

predictor could be caused by the inefficiency of the feature 

selection given the molecular heterogeneity of breast tumors. 

 

IV. DISCUSSION 

The predictor developed in this work performed more 

accurately and robustly than three other predictors 

previously proposed. A large cohort of samples merged 

from different datasets was used to extract the gene pairs 

with robust gene expression ordering in the majority of RD 

samples. As shown in the large dataset, each pair showed 

'relative expression reversal' in only a certain proportion of 

pCR patients, which reflected that the molecular 

heterogeneity in breast tumors and in their responsiveness to 

treatments is substantial. Thus, as indicated in the results, 

simply using K disjoint top scoring pairs without refined 

feature combination failed to predict pCR accurately in the 

independent dataset. Moreover, the six-gene marker 

proposed in [15], using the relative expression value of a 

mitosis metagene (i.e., a combination of functionally related 

genes) comparing to a ceramide metagene predefined by an 

RNA inference (RNAi) screen, was also lack of sufficient 

predictivity power in the independent dataset, largely due to 

that the magnitude of the relative expression measurements 
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of two metagenes could also be affected by experimental 

batch effects in inter-laboratory validation. The rank-based 

response predictor of pCR was also more accurate than the 

predictors generated by the DLDA method, due to that the 

rank-based method was rather robust to inter-array batch 

effects and that our predictor was trained from a large cohort 

of samples. 

Although patients who achieve a pCR after neoadjuvant 

chemotherapy tend to have excellent distant-free and overall 

survival, the pCR rate with current breast neoadjuvant 

chemotherapy treatment is still quite low whereas a 

proportion of patients with minimal residual disease (RD) 

could also have good prognosis. Moreover, patients 

intrinsically at different risk levels have different response 

to chemotherapy and prognosis after chemotherapy. We 

would focus on more detailed prognostic value of 

preoperative chemotherapy in the future work. 
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