



Abstract—Multiple sequence alignment (MSA) is a difficult

yet important problem for bioinformatics research. In most

cases, large-scale biological sequence data with high similarity

have to be analyzed. Center star method is always used to deal

with lots of long sequences. However, square time complexity is

a bottleneck for large data. In this paper, a novel method for the

MSA problem is proposed, which employs the keyword tree and

the sliding window to match a set of substrings and the rest

regions are aligned by dynamic programming. The method

provides the dynamic adaptive mechanism for the sliding

window size and step length. The self-adaptive parameters play

a extremely important part for improving the performance of

the method. Experimental results show that the proposed

method is computational efficient and can obtain good

performance.

Index Terms—Multiple sequence alignment, center star

method, keyword tree, sliding window.

I. INTRODUCTION

The sequence alignment, especially MSA, has a great

significance for the discoveries and studies of the genetic

functions, structures and evolution processes of the

biological sequences [1]. With the help of the sequence

alignment methods, biologists can find the conserved

sequence patterns in the evolution procedure and reveal the

ancestral relationships among different organisms. Especially,

rapid development of computational molecular biology

demands well-efficient sequence aligning algorithm crucially

[2], [3]. Nowadays there have been a variety of algorithms

proposed, e.g. Intelligent optimization, the probability model

and the parallel mechanism. Combinatorial optimization

algorithm is one of the most effective ways to solve the MSA

problem, the idea of which is converting a MSA problem to

many pairwise sequence alignment problems. This method

can be divided into two types according to the transformation

strategy, one is the tree alignment based methods [4] and the

other is the star alignment based methods [5], [6]. At the

same time, the progressive theory is introduced in these

methods and makes these methods more efficient. This

greedy heuristic assembly algorithm involves estimating a

guide tree (rooted binary tree), and then incorporating the

sequences into MSA with a pairwise alignment algorithm

while following the tree topology. The progressive algorithm

is often embedded in an iterative loop where the guide tree

and MSA are reestimated until convergence [7], [8].

However, the time complexity of the simple star alignment

based methods is not good enough. These methods also

cannot adapt to align the large-scale sequence data. Thus, we

need to find a more reasonable method to solve this problem.

Through the analysis of the genetic sequence data, we find

that most sequences have high similarity that can be

employed in bioinformatics research. For example, for

reconstructing evolutionary trees and comparing haplotype

sequences, it needs to align many DNA sequences with high

similarity [9], The high similarity means that many substrings

on the r-length regions are exact match between sequences.

Thus, the proposed method mainly concentrates on searching

mismatching r-length regions. This method can be divided

into two parts: the reference sequence determination and the

sequence alignment. The keyword tree and the sliding

window are constructed to quickly search the mismatching

substrings between two sequences and ensure the accuracy of

the searching.

II. DEFINITIONS AND CONCEPTES

In the proposed method, several basic and important

theories and methods are used to find the appropriate

reference sequence and obtain the final alignments, such as

the keyword tree, the sliding window, etc. Thus, in this

section, we will give some important definitions and related

concepts.

A. Sequence Alignment

A sequence is actually a string over an alphabet collection.

For DNA sequences, the alphabet collection contains four

letters A, C, G and T, representing four distinct nucleotides

respectively. Given two or more strings, the aim of the

sequence alignment is making them the highest similarity

based on SP (sum-of-pairs) [6]. To reach this aim, the

alignment algorithm often adds a space in the strings. A space

is viewed as a letter (A, G, C or T) and is denoted " - "

throughout this paper. Two opposing identical letters form a

match and two opposing non identical letters form a

mismatch.

Sequence alignment algorithm can obtain the optimal

alignment of two or more strings according to a given scoring

function. That is, the results of sequence alignment can

reflect the relationship of sequence similarity and their

A Novel Algorithm for DNA Multiple Sequence

Alignment Based on the Sliding Window and the Keyword

Tree

Yong Sun, Zili Zhang, and Jun Wang

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 3, No. 3, May 2013

271DOI: 10.7763/IJBBB.2013.V3.211

Manuscript received December 9, 2012; revised February 25, 2013. This

work is supported by the Natural Science Foundation of China under Grant

No. 61101234, the Doctoral Funds of Southwest University under Grant

No.SWU110063.

Yong Sun, Zili Zhang, and Jun Wang are with School of Computer and

Information Science, Southwest University, Chongqing, 400715, China

(e-mail: likesy999@yahoo.com.cn, zhangzl@swu.edu.cn,

kingjun@swu.edu.cn).

Zili Zhang is with School of IT, Deakin University, Australia.

biological characteristics. Take ATACTAGA and

AACTTGGA for an example, the following is the optimal

alignment after arrangement.

 ATACTAG -A

 A-ACTTGGA

The whole procedure can be viewed as "adding space" in

order to make sequences have the highest similarity. The

sequence alignment can be divided into the pairwise and the

multiple sequence alignment based on the number of

comparing sequences at the same time. Besides, on the basis

of the scope of the comparison, it also can be divided into the

global alignment and the local alignment. A global MSA

algorithm is defined here as one that tries to align the full

length sequences from one end to the other. Once the global

alignment has been constructed, other methods are often used

to identify the more conserved or reliable regions within the

alignment. A local algorithm attempts to identify

subsequences sharing high similarity. The unreliable or low

similarity regions are then either excluded from the

alignment, or differentiated, for example, by the use of

upper/lower case characters.

B. Keyword Tree

A keyword tree is built by a collection of several short

strings [11]

  zPPPP ,,, 21 

 1,  zNz , Pi(i=1,2, ,z) is a short string or a

substring from one given long sequence. The root of the

keyword tree is K. Every edge of the tree represents a letter of

Pi. Different edges, which are separated from the same vertex,

represent diverse letters of the strings with same prefix. Each

Pi relates a path from the root K to a leaf node. In other words,

a leaf node can also represent a short string Pi. Fig. 1 gives an

example of a keyword tree of

Pi={ATACTA,CTATGC,CATG,TACT}

A

A

A

A
A

A

T

T

T

T

T
T

T

C

C

C

C

G

G

Fig. 1. Keyword tree of P.

The keyword tree K is utilized to search another given long

string T to find the elements of P. The searching approach is

based on the sliding window theory.

C. Sliding Window

Sliding window can be seen as a limited circulated internal

memory which is based on array [12]. It is one of the

important data flow processing models. It stores the data

from some region of the data flow. The data move in order

according to the given step length in array. Old data leave out

of the window as the new data enter into the window. Fig. 2

gives a simple model of sliding windows. The window size is

w and the sliding step length is s. s equals to the length of the

window movement each time. The black-blocks represent the

current place of window in Fig. 2.

Xcurrent-w Xcurrent

Xcurrent-w Xcurrent

Xcurrent-w Xcurrent

Fig. 2. The example of the sliding window (w=4, s=2).

In the method, the window size is constant when the

algorithm is doing one specific comparison. For different

biological sequence data, the algorithm is self-adaptive and

chooses the appropriate values of the parameters. The sliding

window moves on and compares the sub-strings in the

windows with the other ones. The matching and mismatching

pairs are marked. By calculating the number of matching

sub-strings between the given sequences, the sequence with

the largest number can be found and is set as the reference

sequence at last. Then, it can be used in the following

sequence aligning process.

III. METHOD

To describe the method, we firstly need to know how to

make use of the keyword tree and the sliding window to find

the appropriate reference sequence and speed up the

sequence alignment process. Here we need to pay attention to

it that the square of sequence number and the square of the

average length of sequences are proportional with the time

overhead of the center star method, regardless of similarity.

The square time overhead in the center star method is

mainly due to the time overhead of dynamic programming.

However, if the similarity of the sequences is high, the exact

matching substrings have a large proportion, that is, only a

few mismatching r-length regions will need lots of the

running time. And the using time of the string matching and

the sequence length is a linear relationship. Then we just need

to align the remaining mismatching r-length regions with

dynamic programming method [13]. It can take full

advantage of the high similarity and the aligning time will be

greatly reduced.

Given the sequence set },,,{
2`1 n

ppp  , Each pi

(i=1,2, ,n) is divided into k segments },,{
21 ikii

ppp 

with equal length. The length of each segment is r. If the

length of the last segment is not enough, it can be ignored. A

keyword tree Ti is built based on the segment set of pi. L is the

average sequence length of all pi(i=1,2,,n). Due to the

high similarity of the given sequences, the difference among

the sequence lengths is so small that it will not affect the

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 3, No. 3, May 2013

272

Currently, the dynamic programming is the main method

for pairwise sequence alignment [10]. But it is no good way

to solve the multiple alignment problems on large scale

sequences. The time complexity of dynamic programming is

too high to extend it to multiple sequence alignment. The

method requires the computation of all 







2
n (n is the number

of strings) optimal pairwise alignments. For large n and long

strings, this may involve a great deal of computation.

selection of r.

For each pj (j  i), the algorithm searches pj to mark the

matching substring between pj and the keyword tree Ti using

the sliding window. The window size is also set as r. For each

substring in the window, which is denoted by p, will compare

following the branch of Ti and search for the matching ones.

The search stops at once when it encounters a mismatching

character. If all characters in p match a branch of Ti, the

similarity degree of pi add one, And the algorithm also notes

down the serial number of the exact matching substring in Ti

and the location of p in pi.

When a comparison in one window is finished, the sliding

window moves forward in a step length s. The same matching

action is circularly done. The selected step length s is

corresponding to the number and the length of the given

aligned sequences. We will discuss it in detail later. When

the window slides to the end of pj, the algorithm records the

number nij of all exact matching substrings. After all pj

compared with pi, the algorithm calculates the total similarity

of pi to the other sequences. This procedure is circularly done

on each pi. That means the algorithm builds keyword tree for

each sequence and calculates the similarities of them. The

algorithm selects the one which has the biggest Ni as the

reference sequence. We have found out the reference

sequence pc through the algorithm described above. Then pc

will align with pj sequentially, j{1,2, ,n}, j  c. The

algorithm has found out all mismatching r-length regions

through the recorded serial number and location in pc and pj.

Then, the dynamic programming is employed to align all

sequence pairs (pc, pj).

Only the mismatching r-length regions in the sequence

pairs are aligned. The aligning algorithm needs to record the

location of inserted spaces in pc and pj, which are donated by

Sci and Si . When pc has aligned with all the other sequences,

the algorithm can obtain a space location set Sc, which should

insert spaces finally. Then, Sc is compared with Sci

respectively, and the algorithm can find the new positions

that need to insert space in Si . That means it will insert new

space into pj based on Si to make it have the highest similarity.

This step runs circularly and finally obtains the result of MSA.

The detail procedure of the whole aligning algorithm can be

shown as follows [14].

For the alignment algorithm of the paper, supposed the

length of sequences },,,{
2`1 n

ppp  are all m. The time

complexity of building a keyword tree is O(m). Besides, the

time is O(nmx) which is spent in searching in other strings

and computing nij. x is relative with the sliding step length.

When s is suitable for the data set, x will be less than 1. On

the contrary, x will be more than 1.

Thus, for i{1,2, ,n}, the total time complexity is

O(n2mx) after computing all nij and finding the reference

sequence. After the reference sequence selection, it needs to

n-1 k-band pairwise alignments. The time is O(knmx). k is

the difference between two sequences. When it is the high

similarity among sequences, k is far less than m (k << m).

Therefore, compared with the reference sequence selection,

the time overhead of the n-1 pairwise alignments can be

ignored. The expected time complexity of the algorithm is

O(n2mx). When x < 1, the running time is lower than O(n2m)

of OA. OA is the original algorithm (see [15]). Generally

speaking, n is far less than m (n << m). nm is the sum of

sequences' lengths. So it is considered that it is a linear

relationship between the time overhead and the sum of the

input sequence lengths.

IV. EXPERIMENT AND DISSCUSSION

There are two main evaluation criteria for MSA: the

running time and the sensitivity. Naturally, a good aligning

algorithm has low running time and excellent sensitivity (low

SP here). However, it is usually very difficult to keep a

balance between two criteria. Researchers found that the

algorithm can reach a relatively balance on running time and

sensitivity by using some adaptive categories on some kinds

of favorable parameters, such as the similarity. The step

length of the sliding window is such crucial parameter for

reaching this balance. If the step length sets too short, the

algorithm will waste a lot of time to search and compare the

substrings. Especially, when the dataset has too many

sequences and all sequences are very long, the short step

length will spend the very long running time on the reference

sequence determination of the algorithm. In contrast, if the

step length is too long, there are lots of exact matching

r-length regions missed. That will make the relative low

sensitivity and the high running time may be spent in aligning

step, since the chosen mismatching r-length regions may be

inaccuracy.

Algorithm: Sliding window algorithm on MSA

Input： },,,{
2`1 n

ppp 

Output： },,,{
21 n

PPP 

Step 1. for i∈{1,2,…,n}

Step 2. r= L

 //L:the average length of sequences

Step 3. Dividing pi into k substrings,building the

 keyword tree Ti for the substring set

Step 4. for j∈{1,2,…,n}, and j ≠ i

 nij={0,0,…,0}

Step 5. Searching Ti in pj

Step 6. If p in pj

 //p:substring within the sliding window
Step 7. 1 for the corresponding position of nij and

 record the location

Step 8. End if

Step 9. End for

Step 10. End for

Step 11. for i∈{1,2,…,n}

Step 12. 



n

ijj
iji nN

,1

 //calculate the similarity of pi

Step 13. End for

Step 14. The biggest one of Ni is set as the reference

 sequence pc

Step 15. for j∈{1,2,…,n}, and j ≠ c

Step 16. Aligning parts which is 0 in nij and recording

 positions of spaces

Step 17. End for

Step 18. Inserting spaces according to aggregating

 positions

Step 19. Output },,,{
21 n

PPP 

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 3, No. 3, May 2013

273

A. Experimental Results

In this section, we will show the experimental results and

analyze the performance of the algorithm. The algorithm is

implemented by a single CPU of a Pentium(R) Dual-core

E5700 3.00GHz and its RAM is 2.00GB.

The selection of the step length has a great relationship

with the aligning data size and the sequence length. Through

a great number of training experiments, we have found out a

set of the appropriate step lengths. Firstly, we choose three

representative experimental data to show the significance of

these parameters and its advantage. All three data are

mitochondrial DNA sequences: HNsq Thin young males

(HN); JDsq Type 2 diabetes patients with angiopathy (JD);

KAsq Alzheimer's disease patients (KA). Each of these

sequences has about 16, 570 bp and the size of each data is

about 96. Because they belong to the different individuals of

the same species, they have very high similarity naturally.

TABLE I: THE PERFORMANCE OF THREE DATA ON OA AND MA

Dataset OA MA

HN Running time 52728 39549

HN SP 185258 186268

JD Running time 55387 39250

JD SP 196080 195945

KA Running time 59266 39120

KA SP 178868 178868

Table I shows the results of the comparison between MA

and OA. MA is the modified algorithm in this paper.

Experimental units of the running time are all millisecond

(ms) in this paper.

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Data size

R
u
n
n
in

g
 t

im
e

MA

OA

Fig. 3. The running time of OA and MA on different data size.

From Table I, it shows that MA greatly reduces the

running time and the accuracy is slightly improved or

remains the same too. Here the algorithm selects 2 as its step

length by adaptive selection mechanism on the dataset size.

In order to find a suitable sliding step, we must consider a

variety of situations. Firstly, we do some experiments to

verify the influence of the change of the data size to the

results, which are shown in Fig. 3, where the sliding step is 2.

In the experiments, all the sequence length is about 16,570 bp.

We can find the running time of MA is greatly lower than the

running time of OA.

When the sliding step is 1, we find that its performance is

very unstable through many experiments. The running time

would be very long, even can't run. It leads directly to the

badly operating results. In addition, we can't only know the

advantage of MA through the change of the data size, but also

we see the influence of sequence length on the sliding step.

Similarly, for the long sequences, about 16,570 bp, in Fig. 4,

the data size does not change, but the sequence length

changed. All the data size is 8.

The sliding step of Fig. 4 is 1. When the sliding step is 2, its

performance is very unstable. The running time would be

very long, even can't run. In Table II, the sliding step is 1 and

2(only the representative portion shown). OA and MA are the

representative of their respective running time. * means that

the algorithm can't run or runs for a long time but still no

results.

2000 4000 6000 8000 10000 12000 14000 16000
0

500

1000

1500

2000

2500

3000

3500

Sequence length

R
u
n
n
in

g
 t

im
e

MA

OA

Fig. 4. The running time of OA and MA on different sequence length.

TABLE II: THE PERFORMANCE OF THE DATA ON OA AND MA

Sequence length 3601 3336 4625 6924 10789 14362

OA 160 173 263 650 1632 3021

MA(s=1) 130 151 233 430 960 1577

MA(s=2) 135 1615 2862 465 * *

TABLE III: THE PERFORMANCE OF DENGO ON OA AND MA

 OA MA MA

Step length - 1 2

Running time 370 320 435

SP 8504 8504 8504

TABLE IV: THE PERFORMANCE OF THE DATA ON OA AND MA

 Step length Data size Running time SP

OA - 2 2441 8132

MA 1 2 1424 8147

MA 2 2 1616 8147

According to the two Figures above, when the data size or

the sequence length is small, the running time of OA and MA

is fairly close. With the increase of data size or sequence

length, the running time of MA increases slower and smooth,

and the increase of OA is faster and steep, the gap between

them becomes larger and more evident slowly. This shows

sequence length and the data size affects the performance of

the algorithm. At the same time, the experiments also prove

that the sequence length and the data size affect the sliding

step, i.e. the efficiency of this algorithm. At the same time,

the advantage of MA is apparent for the longer sequence and

bigger data size.

For the data which has relative short and small sequences,

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 3, No. 3, May 2013

274

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 3, No. 3, May 2013

275

the algorithm adaptively chooses the short step length and

also proves its superiority. This can be proved by the

experiment (the results in Table III) on the Dengo virus strain

data [16], which has only 17 sequences and the sequence

length is about 1485bp. When the step length is 1, the

running time is lower than OA’s, but if the step length is 2,

the running time is even higher than OA’s.

All these experiments show an appropriate step length is

the critical for the algorithm. And the experimental results

prove that our method can obtain reasonable alignments in

shorter time.

B. Discussion

From Table I, we know that the running time of MA is

about 70% of OA. SP of MA is an increase of 2% for HN,

decrease of 0.1% for JD and no change for KA. Because the

results of the center star method have been the approximate

optimal solution, it is reasonable for the slightly higher SP of

MA on some special data. Therefore, it does not affect the

conclusion and analysis of biological experiments. And MA

is lower than others in running time.

The influence of the data size to the parameter choosing is

a gradual change process and not a sudden change point.

Through the experiments, like Fig. 4 and Table II, we find the

sequence length can directly affect the results of the

algorithm. In the experiment shown in Table IV, we use a

dataset with 2 sequences. Each sequence has about 20,000bp.

The running times of MA are smaller than OA’s on each

value of the step length s. There are the same SP and the near

running time when s=1 and s=2. There are the similar running

time, mainly because the data size is so small, just 2. This

sample is different from the Dengo virus strain data whose

running time is poor for s=2.

For the sequences with high similarity, especially the

large-scale data, the data size and the sequence length of

which are numerous and long respectively. And the higher

the similarity, the more it can search the matching r-length

regions with the sliding window. In addition, s=2 can

accelerate the searching and the matching r-length regions we

may ignore are less. In other words, the less the searching

mismatching r-length regions are, the less we use the

dynamic programming to align. Then, it saves time overhead.

REFERENCES

[1] A. Luytynoja and N. Goldman, “Phylogeny-aware gap placement

prevents errors in sequence alignment and evolutionary analysis,”

Science, vol. 320, no. 5883, pp. 1632-1635, 2008.

[2] R. C. Edgar and S. Batzoglou, “Multiple sequence alignment,”

Structural Biology, vol. 16, no. 3, pp. 368-373, 2006.

[3] D. Gusfield, “Algorithms on strings, trees and sequences: Computer

Science and Computational Biology,” Cambridge England, Cambridge

University Press, 1997, pp. 505-523.

[4] S. B. Needleman and C. D. Wunsch, “A general method applicable to

the search for similarities in the amino acid sequence alignment of two

proteins,” Journal of Molecular Biology, vol. 48, pp. 443-453, 1970.

[5] L. Wang and D. Gusfield, “Improved approximation algorithms for

tree alignment,” Journal of Algorithms, vol. 25, no. 2, pp. 255-273,

1997.

[6] S. F. Altschul and D. J. Lipman, “Trees, stars and multiple biological

sequence alignment,” SIAM Journal on Applied Mathematics, vol. 49,

no. 1, pp. 197-209, 1989.

[7] D. Gusfield, “Efficient methods for muliple sequence alignment with

guaranteed error bounds,” Bulletin of Mathematical Biology, vol. 55,

no. 1, pp. 141-154, 1993.

[8] A. R. Subramanian, M. Kaufmann, and B. Morgenstern,

“DIALIGN-TX: greedy and progressive approaches for segment-based

multiple sequence alignment,” Algorithms for Molecular Biology, vol.

3, no. 6, 2008.

[9] S. Batzoglou, “The many faces of sequence alignment,” Briefings in

Bioinformatics, vol. 6, pp. 1, pp. 6-22, 2005.

[10] J. Z. Li, D. D. Zhang, and S. Takasaki, “Mitochondrial SNPs associated

with Japanese centenarians, Alzheimer's patients, and Parkinson's

patients,” Computational Biology and Chemistry, vol. 32, no. 5, pp.

332-337, 2008.

[11] C. Chica, A. Labarga, C. M. Gould, R. Lopez, and T. J. Gibson, “A

tree-based conservation scoring method for short linear motifs in

multiple alignments of protein sequences,” BMC Bioinformatics, vol. 9,

no. 229, pp. 1471-2105, 2008.

[12] J. Z. Li and D. D. Zhang, “Algorithms for dynamically adjusting the

sizes of sliding windows,” Journal of Software, vol. 15, no. 12, 2004.

[13] Y. Tang and M. Wang, “Fast sequence alignment algorithm based on

dynamic programming,” Journal of Biomathematics, vol. 20, no. 2, pp.

207-212, 2005.

[14] J. Wang, M. Z. Guo, and Q. Zou, “An mtSNPs based method for

disease population discrimination,” China National Computer

Conference, Tianjin, China, 2009, pp. 739-746.

[15] Q. Zhou and M. Z. Guo, “An algorithm for DNA multiple sequence

alignment based on center star method and keyword tree,” Chinese

Journal of Electronics, vol. 37, no. 8, pp. 1746-1750, 2009.

[16] A. Rambaut, “Estimating the rate of molecular evolution:

incorporating non-contemporaneous sequences into maximum

likelihood phylogenies,” Bioinformatics, vol. 16, no. 4, pp. 395-399,

2000.

Yong Sun was born in Sichuan, July 25, 1986. He is a

postgraduate student in the School of Computer and

Information Science, Southwest University,

Chongqing, China. Current research interests are

machine learning and its application in the multiple

sequence alignment.

Zili Zhang was born in Chongqing, Dec. 29, 1964. He

is a professor at Southwest University, Chongqing,

China, and a senior lecturer at Deakin University,

Australia. He received his BSc from Sichuan

University, MEng from Harbin Institute of

Technology, and PhD from Deakin University, all in

computing. He authored or co-authored more than 100

refereed papers in international journals or conference

proceedings, 1 monograph, and 4 textbooks. His

research interests include bio-inspired artificial intelligence, agent-based

computing, big data analysis, and agent-data mining interaction and

integration. Contact him at zzhang@deakin.edu.au or zhangzl@swu.edu.cn.

Jun Wang was born in Chongqing, March 5th, 1983.

She received her PhD in Artificial Intellegence from

the School of Computer Science, Harbin Institute of

Technology, China, in 2010. She now works as an

Associate professor in the School of Computer and

Information Science, Southwest University. She has

published more than 13 papers in bioinformatics field.

Current research interests are machine learning, data

mining and their applications in bioinformatics.

mailto:zzhang@deakin.edu.au
mailto:zhangzl@swu.edu.cn
app:ds:artificial
app:ds:intellegence

