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Abstract—Multiple sequence alignment (MSA) is a difficult 

yet important problem for bioinformatics research. In most 

cases, large-scale biological sequence data with high similarity 

have to be analyzed. Center star method is always used to deal 

with lots of long sequences. However, square time complexity is 

a bottleneck for large data. In this paper, a novel method for the 

MSA problem is proposed, which employs the keyword tree and 

the sliding window to match a set of substrings and the rest 

regions are aligned by dynamic programming. The method 

provides the dynamic adaptive mechanism for the sliding 

window size and step length. The self-adaptive parameters play 

a extremely important part for improving the performance of 

the method. Experimental results show that the proposed 

method is computational efficient and can obtain good 

performance. 

 

Index Terms—Multiple sequence alignment, center star 

method, keyword tree, sliding window. 

 

I. INTRODUCTION 

The sequence alignment, especially MSA, has a great 

significance for the discoveries and studies of the genetic 

functions, structures and evolution processes of the 

biological sequences [1]. With the help of the sequence 

alignment methods, biologists can find the conserved 

sequence patterns in the evolution procedure and reveal the 

ancestral relationships among different organisms. Especially, 

rapid development of computational molecular biology 

demands well-efficient sequence aligning algorithm crucially 

[2], [3]. Nowadays there have been a variety of algorithms 

proposed, e.g. Intelligent optimization, the probability model 

and the parallel mechanism. Combinatorial optimization 

algorithm is one of the most effective ways to solve the MSA 

problem, the idea of which is converting a MSA problem to 

many pairwise sequence alignment problems. This method 

can be divided into two types according to the transformation 

strategy, one is the tree alignment based methods [4] and the 

other is the star alignment based methods [5], [6]. At the 

same time, the progressive theory is introduced in these 

methods and makes these methods more efficient. This 

greedy heuristic assembly algorithm involves estimating a 

 
  

     

    

 

   

 

guide tree (rooted binary tree), and then incorporating the 

sequences into MSA with a pairwise alignment algorithm 

while following the tree topology. The progressive algorithm 

is often embedded in an iterative loop where the guide tree 

and MSA are reestimated until convergence [7], [8]. 

However, the time complexity of the simple star alignment 

based methods is not good enough. These methods also 

cannot adapt to align the large-scale sequence data. Thus, we 

need to find a more reasonable method to solve this problem. 

Through the analysis of the genetic sequence data, we find 

that most sequences have high similarity that can be 

employed in bioinformatics research. For example, for 

reconstructing evolutionary trees and comparing haplotype 

sequences, it needs to align many DNA sequences with high 

similarity [9], The high similarity means that many substrings 

on the r-length regions are exact match between sequences. 

Thus, the proposed method mainly concentrates on searching 

mismatching r-length regions. This method can be divided 

into two parts: the reference sequence determination and the 

sequence alignment. The keyword tree and the sliding 

window are constructed to quickly search the mismatching 

substrings between two sequences and ensure the accuracy of 

the searching. 

 

II. DEFINITIONS AND CONCEPTES 

In the proposed method, several basic and important 

theories and methods are used to find the appropriate 

reference sequence and obtain the final alignments, such as 

the keyword tree, the sliding window, etc. Thus, in this 

section, we will give some important definitions and related 

concepts. 

A. Sequence Alignment 

A sequence is actually a string over an alphabet collection. 

For DNA sequences, the alphabet collection contains four 

letters A, C, G and T, representing four distinct nucleotides 

respectively. Given two or more strings, the aim of the 

sequence alignment is making them the highest similarity 

based on SP (sum-of-pairs) [6]. To reach this aim, the 

alignment algorithm often adds a space in the strings. A space 

is viewed as a letter (A, G, C or T) and is denoted " - " 

throughout this paper. Two opposing identical letters form a 

match and two opposing non identical letters form a 

mismatch. 

Sequence alignment algorithm can obtain the optimal 

alignment of two or more strings according to a given scoring 

function. That is, the results of sequence alignment can 

reflect the relationship of sequence similarity and their 
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biological characteristics. Take ATACTAGA and 

AACTTGGA for an example, the following is the optimal 

alignment after arrangement. 

               ATACTAG -A 

                A-ACTTGGA 

The whole procedure can be viewed as "adding space" in 

order to make sequences have the highest similarity. The 

sequence alignment can be divided into the pairwise and the 

multiple sequence alignment based on the number of 

comparing sequences at the same time. Besides, on the basis 

of the scope of the comparison, it also can be divided into the 

global alignment and the local alignment. A global MSA 

algorithm is defined here as one that tries to align the full 

length sequences from one end to the other. Once the global 

alignment has been constructed, other methods are often used 

to identify the more conserved or reliable regions within the 

alignment. A local algorithm attempts to identify 

subsequences sharing high similarity. The unreliable or low 

similarity regions are then either excluded from the 

alignment, or differentiated, for example, by the use of 

upper/lower case characters. 

B. Keyword Tree 

A keyword tree is built by a collection of several short 

strings [11] 

                         zPPPP ,,, 21   

 

 1,  zNz , Pi(i=1,2, ,z) is a short string or a 

substring from one given long sequence. The root of the 

keyword tree is K. Every edge of the tree represents a letter of 

Pi. Different edges, which are separated from the same vertex, 

represent diverse letters of the strings with same prefix. Each 

Pi relates a path from the root K to a leaf node. In other words, 

a leaf node can also represent a short string Pi. Fig. 1 gives an 

example of a keyword tree of 

 

Pi={ATACTA,CTATGC,CATG,TACT} 
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Fig. 1. Keyword tree of P. 

 

The keyword tree K is utilized to search another given long 

string T to find the elements of P. The searching approach is 

based on the sliding window theory. 

C. Sliding Window 

Sliding window can be seen as a limited circulated internal 

memory which is based on array [12]. It is one of the 

important data flow processing models. It stores the data 

from some region of the data flow. The data move in order 

according to the given step length in array. Old data leave out 

of the window as the new data enter into the window. Fig. 2 

gives a simple model of sliding windows. The window size is 

w and the sliding step length is s. s equals to the length of the 

window movement each time. The black-blocks represent the 

current place of window in Fig. 2.  

 

Xcurrent-w Xcurrent

Xcurrent-w Xcurrent

Xcurrent-w Xcurrent

 
Fig. 2. The example of the sliding window (w=4, s=2). 

 

In the method, the window size is constant when the 

algorithm is doing one specific comparison. For different 

biological sequence data, the algorithm is self-adaptive and 

chooses the appropriate values of the parameters. The sliding 

window moves on and compares the sub-strings in the 

windows with the other ones. The matching and mismatching 

pairs are marked. By calculating the number of matching 

sub-strings between the given sequences, the sequence with 

the largest number can be found and is set as the reference 

sequence at last. Then, it can be used in the following 

sequence aligning process. 

 

III. METHOD 

To describe the method, we firstly need to know how to 

make use of the keyword tree and the sliding window to find 

the appropriate reference sequence and speed up the 

sequence alignment process. Here we need to pay attention to 

it that the square of sequence number and the square of the 

average length of sequences are proportional with the time 

overhead of the center star method, regardless of similarity. 

The square time overhead in the center star method is 

mainly due to the time overhead of dynamic programming. 

However, if the similarity of the sequences is high, the exact 

matching substrings have a large proportion, that is, only a 

few mismatching r-length regions will need lots of the 

running time. And the using time of the string matching and 

the sequence length is a linear relationship. Then we just need 

to align the remaining mismatching r-length regions with 

dynamic programming method [13]. It can take full 

advantage of the high similarity and the aligning time will be 

greatly reduced. 

Given the sequence set },,,{
2`1 n

ppp  , Each pi 

(i=1,2, ,n) is divided into k segments },,{
21 ikii

ppp   

with equal length. The length of each segment is r. If the 

length of the last segment is not enough, it can be ignored. A 

keyword tree Ti is built based on the segment set of pi. L is the 

average sequence length of all pi(i=1,2,,n). Due to the 

high similarity of the given sequences, the difference among 

the sequence lengths is so small that it will not affect the 
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Currently, the dynamic programming is the main method 

for pairwise sequence alignment [10]. But it is no good way 

to solve the multiple alignment problems on large scale 

sequences. The time complexity of dynamic programming is 

too high to extend it to multiple sequence alignment. The 

method requires the computation of all 







2
n (n is the number 

of strings) optimal pairwise alignments. For large n and long 

strings, this may involve a great deal of computation.



  

selection of r. 

For each pj (j  i), the algorithm searches pj to mark the 

matching substring between pj and the keyword tree Ti using 

the sliding window. The window size is also set as r. For each 

substring in the window, which is denoted by p, will compare 

following the branch of Ti and search for the matching ones. 

The search stops at once when it encounters a mismatching 

character. If all characters in p match a branch of Ti, the 

similarity degree of pi add one, And the algorithm also notes 

down the serial number of the exact matching substring in Ti 

and the location of p in pi. 

When a comparison in one window is finished, the sliding 

window moves forward in a step length s. The same matching 

action is circularly done. The selected step length s is 

corresponding to the number and the length of the given 

aligned sequences. We will discuss it in detail later.  When 

the window slides to the end of pj, the algorithm records the 

number nij of all exact matching substrings. After all pj 

compared with pi, the algorithm calculates the total similarity 

of pi to the other sequences. This procedure is circularly done 

on each pi. That means the algorithm builds keyword tree for 

each sequence and calculates the similarities of them. The 

algorithm selects the one which has the biggest Ni  as the 

reference sequence. We have found out the reference 

sequence pc through the algorithm described above. Then pc 

will align with pj sequentially, j{1,2, ,n}, j  c. The 

algorithm has found out all mismatching r-length regions 

through the recorded serial number and location in pc and pj. 

Then, the dynamic programming is employed to align all 

sequence pairs (pc, pj). 

Only the mismatching r-length regions in the sequence 

pairs are aligned. The aligning algorithm needs to record the 

location of inserted spaces in pc and pj, which are donated by 

Sci and Si . When pc has aligned with all the other sequences, 

the algorithm can obtain a space location set Sc,  which should 

insert spaces finally. Then, Sc is compared with Sci 

respectively, and the algorithm can find the new positions 

that need to insert space in Si . That means it will insert new 

space into pj based on Si  to make it have the highest similarity. 

This step runs circularly and finally obtains the result of MSA. 

The detail procedure of the whole aligning algorithm can be 

shown as follows [14]. 

For the alignment algorithm of the paper, supposed the 

length of sequences },,,{
2`1 n

ppp    are all m. The time 

complexity of building a keyword tree is O(m). Besides, the 

time is O(nmx) which is spent in searching in other strings 

and computing nij. x is relative with the sliding step length. 

When s is suitable for the data set, x will be less than 1. On 

the contrary, x will be more than 1. 

Thus, for i{1,2, ,n}, the total time complexity is 

O(n2mx) after computing all nij and finding the reference 

sequence. After the reference sequence selection, it needs to 

n-1 k-band pairwise alignments. The time is O(knmx). k is 

the difference between two sequences. When it is the high 

similarity among sequences, k is far less than m (k << m). 

Therefore, compared with the reference sequence selection, 

the time overhead of the n-1 pairwise alignments can be 

ignored. The expected time complexity of the algorithm is 

O(n2mx). When x < 1, the running time is lower than O(n2m) 

of OA. OA is the original algorithm (see [15]). Generally 

speaking, n is far less than m (n << m). nm is the sum of 

sequences' lengths. So it is considered that it is a linear 

relationship between the time overhead and the sum of the 

input sequence lengths. 

 

IV. EXPERIMENT AND DISSCUSSION 

There are two main evaluation criteria for MSA: the 

running time and the sensitivity. Naturally, a good aligning 

algorithm has low running time and excellent sensitivity (low 

SP here). However, it is usually very difficult to keep a 

balance between two criteria. Researchers found that the 

algorithm can reach a relatively balance on running time and 

sensitivity by using some adaptive categories on some kinds 

of favorable parameters, such as the similarity. The step 

length of the sliding window is such crucial parameter for 

reaching this balance. If the step length sets too short, the 

algorithm will waste a lot of time to search and compare the 

substrings. Especially, when the dataset has too many 

sequences and all sequences are very long, the short step 

length will spend the very long running time on the reference 

sequence determination of the algorithm. In contrast, if the 

step length is too long, there are lots of exact matching 

r-length regions missed. That will make the relative low 

sensitivity and the high running time may be spent in aligning 

step, since the chosen mismatching r-length regions may be 

inaccuracy. 

Algorithm: Sliding window algorithm on MSA 

Input：  },,,{
2`1 n

ppp   

Output： },,,{
21 n

PPP   

Step  1.    for i∈{1,2,…,n}                   

Step  2.     r= L  

                //L:the average length of sequences 

Step  3.     Dividing pi  into k substrings,building the     

                 keyword tree  Ti  for the substring set 

Step  4.     for j∈{1,2,…,n}, and j ≠ i 

                      nij={0,0,…,0}     

Step  5.          Searching Ti in pj 

Step  6.          If p in pj 

                                    //p:substring within the sliding window  
Step  7.            1 for the corresponding position of nij and    

                        record the  location 

 

Step  8.           End if 

Step  9.        End for 

Step  10.    End for 

Step  11.    for i∈{1,2,…,n}               

Step  12.         



n

ijj
iji nN

,1

      

                         //calculate the similarity of pi 

Step  13.     End for 

Step  14.     The biggest one of Ni  is set as the reference  

                    sequence  pc  

Step  15.          for j∈{1,2,…,n}, and  j ≠ c       

Step  16.          Aligning parts which is 0 in nij and recording    

                        positions of spaces  

Step  17.         End for 

Step  18.     Inserting spaces according to aggregating  

                   positions 

Step  19.     Output   },,,{
21 n

PPP   
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A. Experimental Results 

In this section, we will show the experimental results and 

analyze the performance of the algorithm. The algorithm is 

implemented by a single CPU of a Pentium(R) Dual-core 

E5700 3.00GHz and its RAM is 2.00GB. 

The selection of the step length has a great relationship 

with the aligning data size and the sequence length. Through 

a great number of training experiments, we have found out a 

set of the appropriate step lengths. Firstly, we choose three 

representative experimental data to show the significance of 

these parameters and its advantage. All three data are 

mitochondrial DNA sequences: HNsq Thin young males 

(HN); JDsq Type 2 diabetes patients with angiopathy (JD); 

KAsq Alzheimer's disease patients (KA). Each of these 

sequences has about 16, 570 bp and the size of each data is 

about 96. Because they belong to the different individuals of 

the same species, they have very high similarity naturally. 

 
TABLE I: THE PERFORMANCE OF THREE DATA ON OA AND MA 

Dataset  OA MA 

HN Running time 52728 39549 

HN SP 185258 186268 

JD Running time 55387 39250 

JD SP 196080 195945 

KA Running time 59266 39120 

KA SP 178868 178868 

 

Table I shows the results of the comparison between MA 

and OA. MA is the modified algorithm in this paper. 

Experimental units of the running time are all millisecond 

(ms) in this paper. 
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Fig. 3. The running time of OA and MA on different data size. 

 

From Table I, it shows that MA greatly reduces the 

running time and the accuracy is slightly improved or 

remains the same too. Here the algorithm selects 2 as its step 

length by adaptive selection mechanism on the dataset size. 

In order to find a suitable sliding step, we must consider a 

variety of situations. Firstly, we do some experiments to 

verify the influence of the change of the data size to the 

results, which are shown in Fig. 3, where the sliding step is 2. 

In the experiments, all the sequence length is about 16,570 bp. 

We can find the running time of MA is greatly lower than the 

running time of OA. 

When the sliding step is 1, we find that its performance is 

very unstable through many experiments. The running time 

would be very long, even can't run. It leads directly to the 

badly operating results. In addition, we can't only know the 

advantage of MA through the change of the data size, but also 

we see the influence of sequence length on the sliding step. 

Similarly, for the long sequences, about 16,570 bp, in Fig. 4, 

the data size does not change, but the sequence length 

changed. All the data size is 8. 

The sliding step of Fig. 4 is 1. When the sliding step is 2, its 

performance is very unstable. The running time would be 

very long, even can't run. In Table II, the sliding step is 1 and 

2(only the representative portion shown). OA and MA are the 

representative of their respective running time. * means that 

the algorithm can't run or runs for a long time but still no 

results. 
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Fig. 4. The running time of OA and MA on different sequence length. 

 

TABLE II: THE PERFORMANCE OF THE DATA ON OA AND MA 

Sequence  length 3601 3336 4625 6924 10789 14362 

OA 160 173 263 650 1632 3021 

MA(s=1) 130 151 233 430 960 1577 

MA(s=2) 135 1615 2862 465 * * 

 

TABLE III: THE PERFORMANCE OF DENGO ON OA AND MA 

 OA MA MA 

Step length - 1 2 

Running time 370 320 435 

SP 8504 8504 8504 

 

TABLE IV: THE PERFORMANCE OF THE DATA ON OA AND MA 

 Step length Data size Running time SP 

OA - 2 2441 8132 

MA 1 2 1424 8147 

MA 2 2 1616 8147 

 

According to the two Figures above, when the data size or 

the sequence length is small, the running time of OA and MA 

is fairly close. With the increase of data size or sequence 

length, the running time of MA increases slower and smooth, 

and the increase of OA is faster and steep, the gap between 

them becomes larger and more evident slowly. This shows 

sequence length and the data size affects the performance of 

the algorithm. At the same time, the experiments also prove 

that the sequence length and the data size affect the sliding 

step, i.e. the efficiency of this algorithm. At the same time, 

the advantage of MA is apparent for the longer sequence and 

bigger data size. 

For the data which has relative short and small sequences, 
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the algorithm adaptively chooses the short step length and 

also proves its superiority. This can be proved by the 

experiment (the results in Table III) on the Dengo virus strain 

data [16], which has only 17 sequences and the sequence 

length is about 1485bp.  When the step length is 1, the 

running time is lower than OA’s, but if the step length is 2, 

the running time is even higher than OA’s. 

All these experiments show an appropriate step length is 

the critical for the algorithm. And the experimental results 

prove that our method can obtain reasonable alignments in 

shorter time. 

B. Discussion 

From Table I, we know that the running time of MA is 

about 70% of OA. SP of MA is an increase of 2% for HN, 

decrease of 0.1% for JD and no change for KA. Because the 

results of the center star method have been the approximate 

optimal solution, it is reasonable for the slightly higher SP of 

MA on some special data. Therefore, it does not affect the 

conclusion and analysis of biological experiments. And MA 

is lower than others in running time. 

The influence of the data size to the parameter choosing is 

a gradual change process and not a sudden change point. 

Through the experiments, like Fig. 4 and Table II, we find the 

sequence length can directly affect the results of the 

algorithm. In the experiment shown in Table IV, we use a 

dataset with 2 sequences. Each sequence has about 20,000bp. 

The running times of MA are smaller than OA’s on each 

value of the step length s. There are the same SP and the near 

running time when s=1 and s=2. There are the similar running 

time, mainly because the data size is so small, just 2. This 

sample is different from the Dengo virus strain data whose 

running time is poor for s=2.  

For the sequences with high similarity, especially the 

large-scale data, the data size and the sequence length of 

which are numerous and long respectively. And the higher 

the similarity, the more it can search the matching r-length 

regions with the sliding window. In addition, s=2 can 

accelerate the searching and the matching r-length regions we 

may ignore are less. In other words, the less the searching 

mismatching r-length regions are, the less we use the 

dynamic programming to align. Then, it saves time overhead. 
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