
  

 

Abstract—Among the thousands of gene promoters hyper- or 

hypomethylated in cancer genomes, only a small portion of 

them play “driver” roles in tumorigenesis, whereas the others 

are only “passengers”. Here, we develop an approach to identify 

driver methylation genes of cancer with integrated promoter 

methylation and gene expression data generated from paired 

cancer and normal samples for each of a cohort of breast cancer 

patients, taking the advantage that data of paired samples could 

provide the relative gene methylation change information from 

normal to tumor for each individual patient. We applied this 

approach to analyze a dataset of breast cancer and discovered 

some novel cancer driver genes. The identified driver genes with 

methylation alteration may help us to reveal new molecular 

targets for potential epigenetic therapy. 

 

Index Terms—Methylation, expression, driver gene, breast 

cancer.  

 

I. INTRODUCTION 

Large amount of methylation alterations have been found 

in cancer genomes [1]. Only a small portion of the thousands 

of gene promoter with hypermethylation or hypomethylation 

may play „„driver‟‟ roles in tumorigenesis [1], [2], whereas 

many others are only „„passengers‟‟ [2], [3]. Therefore, it is 

an important task to identify „driver‟ genes with methylation 

alterations for molecular characterization of cancer. Using a 

knockout experiment, researchers developed an approach to 

identify a specific type of driver genes for the survival of 

cancer cells [3]. However, as there are so many 

high-throughput gene methylation and expression data for 

cancer, we could integrate them to derive driver information. 

Based on the assumption that a driver gene is expected to 

influence the expression of this gene and a group of 

downstream genes affecting particular cancer phenotypes, 

some works have defined driver copy number alterations [4]. 

Similarly to copy number alteration, methylation alteration at 

gene promoters does not alter the coding sequences of genes 

but influences genes' expression. Thus, we try to apply this 

assumption to derive driver genes from methylation data. 

Because there are kinds of cancer phenotypes, we could 
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modify the assumption to be that the downstream genes of a 

driver gene can affect corresponding cancer pathways to 

disturb cancer phenotypes [5]. 

Paired disease-normal sample data not only supplies the 

information of differences between disease and normal 

samples, but also contains the information of relative 

methylation change of each gene from normal to disease for 

each individual patient, and thus it provides a possibility for 

us to identify the differential methylation at the level of 

individual patients. Here, based on the above-mention 

assumption, we put forward an approach to identify cancer 

driver genes using paired gene methylation and expression 

data of cancer. We applied this approach to analyze data for 

breast cancer to derive driver genes.  

 

II. MATERIALS AND METHODS  

A. DNA Methylation and Gene Expression Data 

 
TABLE I: SAMPLES OF BREAST CANCER 

Batch 
Sample 

size 

Platform 

Methylation Expression 

Batch 61 14:14 
HumanMethylation450 

Agilent4502A 

Batch 72 3:3 

Batch 85 5:5 

H u ma n Me t h y l a t i o n 2 7 
Batch 93 16:16 

Batch 96 8:8 

Batch 106 6:6 

 

The promoter methylation and expression data for breast 

cancer paired samples were collected from The Cancer 

Genome Atlas (TCGA) databases (http://tcga-data.nci.nih. 

gov/tcga) (see Table I). 52 pairs of tumor and paired normal 

sample extracted from 5 batches were pooled together (Table 

Ⅰ). The gene promoter methylation data of batch 85, 93, 96, 

103 were collected with the Illumina HumanMethylation27 

platform, which detected the methylation level of 27,578 

CpG loci located within the proximal promoter regions of 

transcription start sites of 14495 genes. The methylation data 

of batch 61, 72 were collected with Illumina 

HumanMethylation450 platform, which detecting the 

methylation level of over 450,000 CpG loci covering all gene 

regions, including promoter and gene body. Because the 

methylation alterations at promoter usually play important 

roles for genes transcription, we extracted the loci at 

promoter which were overlapped between 

HumanMethylation450 and HumanMethylation27 for follow 

analysis. Using methylated signal intensity (m) and 

unmethylated signal intensity (u), the methylation level (M) 

for each CpG locus was calculated by max (m, 0) / (|u|+ 
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|m|+100). We removed unreliable probes whose proportion 

of detection P-value >0.05 across all the samples is more than 

10%. 1,092 CpG loci within promoters of 605 sex 

chromosome genes were excluded from the analysis to 

eliminate gender-specific bias.  

The expression data of these samples were collected with 

the normalized data of Agilent4502A platform. Using T-test, 

genes with adjusted P values less than 0.05 were defined as 

differentially expressed (DE) genes. 

B. Cancer Genes and Protein-Protein Interaction (PPI) 

Data 

2104 cancer genes were extracted from the Cancer Gene 

F-Census [6], which is a collection of cancer genes from 

various data sources.  

The human PPI data was collected from eight PPI datasets, 

including MINT, BIND, IntAct, HPRD , MIPS , DIP , KEGG 

(Kyoto Encyclopedia of Genes and Genomes) [7] and 

Reactome protein pairs involved in a complex and 

neighboring reaction . These PPI data were pooled together 

[8] and compiled an integrated PPI network of 142,583 

distinct interactions involving 13,693 human proteins. 

C. Discretization of Methylation Profiles for Individual 

Cancer Samples 

Data discretization was used to identify the state of 

differential methylation for a locus in a sample. First, with the 

methylation level in 52 normal samples, the standard 

deviation (SD) of methylation level of each locus was 

computed. Then, if the methylation change of a locus 

between paired tumor (MT) and normal sample (MN) is 

larger than two SD of this locus, the locus was identified as a 

differential locus (Fig. 1). For instance, we identify the 

methylation state of locus i in each sample as  
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At last, the methylation profile of cancer samples were 

translated into a matrix comprising of 1 (hypermethylation), 

0 (no differential methylation) and -1 (hypomethylation). 

D. Identifying Driver Genes 

Based on the assumption that a driver gene is expected to 

influence the expression of itself and a group of downstream 

genes to affect particular cancer associated pathways, we 

identified a locus with methylation alteration as a driver with 

following three steps. 

Step I For each differentially methylated loci, its gene 

expression should be significantly down- or up-regulated in 

hypermethylated or hypomethylated cancer samples 

comparing with the cancer samples with no differential 

methylation at this locus (T-test, FDR<0.05) (Fig. 1). 

Step II We required that the driver methylation alterations 

have significantly more downstream genes. The downstream 

genes of a driver were identified as the DE genes between 

tumor samples with this methylation alteration 

(hypermethylation or hypomethylation) and the tumor 

samples with no differential methylation alteration. Random 

experiments were performed to see whether the number of 

downstream genes of the driver alteration was significantly 

more than expected by chance (FDR<0.01). Specifically, we 

randomly extracted the same number of tumor samples as 

samples with the methylation alteration and with no 

differential methylation, and subsequently performing the 

identification of DE genes for 10,000 times. The P value of 

the observed number of DE genes was calculated as the 

percentage of the random numbers exceeding the observed 

number. 

Step III At least one of the cancer associated pathways 

should be disturbed by downstream genes of a driver 

methylation alteration (hypergeometric test, FDR<0.05). We 

selected 16 cancer associated pathways, as listed in Table II, 

by referring to the pathways annotated in KEGG "pathway in 

cancer" [7] (Table II).  

If a methylation alteration meets the above three 

requirements, it is defined as a driver methylation alteration. 

A gene with at least one driver alteration locus was defined as 

a driver gene. 

 

 
Fig. 1. Schematic overview of the approach to extract driver methylation 

alterations. The up-regulated and down-regulated genes are labeled with 

black and white color, separately. The hypermethylation are labeled with 

black twill. 
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TABLE II: CANCER ASSOCIATED PATHWAYS  

Pathway id pathway name 

hsa04012 ErbB signaling pathway 

hsa04150 mTOR signaling pathway 

hsa04310 Wnt signaling pathway 

hsa04350 TGF-beta signaling pathway 

hsa04370 VEGF signaling pathway 

hsa04630 Jak-STAT signaling pathway 

hsa04110 Cell cycle 

hsa04115 p53 signaling pathway 

hsa04210 Apoptosis 

hsa04510 Focal adhesion 

hsa04520 Adherens junction 

hsa03320 PPAR signaling pathway 

hsa04512 ECM-receptor interaction 

hsa04060 Cytokine-cytokine receptor interaction 

hsa04151  PI3K-Akt signaling pathway 

hsa04010 MAPK signaling pathway 

 

III. RESULT  

A. Identification of Driver Genes for Breast Cancer  

After data discretization for the methylation profiles of 52 

tumor samples (see Methods), we restricted our following 

analysis to 11048 methylation altered loci which were 

hypermethylated or hypomethylated in at least 10% of all 

cancer samples. Firstly, using T-test with FDR<0.05, we 

identified 143 loci hypermethylated or hypomethylated 

within the promoters of 131 genes that were significantly 

down-regulated or up-regulated in cancer samples. Secondly, 

from these 143 loci, we found 60 loci of 57 genes which 

influenced the expression change of significantly more 

downstream genes than expected by random chance 

according to the random experiments described in the 

Methods. Finally, from these 60 loci, we identified 33 loci of 

32 genes whose downstream genes were significantly 

enriched in at least one of the cancer-associated pathways 

defined in "pathway in cancer" (hypergeometric test, 

FDR<0.05). Each driver gene was outputted with 

corresponding disturbed pathways (Table III). 

 
TABLE III: DRIVER GENES AND THE PATHWAYS THEY DISTURBED 

driver gene pathway name 

SPDEF ErbB signaling pathway 

FAM128B, SPDEF mTOR signaling pathway 

MFAP4, NME5, HOXB8, ERBB3, 

MGAT1, SLC2A5, TNFRSF1B, 

ARHGAP30, SP140, HMGCS2, CD37, 

TMEM149, PTPRCAP, TLR9, F7, 

FAM128B, MB, CCR1, SPDEF, 

ARHGAP25 

Jak-STAT signaling pathway 

SLC9A11, RBP1, SHROOM1, 

CEACAM19, ZNF454, IL1R2, CAPN9 
Cell cycle 

ZNF454, IL1R2 p53 signaling pathway 

MB,CCR1, SPDEF Apoptosis 

MFAP4, NME5, HOXB8, ERBB3, 

MGAT1, SLC2A5, TNFRSF1B, 

ARHGAP30, SP140, HMGCS2, CD37, 

TMEM149, PTPRCAP, TLR9, F7, 

EOMES, SH2D3C, CCND1, CD6, 

CAPN9, FAM128B, MB, CCR1, 

SPDEF 

Cytokine-cytokine receptor 

interaction 

*Gene names in bold were known cancer genes from F-census 

B. Validation of the Identified Driver Genes  

Evidences supported that these driver genes are likely to 

play driver roles in tumorigenesis. Firstly, 9 (28.1%) of the 

identified 32 driver genes were known cancer genes collected 

in the F-census database [6], which was significantly more 

than what expected by random chance (hypergeometric test, 

P=1.07E-04) (Table II). For an example, tumor suppressor 

gene RBP1 is a regulator of breast epithelial retinoic acid 

recepter activity, cell differentiation, growth arrest and cell 

cycle progression [9], [10], and it was identified as a driver 

genes with promoter hypermethylation disturbing "cell 

cycle". As another example, CD6 was identified as a driver 

genes with promoter hypomethylation, in accordance with 

previous report that increased expression of CD6 suppresses 

longer term events such as cytokine secretion and T-cell 

proliferation [11], which could promoter the initiation of 

cancer. Secondly, in addition to the known cancer genes 

collected in the F-census database, some driver genes have 

been suggested to be cancer genes in previous studies. For 

instance, IL1R2 has been identified as a driver gene with 

promoter hypomethylation, in accordance with a previous 

report that this gene is a possible cancer gene [12]. 

Then, after removing the 9 known cancer genes from the 

32 identified driver genes, we found that the 9 of the 

remaining 23 driver genes had at least one PPIs connected 

with known cancer genes in F-census. This result implied that 

some of the newly predicted driver genes might work closely 

with the known cancer genes and they might perform similar 

functions as their neighboring cancer genes in tumorigenesis. 

For instance, it has been reported that cancer genes IL1A, 

IL1B could activate NF-kB signal pathway, and disturb cell 

cycle mediators [13]. In our analysis, their neighbouring gene 

IL1R2 was identified as a hypomethylated driver gene with 

its downstream genes disturbing cell cycle and TP53 

pathways. 

 

IV. DISCUSSION 

Methylation alteration in cancer genome is a widely 

molecular change, but how to extract the driver methylation 

alterations of cancer is still a problem. The identification of 

driver genes with methylation alterations and pathways they 

disturbed is a fundamental step towards mechanistic 

characterization of cancer and may provide potential targets 

of epigenetic therapy considering the reversibility of 

methylation [14]. In this study, we proposed a computational 

approach to identify driver genes by taking into account not 

only the association between promoter methylation and gene 

expression but also the association between a candidate 

driver and its downstream genes. Also, the pathways 

represented by the downstream genes can help us to gain 

insight into how a driver methylation alteration contributes to 

the malignant phenotype by altering the cellular pathways.  

Data of paired sample usually supply more reliable 

information. The individual analysis of relative changes for 

paired samples could catch the actual alterations of each 

locus for each patient. It also supplies a new way to dip 

further information from data of paired samples. 

Additionally, batch effects, which could be introduced by 

using samples from different experimental batches, may 

produce systematic non-biological differences between 

different groups of samples [15]. In our work, the normal and 

tumor sample in a pair were both come from the same batch, 

so relative changes of methylation level were not influenced 

by batch effects. However, the SD of methylation level of 
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each locus was possibly enlarged by batch effects, and it 

might bring a too strict threshold for discretization, which 

influence the power of discovering driver genes.  

The limitation of our method is that currently there is no 

widely accepted definition of cancer pathways. The cancer 

pathways we selected were all come from "pathway in 

cancer" in KEGG [7]. As the improvement of definition for 

cancer pathways, the performance of our approach would be 

improved. Finally, except for methylation alteration, 

mutation and copy number change can also influence the 

expression of driver genes. Thus, we will try to integrate 

these types of molecular alterations and improve the 

approach to identify driver genes of cancer in our future 

work. 
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