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Abstract—The type III secretion system (T3SS) is a complex 

structure which allows gram-negative pathogens to destroy 
eukaryotic cell biology by injecting virulence factors directly 
into the host cell cytoplasm. Composed of around 30 proteins, 
T3SS is among the most complex secretion systems identified in 

Gram-negative bacteria. Since type III secreted effectors 
(T3SEs) are essential for the pathogenicity, identification of 
T3SEs is one of the core problems in computational biology. 

This paper puts forward a new method for the prediction of 

T3SEs. The method is a sequence-based approach which can 

extract useful features from amino acid sequences. By 

calculating the frequency of the features from different 

segments of protein sequences, the data set is represented by the 

feature vectors and classified by Support Vector Machine 

(SVM). The experimental results show superiority over other 

available approaches on classification accuracy. 

 
Index Terms—Type III secreted effector prediction, 

sequence-based approach, feature extraction, type III secretion, 

word segmentation, hybrid feature system.  

 

I. INTRODUCTION 

The type III secretion system (T3SS) is a complex 

mechanism which directs the delivery of virulence proteins 

(effectors) into the host cells [1]. Upon translocation, type III 
secreted effectors (T3SEs) modulate diverse host cell 

processes unanimously to ensure the host-microbe 

interaction [2]. Researchers have found that T3SS serves as 

an essential component for the pathogenesis of a large variety 

of plant and animal bacterial pathogens [3]. Therefore, great 

research interests have been attracted to the study of T3SS. 

The T3SS proteins include regulatory proteins, structure 
proteins, effectors and chaperones [3], [4]. The former two 
types of proteins function for controlling the expression of 
T3SS and building the system [3]. The structure of T3SS 
usually contains a needle-like apparatus and bases embedded 
in the inner and outer bacterial membranes [5]. Although the 
structure of T3SS has become unambiguous, we have not 

understood the precise secretion mechanism completely [6]. 
On one hand, T3SEs mimic eukaryotic virulence proteins in 

both function and structure [7]. On the other hand, the 
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variation and biological evolution enable T3SEs‟ sequences 
to be more diversified [8]. These characteristics make the 
recognition of T3SEs become more difficult. Therefore, the 
study of T3SS should put the crucial step in the identification 
of T3SEs. 

Up to now, researchers have applied multiple 

computational approaches to identify T3SEs, e.g., 

gene-adjacent features-based method, sequence 

similarity-based method, etc. [9]-[11]. Especially, various 

machine learning algorithms have been applied in this area, 

such as Artificial Neural Network [12], Naive Bayes 

Algorithm [13], Hidden Markov Model (HMM) [14] and 

Support Vector Machine (SVM) [15]. However, classifiers 

have limited capabilities in improving the prediction 

accuracy. Therefore, how to represent proteins appropriately 

becomes more important. Researchers have developed a lot 

of feature extraction methods, such as the features extracted 

from amino acid sequences or annotation data, e.g., 

secondary structure and solvent accessibility [15], [16]. At 

first, amino acid composition (AAC) was used to predict 

T3SEs because researchers have detected amino acid 

composition biases in T3SEs [17]. Later, the approaches 

based on amino acid pair composition (AAPC) or motif 

emerged [18], [19]. However, the classification results are 

not satisfying because no defined consensus motifs or 

features have been discovered for T3SEs. Most recently, 

some effective approaches have been proposed. R. Arnold, S. 

Brandmaier, et al. proposed Effective-T3 using amino acid 

composition as features [13]. Lower  and Schneider 

proposed a method based on sliding-window model 

combined with Artificial Neural Networks [12]. Y. Wang, Q. 

Zhang, M. Sun, and D. Guo developed the BPBAac, which 

also adopts the sliding-window technique and creates 

position-specific Aac profiles for classification [20]. These 

methods mainly utilize the frequency and position 

information of single amino acids, but they neglect peptides 

or longer amino acid subsequences, which may contain 

secretion signal. S. Qi, Y. Yang, and A. Song regarded the 

protein sequences as text and introduced topic models to 

extract informative words (k-tuples) [21], while the words 

with most discriminative ability are not necessarily selected. 

Therefore, new features need to be identified, especially the 

signal subsequence for T3SEs, which could help to build 

more effective T3SE predictor. 

In this paper, we propose a new hybrid method to identify 

potential T3SEs using both the subsequence frequency and 

position information of amino acid sequences with support 

vector machine (SVM) classifier. Moreover, we carry out a 

comprehensive and profound exploration on the 

classification performance of several popular methods 

recently developed. The experimental results suggest that our 
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method outperforms most of the present methods in the 

prediction of T3SEs. 

 
Fig. 1. The initial scanning process. 

 

II. METHOD 

Protein sequences consist of consecutive amino acids. We 

assume them as a certain sort of biological language which 

has a corresponding dictionary D [22]. In order to constitute 

D appropriately, attention should be paid to how to extract 

representative features from protein sequences. Since 

researchers have shown that the first 100 amino acids which 

contain translocation information are enough for secretion 

[23]-[25], we only focus on N-terminals instead of full-length 

protein sequences for calculation. 

The rest of this section falls into three parts. Section II-A 

introduces our feature extraction process. At first, 20 amino 

acids [26] are included in D and adopted as features. Then, 

we make an extension of the length of the features existed in 

D from one to k, where k is an integer and definitely larger 

than one. We refer to it as k-tuple. In order to abate worthless 

k-tuples and reduce the dimension, we set a proper threshold 

and select the representative features. The dimension 

reduction part is described in Section II-B. Finally, in Section 

II-C, we build a hybrid prediction system with all the features 

existed in D and the features are extracted from three 

segments of the N-terminal, respectively. 

A. Feature Extraction 

Although amino acid composition method is simple and 

convenient, it discards the order information of neighboring 

residues and only calculates the occurrence time of each 

single amino acid. Therefore, we use the k-tuples which can 

represent some order information in the classification of 

protein sequences. For example, the sequences „AIC‟ and 

„CIA‟ are separated into three single amino acids, „A‟, „I‟ and 

„C‟, as well as the sequence „ACI‟ while using the amino acid 

composition method. However, if we use 2-tuple 

characteristics, „AIC‟ is represented by „AI‟ and „IC‟, and 

„CIA‟ is represented by „CI‟ and „IA‟. 

Fig. 1 shows the initial scanning process, which scans the 

k-tuple in an overlapping manner, and adds all the present 

k-tuples into the dictionary D. Thus, any k-tuple, even 

occurring very few times, is recorded in D. Some k-tuples 

may be useless or even noisy items, which lead to more 

computational time and the decline of prediction accuracy. 

Therefore, the development of an efficient dimension 

reduction method is crucial. 

B. Dimension Reduction 

Since the dimensionality of this method expands rapidly as 

k increases, k should be assigned to a relatively small value to 

avoid the intractable computation. Typically, for amino acids, 

four is the maximum distance between local interactions 

[16].Therefore, the maximal length of k is defined as four and 

every k-tuple with k no bigger than the maximal length will 

be checked based on certain criterion. 

An intuition is that the most frequently presented strings in 

one class which seldom appear in another class are useful 

words with discriminative ability, thus k-tuples‟ occurrence 

times are recorded. K-tuples, whose frequencies are different 

in two classes, can be put into the dictionary. Considering the 

dimension disaster, the selected words‟ appearance times 

should be recounted while cutting down the size of D. The 

two steps of our dimension reduction method are introduced 

in the following. 

1) Word variance: Calculating the words‟ variances is to 

cut off the apparently worthless words. Firstly, the 

k-tuples‟ occurrence times should be recorded for each 

class in the training set. The average frequency of each 

word can be obtained from (1), 

1
( )

,

1,..., 1,...,

N

ii

j

count j
x

N

for i N and j M



 


                (1) 

where xj denotes the average frequency of the jth word, 

counti(j) represents the times that word j occurs in protein 

sequence i, N denotes the amount of protein sequences, M 

represents the total number of the words. 

In our study, we apply (1) to the training set and get the 

features‟ average frequencies for both positive and negative 

training samples. In order to further reveal the discriminative 

ability of the features, we use word variance as the criterion. 

The bigger the value of the variance, the more useful the 

word would be. The variance is defined in (2), 

2( ) 100%i i idis x x    ,                           (2) 

where disi exhibits the degree of deviation of word i in two 

classes,  xi
+ denotes the average frequency of word i in T3SEs 

and 

ix represents the average frequency of word i in 

non-T3SEs. Using (2), we can choose discriminative words 

with apparent ease. 

In addition, the variances multiplied by k are recorded as wi 

which would be used as the ranking weight for the further 

dimension reduction. The weight is given by the following 

equation, 

2( ) 100%i i iw x x k     ,                        (3) 

where wi means the weight of word i, and k is the length of the 

features. 

2) Word frequency: After the first step of dimension 
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reduction, the size of D shrinks a lot. However, cutting 

the number of features in D is still a major task while 

building the dictionary. We record the frequency for 

each k-tuple appearing in the training set of T3SEs again. 

However, the manner of feature extraction we used 

before can only roughly choose the words of the 

sequences, which is not biologically meaningful. 

Because proteins are linear polymer chains of amino 

acids, chain-based automatic word segmentation 

method is much more suitable for model protein 

sequences [22]. Therefore, this time we count the 

occurrence time in a different manner which is to first 

segment the sequences into words, and then calculate 

the average frequency of the word extracted. Through 

this process of word extraction, we can get independent 

and meaningful biological language units, shown in Fig. 

2. 

 

 

Fig. 2. New method for calculating frequency. 

 

TABLE
 
I:

 
THE EXPERIMENTAL DATA SET

 

Data set
 

No. of 
 
positive samples

 
No. of 

 
negative samples

 Total No.
 

I
 

108
 

760
 868

 

II
 

210
 

1000
 

1210
 

 

Compared with Fig. 1, the new way of calculating 

frequency appears to be more meaningful. The sequences are 

segmented into features like English texts which are 

composed of words [22], [27]-[29]. The segmentation is 

determined by the match degree and the weights that have 

been calculated in (3). From Fig. 2, we can see that we 

segmented the subsequence „GSS‟ into „GS‟ and „S‟, because 

the weight of „GS‟ is higher than both „G‟ and „GSS‟ [27]. 

Then, using (1), we may further choose the features which 

are informative for classification and have great influence on 

global performance. 

C. Hybrid Features 
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where the 1 1 1

1 2 ......i i iNa a a  denote the features‟ frequencies of 

the first part of the sequence i, 2 2 2

1 2 ......i i iNa a a  denote the 

features‟ frequencies of the second part of the sequence i, 
3 3 3

1 2 ......i i iNa a a  denote the features‟ frequencies of the third 

part of the sequence i, N is the size of dictionary D, and M 

represents the number of protein sequences. Each row stands 

for a protein sequence while each column represents the 

performance of only one k-tuple. The performance is 

discussed in Sec. III 

 

III. EXPERIMENTAL RESULTS 

A. Data Set 

In order to test and verify the accuracy of our hybrid 

method, two data sets are collected. One is the Pseudomonas 

syringae which acts as the model organism of T3SS with the 

most verified T3SEs. Through deep study [16] of the three 

strains of Pseudomonas syringae, including P. syringae pv. 

phaseolicola strain 1448A, P. syringae pv. syringae strain 

B728a and P. syringae pv. tomato strain DC3000, 283 

effectors have been confirmed. However, the sequence 

similarity of those effectors is very high and over 61%. This 

is due to the fact that the majority of the verified effectors are 

homologs. Therefore, the redundant samples were eliminated 

and 108 positive samples left. Similarly, we extracted the 

negative data set from the genome of P. syringae pv. Tomato 

strain DC3000 and removed all the protein sequences related 

to T3SS, as well as the hypothetical proteins (Note that some 

unidentified effectors still remain in this set.). Considering 

the imbalance of the two sets, we selected the sequences from 

the remaining samples to constitute the negative set at 

random and kept the ratio of the size of the negative set to the 

positive set‟s quantity as 7:1. The numbers of the data sets are 

listed in Table I. The data set is used for cross-validation to 

estimate the performance of our prediction system and select 

the best parameters as well. Another data set was extracted in 

the same way as those in the former data set. The positive 

samples were collected from various pathogenic bacteria, e.g., 

Rhizobium, E. coli, Yersinia, Salmonella, etc.. The total 

number of positive samples is 210 while the number of 

negative samples is 1000. Although the secretion mechanism 
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In our study, we use N-terminal 100 amino acids instead of

full-length sequences, while some researchers have pointed 

out that rich secretion or translocation may only require the 

first 15 or 50 amino acids [15], [23], [24]. Therefore, the 

maximum length is fixed to 100 and each sequence is divided 

into three parts: the first part is from one to fifteen amino 

acids, the second part is from 16 to 50 and the third part is 

from 51 to 100. Then, we can further utilize the position 

information of amino acid sequences.

After feature extraction and dimension reduction, we 

create the hybrid feature vectors. In the hybrid model, the 

data set T is represented as



  

of T3SS has great diversity across species, there should be 

some characteristics in common. Therefore, this set of data is 

used for examining the generalization ability of the 

prediction system. 

B. Experimental Settings and Evaluation Criteria 

Support Vector Machine (SVM) is a state-of-the-art 

classifier that employs an optimizer to identify an optimal 

separating hyperplane to discriminate two classes of interest. 

Due to its good performance, SVM is the favorite supervised 

learning method of the bioinformatics researchers [30]. In 

our experiment, we used the SVM as our learning machine 

and adopted the implementation of LibSVM version 3.31 [31] 

with RBF kernel. 

Since we adopt 7-fold cross-validation to assess the 

method, the data set is divided into seven groups of 

approximately equal size. After seven rounds of training and 

test, in which we choose six groups as training set and the 

other one as test set, we have got seven prediction results. 

Then, the performance value is obtained by calculating the 

average of those results. For measuring the effectiveness of 

our proposed approach, we use sensitivity (Sens), specificity 

(Spec) and total accuracy (TA) as evaluation criterion. 

The Sens, Spec and TA are obtained by solving the 

following equations: 

TP
Sens

TP FN



                               (5) 

TN
Spec

TN FP



                               (6) 

TP TN
TA

TP FP TN FN




  
                        (7) 

where Sens is the ratio of true positives (TP) to the sum of 

true positives and false negatives (FN), Spec is the number of 

true negatives (TN) divided by the sum of true negatives and 

false positives (FP). 

In order to measure the overall prediction quality, we use 

the ratio of correct predictions compared to the total size of 

the data set to define TA as (7). 

C. Results 

In this experiment, we firstly found all the k-tuples 

occurred in the sequences of data set I, where k was set from 

1 to 4. Then, we obtained the variance by solving (2). Fig. 3 

depicts the variance distribution of k-tuples. Obviously, it 

can be observed that only a small portion of them have high 

variances which are discriminative for the prediction. 

In order to reduce the dimension, we sorted all the words 

according to their variances in descending order. Then, we 

set a threshold on the basis of the gradient of the variance 

curve. The words whose variances are higher than the 

corresponding threshold can be kept. After a series of 

experiments, the threshold values were set at 0.12, 0.27, 0.07 

(note that the value of k is 2, 3 and 4, respectively) according 

to the biggest decreasing gradient and these thresholds can 

indeed achieve the best accuracy. The distribution of the 

words and the prediction performance is displayed in Table 

II.  

TABLE
 

II:
 

PERFORMANCE OF THE

 

DIMENSION REDUCTION

 
Method

 
Word length

 
Threshold

 
Dimension

 
Total

 
TA (%)

 
Sens (%)

 
Spec (%)

 
Dimension 

Reduction 
 

with
 

Word Variance
 

1
 

2
 

3
 

4
 

0
 

0.12
 

0.27
 

0.07
 

20
 

270
 

135
 

48
 

473
 

87.5
 

82.6
 

94.1
 

Dimension 

Reduction 
 

with
 

Word Frequency
 

1
 

2
 

3
 

4
 

0
 

0.18
 

0.07
 

0.03
 

20
 

167
 

85
 

30
 

302
 

90.0
 

86.4
 

94.4
 

 
a) 2-tuple variance 

 
b) 3-tuple variance 

 
c) 4-tuple variance 

Fig. 3. Word variance distribution. 

In the second step of dimension reduction, we recalculate 

the average frequencies of the features in ascending order of 

the k-tuples‟ variances. In Fig. 4 the horizontal axis denotes 

word variance, and the vertical axis denotes the average 

frequency of the corresponding word. It can be observed that 

some words‟ average frequencies are very low though their 

variances are relatively high. Considering that rare words 

may be useless for the prediction, the features were sorted 

according to the average frequency in descending order and 

chosen according to the threshold. The threshold values were 

set to be 0.18, 0.07, 0.03 (note that the value of k is 2, 3 and 4, 

respectively) according to the biggest decreasing gradient. As 

a result, the size of D shrinks to 302. The prediction results 

are shown in Table II. Apparently, the performance is 

improved, with increases of 2.5% on the total accuracy and 

3.8% on sensitivity. The results suggest that the feature 

reduction works well and the words existing in D are 

discriminative. 
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Moreover, according to (4), we take the position 

information into consideration. The results suggest that the 

prediction accuracy can be apparently improved through this 

system. The accuracy is about 7.5% improved compared with 

the result produced using the former method, the sensitivity is 

8.8% higher than that obtained after the former two processes 

and the specificity is up to 100%, as shown in Table III. It 

demonstrates that the hybrid features extracted separately 

from different parts of the N-terminal can contribute to the 

prediction performance. 

 
a) 2-tuple 

 
b) 3-tuple 

 
c) 4-tuple 

Fig. 4. Association chart of word average frequency and word variance. 

The above results imply that the method with dimension 

reduction and hybrid features performs much better than 

using the original feature set. Since we have got the best 

parameters and discriminative features through the prediction 

system, we use the data set II to examine the generalization 

ability of our method. TA is used to evaluate the overall 

prediction performance of the method, which we have 

mentioned before. It can be observed in the second line of 

Table III that the accuracy (91.2%) was obtained when the 

size of D is only 302, which demonstrates the generalization 

ability of our method. 

D. Performance Comparison with Current Prediction 

Models 

In order to demonstrate the effectiveness of our method, 

we have compared a total of 8 methods as listed in Table IV. 

The method abbreviations and their corresponding 

description are in the following: 

1) AAC: Amino acid compositions; 

2) AAPC: Amino acid pair composition; 

3) MT: Using motifs identified by MEME as features; 

4) AAC+AAPC: The combination of Methods 1 and 2; 

5) BPBAac: The method proposed by Y. Wang, Q. Zhang, 

M. Sun, and D. Guo. adopts the sliding-window 

technique and creates position-specific Aac profiles for 

classification [20]; 

 

 

 

are summarized in Table IV. Obviously, our method has 

advantages over most of the other methods in classification 

accuracy, and amino acid pair composition (AAPC) performs 

the best among the former three sequence-based methods 

(method 1, 2, 4). Method 4 (AAC+AAPC) and method 3 (MT) 

have similar prediction accuracy. This observation suggested 

that the k-tuples can contain more information related to 

T3SS signals. Overall, the BPBAac method performs the best 

on identifying T3SEs with the highest sensitivity (91.8%), 

while our method has the highest specificity (95.6%) and 

total accuracy (91.2%), which indicates that BPBAac has a 

higher false positive rat than that of our method. Since our 

goal is to find novel effectors, our method with a low false 

positive rate could help reduce the cost of our future 

wet-bench experiments for validating the predicted effectors. 

In all, our method can be a useful computational tool for 

identifying T3SEs. 

TABLE III: PREDICTION PERFORMANCE WITH THE HYBRID FEATURE 

METHOD 

Data set TA (%) Sens (%) Spec (%) 

I 97.5 95.2 100 

II 91.2 72.4 95.6 

TABLE IV: METHOD LIST AND RESULT COMPARISON 

No. Method Abbr. Sens (%) Spec (%) TA (%) 

1 AAC 50.7 91.4 84.0 

2 AAPC 54.5 92.0 85.3 

3 MT 52.1 91.5 84.5 

4 AAC+AAPC 52.3 91.6 84.6 

5 BPBAac 91.8 90.9 91.1 

6 Effective-T3 68.9 88.9 86.7 

7 SWANN 63.0 94.9 88.1 

8 OM 72.4 95.6 91.2 

 

IV. CONCLUSION 

This paper proposes an efficient method for extracting 

discriminative features and predicting type III secreted 

effectors using machine learning approaches. We extract 

features from the protein sequences and use support vector 

machines to classify T3SEs. We firstly record all the k-tuples 

present in the T3SS sequences in an overlapping manner. 

Then, to avoid the dimension disaster and select useful 

features, dimension reduction is conducted in two steps. The 

first step is to choose the features according to the word 

variance. The bigger the value of the variance, the more 

useful the word would be. Considering the similarity between 

protein sequences and natural language text, we segment the 

protein sequences into words according to the feature weight. 

By counting frequencies of the words, the final feature set is 

established and constitutes dictionary D. However, compared 

with the prediction method based only on extracted features, 

it is more effective to add the position information into 

consideration. Therefore, the protein sequences are 

converted into hybrid feature vectors by counting frequencies 

of the features separately from different parts of the 

N-terminal. 

To demonstrate our method, we have conducted a series of 
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6) Effective-T3: The method proposed by R. Arnold, S. 

Brandmaier, et al. [13];

7) SWANN: The method proposed by M. Lower and G. 

Schneider. [12];

8) OM: The method proposed in this paper.

To make a fair comparison among these models, we used

the same data set (data set II) to predict T3SEs. The results
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experiments on two data sets, and the results show high 

accuracy and universal property especially by using hybrid 

features. We also made a comparison with other popular 

approaches. The comparison results show that our method 

has superiority over most of the existing methods. As a future 

work, we will keep exploring more specific signals and 

structural information so as to advance the understanding of 

type III secretion system. 
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