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Abstract— Since standard biclustering problem was defined, 

the problem is known to be NP-hard. However in analyzing 

time series expression data, we can restrict the problem with the 

trait of data that represented the contiguous columns, which 

corresponded to coherent expression patterns. With this 

restriction included, the problem considered to be tractable 

problem. We propose an algorithm to find and report all 

maximal contiguous column coherent biclusters with the 

shifting input included in time linear within the size of 

expression matrix multiplied by the size of the shifting window. 

 

Index Terms—Biclustering, regulatory modules, shifting 

input data, suffix tree, time series gene expression data.  

 

I. INTRODUCTION 

Clustering microarray data is one of challenging problems 

nowadays. Since the DNA chips techniques enable 

simultaneous measurements of the expression level of a wide 

range of genes for given experiment conditions [1]. These 

wide ranges of the data and complexity of clustering 

microarray data problem make the problem to be difficult.  

Biclustering is the technique that simultaneously clusters 

the microarray data on both genes and conditions. The data in 

each cluster exhibit highly correlated behaviors between the 

subgroups of genes and conditions. It has showed many 

advantages in identification the local expression patterns and 

has been extensively studied and surveyed [2]-[4]. 

Biclustering problem has many approaches proposed to date. 

Most of the biclustering approaches presented are heuristic 

and thus do not guarantee to find the optimal solution. Some 

other cases used exhaustive search which imposed on the size 

of the biclusters in order to obtain reasonable runtimes. The 

dealing with exact value of original expression data matrix is 

one difficulty of biclustering problems. And finding coherent 

behaviors regardless of the exact values are becomes great 

interest. These circumstances lead to founding of many new 

methods based on discrete matrix [5]-[18]. Unfortunately, 

these versions remain to be NP-hard problem.  

Although the problem still remains to be NP-hard, there 

exist some restrictions to the biclustering problem which lead 

it to be a tractable problem. For example, if the expression 

data are organized in a way that expression level of various 

snapshots of the same condition are represented as group of 
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time-sorted contiguous columns and biclusters are limited to 

contiguous snapshots. This study focuses on such setting, 

which uses to identify coherent expression patterns shared by 

a group of genes in consecutive time points. 

We are also interested in finding the time shifted coherent 

biclusters. Time shifted coherent bicluster is a bicluster 

where each gene in the cluster exhibits the same coherent 

pattern over different set of contiguous time series columns. 

By observing time shifted coherent patterns, it discovers 

more related and hidden patterns than the standard techniques 

used nowadays. 

In this work, we propose an algorithm to find and report all 

maximal shifting contiguous column coherent biclusters 

(SCCC-Biclusters) in the linear time and in the size of 

expression matrix multiplied by the size of the shifting 

window. Maximal SCCC-Bicluster is a SCCC-Bicluster 

which no existed SCCC-Biclusters that can be the superset of 

it. Our algorithm is based on contiguous column coherent 

biclusters (CCC-Biclusters) [19] and is improved by 

considering the shifting of the input expression data in 

contiguous time during the suffix tree creation. With the 

shifted data considered in our work, the result constructed 

suffix tree we get are more complicated than the original 

problem. This complicated suffix tree lead to finding the 

insignificant biclusters. In order to deal with the insignificant 

biclusters from the result, we introduce the post process 

method to remove the insignificant biclusters derived from 

the suffix tree. 

The content in this paper is organized as follows: in 

Section II, we survey related work. In Section III, notations 

used throughout this paper are defined. In Section IV, the 

shifting contiguous column coherent biclusters algorithm is 

proposed. Finally, we concluded our work in Section V. 

 

II. RELATED WORK 

At present, there are a large number of biclustering 

algorithms which were proposed to solve the general case of 

biclustering [3], [4]. We can group biclustering algorithms 

into 3 main groups as follows: heuristic algorithms, 

exhaustive algorithms, and condition-based algorithms.  

The large majority of biclustering algorithms use heuristic 

approaches to identify biclusters [3]. The Coupled Two-Way 

Clustering (CTWC) [20] which uses only subsets of rows or 

columns that are identified as stable clusters in previous 

clustering iteration are candidates for the next iteration. This 

heuristic leads to avoid all possible combinations which 

reduce search time of the algorithm with the cost of accuracy 

of the algorithm. 
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Cheng and Church [2] introduced the first biclustering 

algorithm applied to gene expression data. This algorithm is 

also heuristic algorithm. The algorithm starts with iteratively 

removal of a row or a column that gives the maximum 

decrease of similarity score, mean squared residue, H, until 

no further decrease of H. Then the algorithm iteratively adds 

a row or a column which gives minimum increase of H back 

to construct the bigger similarity biclusters with H lower than 

some threshold, δ. Finally, it reports the bicluster and marks 

the newly found bicluster in order to find the next one. This 

heuristic method makes the algorithm very fast. However 

with this techniques and the marking make the discovery of 

highly overlapping biclusters unlikely, since elements of 

already identified biclusters have been marked by random 

noise [3]. 

On the contrary, the exhaustive algorithms such as brute 

force or exhaustive enumeration methods can find the 

optimal set of biclusters [3]. However, due to their high 

complexity, they can be applicable only when the input size 

is small [3]. This led the practical exhaustive algorithms to be 

condition- based algorithm instead. 

Although there is some condition-based biclustering 

algorithm which addressed the consecutive columns, the first 

was purposed by Ji and Tan [6]. The exact complexity of this 

algorithm is hard to estimate by their description. Still this 

algorithm considered to be in linear time. Yet, there exist 

another proposal which addressed the problem of finding 

maximal contiguous column coherent biclusters 

(CCC-Biclusters) [19]. 

Madeira et al. [19] proposed the CCC-Biclusters algorithm. 

This algorithm can find and report all the maximal 

contiguous column coherent biclusters in linear time and in 

the size of the expression matrix. Although our context is 

based on this algorithm, however in our work we also 

proposed the improvement to find the maximal S-CCC 

Biclusters altogether. This will increase flexibilities and open 

the new path in finding the larger significant biclusters from 

the data matrix which will improve the efficiency and 

accuracy to the standard CCC-biclustering algorithm. 

In fact, there existed another work of Madeira et al. [21] 

which addressed to the shifting time of gene expression data 

similar to our work as the extension of CCC-Biclusters called 

time-lagged activation. However in their work they used the 

exhaustive algorithm with each time lag vary from one to the 

size of column minus one. This makes the complexity of their 

algorithm to be at 
2 2(| | | | ),O R C  with |R| referring to size of 

rows and |C| referring to size of columns, it is thus not in 

linear time on the input size. In our work we use the shifting 

window size, w, and generate the shifting pattern of the input 

data to be temporally input data to be input of the algorithm 

which leads our algorithm to achieve linear time complexity, 

(| || | ).O R C w  

 

III. DEFINITIONS 

Our definitions of CCC-Biclusters and suffix tree are 

based on [19]. However we also include more definition 

about shifting data, shifting window size that relate to our 

work. 

We denote gene expression matrix with | |R rows and | |C  

columns as ,M  where ,R  be the set of genes and ,C  be the set 

of its conditions. The expression of the genes i  under 

condition j  is represented by .ijM   

In this work, the input data used was already discretized to 

be in regulatory modules with 3 symbols as{ , , }D N U which 

refer to DownRegulated, NoChange, and UpRegulated 

respectively. 

Our definitions used throughout this work are defined as 

follows: 

Definition 1 (bicluster and trivial bicluster). 

Bicluster ( , )B I J is the submatrix ijM defined by ,I R  

subset of rows, and ,J C  subset of columns. Trival 

bicluster is a bicluster with only 1 row and 1 column. Our 

goal is to identify the biclusters which exhibit coherent 

evolution. 

Definition 2 (CC-Bicluster). CC-Bicluster ijM is the 

bicluster which ij ljM M for all rows ,i l I in the same 

column .j J  Finding the optimal set of maximal biclusters 

which satisfy this coherence property is known to be an 

NP-hard problem [22]. 

Definition 3 (CCC-Bicluster). CCC-Bicluster ijM is 

subset of rows ,I 1 2 2{ , , ,..., },kI i i i i | |,k R and contiguous 

subset of columns ,J { , 1, 2,..., 2, 1, },J s s s f f f      

which 1,s  | |,f C ij ljM M for all rows ,i l I  and 

columns .j J  In this work, we considered only the time 

series expression data which have contiguous column trait; 

therefore we can reduce the complexity of the problem to be 

tractable problem with contiguous column result. 

 

 C1 C2 C3 C4    C1 C2 C3 C4 

 G1 N D U D  G1 N D U D 

 G2 U D N N  G1*1 * N D U 

       G1*2 * * N D 

       G2 U D N N 

       G2*1 * U D N 

       G2*2 * * U D 

  (a) (b) 

Fig. 1. (a) Example of original input expression matrix. (b) The input 

expression matrix with original expression data and shifted data which 

window size equal to 3. 

 

Definition 4 (Shifting window size and Shifting data). 

Shifting window size, ,w  is the number of columns from the 

starting column (counting start column as 1) to the last 

column that the data in this column will compare the data 

with. Our algorithm will create the shifting data (if w  is 2 or 

more) and insert it as the input data, we denoted this shifting 

window size as .w  Fig. 1 illustrates the original expression 

matrix ( w equal to 1) and its transformed form after 

including shifted data whose window size is equal to 3. 

Definition 5 (SCCC-Bicluster). CCC-Bicluster ijM is 
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shifted CCC-Bicluster, SCCC-Bicluster, if the 

CCC-Bicluster is the result from the biclustering algorithm 

which considered all the shifting data within the specific 

shifting window size of input into its biclustering process. 

Definition 6 (row-maximal SCCC-Bicluster). 

SCCC-Bicluster 
ijM is row-maximal if we cannot add more 

rows to the subset of rows I of the bicluster and still maintain 

the coherence property of J  in Definition 3. 

Definition 7 (left-maximal and right-maximal 

SCCC-Bicluster). SCCC-Bicluster is left-maximal/ 

right-maximal if we cannot add more symbols to the 

beginning/end of its expression pattern (contiguous column) 

without changing its set of rows .I  

Definition 8 (maximal SCCC-Bicluster). 

SCCC-Bicluster ijM is maximal if no other SCCC-Bicluster 

exists that can be its superset, for all other 

SCCC-Bicluster STM , if I S  and J T then I S and 

.J T  Hence maximal SCCC-Biclusters are the 

SCCC-Biclusters which are right, left, and row-maximal. 

Definition 9 (suffix tree and generalized suffix tree). Suffix 

tree is a kind of rooted tree which encodes every suffix of a 

string to construct the tree. Suffix tree T  for string S  is a 

tree whose has | |S edges and each edge is label with a part of 

string .S  These parts represented each position of each 

symbol of S to the final symbols of | | .S  The 3 main 

properties of suffix tree are as follows: 

1) Each internal node except root node has at least two 

children. 

2) Two edges which come out of the same node must not 

label with the same symbol. 

3) The path to any leaf i  must be exactly labeled as the 

symbol of string from position i  to | | .S   

Generalized suffix tree is suffix tree build from the set of 

strings instead of a single string like suffix tree. 

Definition 10 (string depth and string label). String depth 

is the length of string to the specific position. String depth of 

node v  in suffix tree T is the length of the symbols from the 

root node to node v  in T we denote this as ( )P v and denote 

the path which contain all these symbols from the root to v as 

string label. 

Definition 11 (number of leaves). Number of leaves is the 

number of leaves that come out of the internal node in the 

suffix tree. For each node v  in suffix tree T we denote the 

number of leaves in the subtree with v  as root node by ( ).L v  

Definition 12 (suffix link). For the node v  in T with 

label ,x  where x is a single character and  is a string 

(possibly empty), if there is another node u  with label then 

there will be a link point from v  to ,u  we define this link as 

suffix link. The special case is when is empty then x  has 

a suffix point from v  to the root. 

Definition 13 (MaxNode). MaxNode is an internal node v  

of the suffix tree T  which satisfies one of these following 

conditions: 

1) Node v  does not have incoming suffix links. 

Or 

2) 2) Node v  has only incoming suffix links from node u 

such that for every node ,u  
( ) ( ).L u L v

 

 

IV. ALGORITHMS 

A. Preprocessing Step 

Our algorithm assumed that the gene expression input data 

has already been discretized. Therefore, first part of our work 

is to apply the alphabet transformation technique which was 

introduced by Madeira et al. [19] to our discrete input data. 

In alphabet transformation process, for each string S in set 

of strings 1 | |{ ,..., },o o
RS S  we append each S by its position in 

the column, let
'
iS be the symbol of the string S at column ,i  

then
' .o
i iS S i  

We then append terminator symbols to each string S. This 

is required in order to follow the definition of suffix tree, 

when one suffix of S matches the prefix of another suffix of 

S we add a symbol to its end. This symbol must not appear 

anywhere else (usually symbol $ was used). For each string 
'S in set of strings ' '

1 | |{ ,..., },RS S  we inserted the special 

symbols $x to the end of the string where x is the row of that 

string,
'' ' $ .x xS S x  Therefore, our last column now is 

termination symbol and our columns size is increased by 1. 

B. Shifting Data Process and Extend Input Data Matrix 

To let our algorithm identify shifted pattern of the input 

data we introduce the shifting data process which insert the 

duplicated 1w  rows shift the original column expression 

data to be shifted input data of the suffix tree.  

We start our shifting data process with checking if shifting 

window size is greater than 1, 1.w   If it is then, for each 

string S in set of strings '' ''
1 | |{ ,..., }RS S , we prepend the special 

symbols *  to the front of S and delete the last input 

character out of the string and insert *y to terminator symbol 

where y  equal to time we do this process for this string S 

which was 1w times for each .S  We define *x yS to be the 

duplicate of original string ''S of row x with y times duplicate 

so '' '' ''
* 1 2 | | 1*^ ... $ * ,x y x x x c yS yS S S x y   where

''
xiS is the expression 

of string 
''
xS at position i and *^ y  means „ * ‟ y  times. Then 

we insert these data to our original input data. Therefore after 

this process, our rows of input data matrix will extend from 

| |R to | | .wR  We also define input data with original data 

and shifted data as set of string 1 | |{ ,..., }.s s
wRS S  

C. Suffix Trees and SCCC-Biclusters 

In this part of work, we state how the maximal 

SCCC-Biclusters of the input data matrix ijM corresponding 

to the node in the generalized suffix tree T built from the set 

of strings 1 | |{ ,..., }s s
wRS S which is taken from the input data 

matrix considering its shifted data within shifting window 

size. 

1) Every internal node in suffix tree T corresponds to one 



  

row-maximal, right-maximal SCCC-Bicluster in matrix 

M with at least two rows. Since an internal node v  in 

T have the common substring length ( )P v for each of it 

leaf. Therefore, each internal node v defines a 

SCCC-Bicluster that has ( )P v  columns and ( )L v rows. 

And every right-maximal, row-maximal SCCC-Bicluster 

with at least two rows correspond to internal node in .T   

2) An internal node corresponds to a maximal 

SCCC-Bicluster if and only if there is no suffix link from 

any node with the same value of ( )L v  pointing to it. 

Since if there is an incoming suffix link from an internal 

node u to node v with ( ) ( )L u L v then bicluster 

corresponds to v is already included in bicluster 

corresponds to ,u .v u  So v is not maximal 

SCCC-Bicluster. 

3) An internal node in T corresponds to a left-maximal 

SCCC-Bicluster if and only if it satisfies the Definition 

13. Since an internal node v can be maximal 

SCCC-Bicluster from the fact 2) or in the fact 

that ( ) ( )L u L v which lead v and u to be separate 

biclusters.  

With all above facts considered, it leads us to the theorem 

adapted from [19] which was defined as follows: 

Theorem 1. Every maximal SCCC-Bicluster with at least 

two rows corresponds to an internal node in the generalized 

suffix tree T  that satisfies Definition 11, and each of these 

internal nodes defines a maximal SCCC-Bicluster with at 

least two rows. We define these nodes as .N  

D. Insignificant SCCC-Biclusters 

With the shifted data included, the resulted generalized 

suffix tree is more complicated. This tree leads the original 

CCC-Biclustering algorithm to report insignificant biclusters 

in its result. We point out the insignificant biclusters as 

follows: 

1) Biclusters starts with *.  All the shifted data we 

duplicated will include in these biclusters which have no 

original data, therefore these biclusters is insignificant 

for works.  

2) Biclusters which start with data symbols but only 

included shifted data. These biclusters are duplicate of 

the original biclusters but small than the original one. 

3) Biclusters that have only the data from the same row. 

These bicluster only include the original input data and 

its own shifted data, therefore this group of biclusters 

also marked as insignificant. (cluster which contain only 

data from 1 row of original data matrix)  

4) The last group of insignificant biclusters are biclusters 

which have internal nodes, M (other than N ), and other 

leaf nodes, L , from .N  Where L is only from the shifted 

data of the same string as the leaf node of original data in 

.M  These are the combination cases of second and third 

cases in the same .N  Since the internal nodes M already 

defines the maximal SCCC-Bicluster, therefore these 

nodes which define smaller biclusters and pattern are 

already considered to be insignificant in second and third 

cases, therefore these are also insignificant. 

 

E. SCCC-Biclustering: A Linear Time Biclustering  

Algorithm for Finding and Report All Maximal 

SCCC-Biclusters 

Theorem 1 implies that there is an algorithm which can 

find and report all maximal SCCC-Biclusters of discretized 

and transformed gene expression matrix M in time linear and 

size of the input matrix (after inserted shifting data) since it 

corresponds to a suffix tree which has all these properties. 

Algorithm 1 performed the alphabet transformation to the 

discrete input data as described in the part A then we do the 

shifting data process to extend the input data described in part 

B. After that our algorithm starts to build a generalized suffix 

tree from the set of strings 
1 | |{ ,..., }s s

wRS S  which obtained from 

the shifting input data process. We now check each internal 

node whether the conditions in Theorem 1 are met. Nodes 

that do not meet the required conditions are marked as 

“invalid.” We marked the nodes started with *  or only have 

the shifted data or the nodes from only the same string in this 

process. Then we marked biclusters which have internal node 

and other leaf nodes which satisfy 4) as “Invalid.” Finally, we 

report our SCCC-Biclusters which corresponded to the valid 

internal nodes. 

Algorithm1. SCCC-Biclustering 

 input: Discretized gene expression matrix M 

 1 Perform alphabet transformation and obtain  

  '' ''
1 | |{ ,..., }RS S . 

 2 Perform shifting data process and obtain  

  1 | |{ ,..., }s s
wRS S . 

 3 Build a generalized suffix tree T  for 1 | |{ ,..., }s s
wRS S  

 4 for each internal node v T do 

 5  Mark node v  as “Valid.” 

 6  Compute the string depth ( ).P v  

 7 for each internal node v T do 

  8  Mark node v  starts with * as “Invalid.” 

 9  Compute the number of leaves ( )L v in the subtree   

   rooted at .v   

 10 for each internal node v T  do 

 11  if there is a suffix link from v to a node u and  

    ( ) ( )L u L v  then 

 12   Mark node u as “Invalid.” 

 13 for each internal node v T do 

  14  Mark node v  with only shifted data or which 

     leaf only come from the same string as “Invalid." 

 15 for each internal node v T do 

16  if node v have internal nodes and leaf nodes as its  

     child then 

  17   if leaf nodes are from shifted data and there is  

      no leaf nodes in the internal node from other  

      original data than the one of shifted data then  

  18    Mark node v as “Invalid." 

 19 for each internal node v T do 

 20  if v marked as “Valid” then 

 21   Report the SCCC-Bicluster corresponding to .v  

F. Complexity Analysis of SCCC-Biclustering 

In our algorithm, generalized suffix tree was used as our 

base data structure. With the proper implementation, 
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generalized suffix tree was guaranteed to construct the suffix 

tree in linear time on the size of input matrix.  

Our SCCC-Biclustering algorithm is corresponding to this 

suffix tree and performed by using the depth-first searches on 

this suffix tree. Since every tree structure has more internal 

nodes than leaf nodes, hence the running time of Algorithm1 

is also linear time. 

Since our algorithm extends the rows of input data in 

shifting process by shifting window size, ,w  times and with 

the complexity of the suffix tree, result in the total complexity 

of our algorithm to be in ( | || |)O w R C time. Also our 

algorithm uses size of input data matrix multiplied by .w  

 

V. CONCLUSIONS 

Our work opens a new path to find the biclusters which 

may be hidden in the expression data matrix. These hidden 

biclusters are due to some process in collection the gene 

expression data which leads to late activation of some 

expression in time. It may also be the type of genes which 

only activate some expression after the other related 

expression activated. This inspires the new idea within the 

bioinformatics path as well as some related others.  
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