



Abstract— Since standard biclustering problem was defined,

the problem is known to be NP-hard. However in analyzing

time series expression data, we can restrict the problem with the

trait of data that represented the contiguous columns, which

corresponded to coherent expression patterns. With this

restriction included, the problem considered to be tractable

problem. We propose an algorithm to find and report all

maximal contiguous column coherent biclusters with the

shifting input included in time linear within the size of

expression matrix multiplied by the size of the shifting window.

Index Terms—Biclustering, regulatory modules, shifting

input data, suffix tree, time series gene expression data.

I. INTRODUCTION

Clustering microarray data is one of challenging problems

nowadays. Since the DNA chips techniques enable

simultaneous measurements of the expression level of a wide

range of genes for given experiment conditions [1]. These

wide ranges of the data and complexity of clustering

microarray data problem make the problem to be difficult.

Biclustering is the technique that simultaneously clusters

the microarray data on both genes and conditions. The data in

each cluster exhibit highly correlated behaviors between the

subgroups of genes and conditions. It has showed many

advantages in identification the local expression patterns and

has been extensively studied and surveyed [2]-[4].

Biclustering problem has many approaches proposed to date.

Most of the biclustering approaches presented are heuristic

and thus do not guarantee to find the optimal solution. Some

other cases used exhaustive search which imposed on the size

of the biclusters in order to obtain reasonable runtimes. The

dealing with exact value of original expression data matrix is

one difficulty of biclustering problems. And finding coherent

behaviors regardless of the exact values are becomes great

interest. These circumstances lead to founding of many new

methods based on discrete matrix [5]-[18]. Unfortunately,

these versions remain to be NP-hard problem.

Although the problem still remains to be NP-hard, there

exist some restrictions to the biclustering problem which lead

it to be a tractable problem. For example, if the expression

data are organized in a way that expression level of various

snapshots of the same condition are represented as group of

Manuscript received December 9, 2012; revised February 15, 2013.

Tustanah Phukhachee and Songrit Maneewongvatana are with the

Computer Engineering Department,

Faculty of Engineering, King

Mongkut‟s University of Technology Thonburi, Bangkok, Thailand (e-mail:

s54450015@st.kmutt.ac.th, songrit@cpe.kmutt.ac.th).

time-sorted contiguous columns and biclusters are limited to

contiguous snapshots. This study focuses on such setting,

which uses to identify coherent expression patterns shared by

a group of genes in consecutive time points.

We are also interested in finding the time shifted coherent

biclusters. Time shifted coherent bicluster is a bicluster

where each gene in the cluster exhibits the same coherent

pattern over different set of contiguous time series columns.

By observing time shifted coherent patterns, it discovers

more related and hidden patterns than the standard techniques

used nowadays.

In this work, we propose an algorithm to find and report all

maximal shifting contiguous column coherent biclusters

(SCCC-Biclusters) in the linear time and in the size of

expression matrix multiplied by the size of the shifting

window. Maximal SCCC-Bicluster is a SCCC-Bicluster

which no existed SCCC-Biclusters that can be the superset of

it. Our algorithm is based on contiguous column coherent

biclusters (CCC-Biclusters) [19] and is improved by

considering the shifting of the input expression data in

contiguous time during the suffix tree creation. With the

shifted data considered in our work, the result constructed

suffix tree we get are more complicated than the original

problem. This complicated suffix tree lead to finding the

insignificant biclusters. In order to deal with the insignificant

biclusters from the result, we introduce the post process

method to remove the insignificant biclusters derived from

the suffix tree.

The content in this paper is organized as follows: in

Section II, we survey related work. In Section III, notations

used throughout this paper are defined. In Section IV, the

shifting contiguous column coherent biclusters algorithm is

proposed. Finally, we concluded our work in Section V.

II. RELATED WORK

At present, there are a large number of biclustering

algorithms which were proposed to solve the general case of

biclustering [3], [4]. We can group biclustering algorithms

into 3 main groups as follows: heuristic algorithms,

exhaustive algorithms, and condition-based algorithms.

The large majority of biclustering algorithms use heuristic

approaches to identify biclusters [3]. The Coupled Two-Way

Clustering (CTWC) [20] which uses only subsets of rows or

columns that are identified as stable clusters in previous

clustering iteration are candidates for the next iteration. This

heuristic leads to avoid all possible combinations which

reduce search time of the algorithm with the cost of accuracy

of the algorithm.

Identification of Shifting Regulatory Modules in Time

Series Gene Expression Data Using a Linear Time

Biclustering Algorithm

Tustanah Phukhachee and Songrit Maneewongvatana

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 3, No. 3, May 2013

221DOI: 10.7763/IJBBB.2013.V3.200

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 3, No. 3, May 2013

222

Cheng and Church [2] introduced the first biclustering

algorithm applied to gene expression data. This algorithm is

also heuristic algorithm. The algorithm starts with iteratively

removal of a row or a column that gives the maximum

decrease of similarity score, mean squared residue, H, until

no further decrease of H. Then the algorithm iteratively adds

a row or a column which gives minimum increase of H back

to construct the bigger similarity biclusters with H lower than

some threshold, δ. Finally, it reports the bicluster and marks

the newly found bicluster in order to find the next one. This

heuristic method makes the algorithm very fast. However

with this techniques and the marking make the discovery of

highly overlapping biclusters unlikely, since elements of

already identified biclusters have been marked by random

noise [3].

On the contrary, the exhaustive algorithms such as brute

force or exhaustive enumeration methods can find the

optimal set of biclusters [3]. However, due to their high

complexity, they can be applicable only when the input size

is small [3]. This led the practical exhaustive algorithms to be

condition- based algorithm instead.

Although there is some condition-based biclustering

algorithm which addressed the consecutive columns, the first

was purposed by Ji and Tan [6]. The exact complexity of this

algorithm is hard to estimate by their description. Still this

algorithm considered to be in linear time. Yet, there exist

another proposal which addressed the problem of finding

maximal contiguous column coherent biclusters

(CCC-Biclusters) [19].

Madeira et al. [19] proposed the CCC-Biclusters algorithm.

This algorithm can find and report all the maximal

contiguous column coherent biclusters in linear time and in

the size of the expression matrix. Although our context is

based on this algorithm, however in our work we also

proposed the improvement to find the maximal S-CCC

Biclusters altogether. This will increase flexibilities and open

the new path in finding the larger significant biclusters from

the data matrix which will improve the efficiency and

accuracy to the standard CCC-biclustering algorithm.

In fact, there existed another work of Madeira et al. [21]

which addressed to the shifting time of gene expression data

similar to our work as the extension of CCC-Biclusters called

time-lagged activation. However in their work they used the

exhaustive algorithm with each time lag vary from one to the

size of column minus one. This makes the complexity of their

algorithm to be at
2 2(| | | |),O R C with |R| referring to size of

rows and |C| referring to size of columns, it is thus not in

linear time on the input size. In our work we use the shifting

window size, w, and generate the shifting pattern of the input

data to be temporally input data to be input of the algorithm

which leads our algorithm to achieve linear time complexity,

(| || |).O R C w

III. DEFINITIONS

Our definitions of CCC-Biclusters and suffix tree are

based on [19]. However we also include more definition

about shifting data, shifting window size that relate to our

work.

We denote gene expression matrix with | |R rows and | |C

columns as ,M where ,R be the set of genes and ,C be the set

of its conditions. The expression of the genes i under

condition j is represented by .ijM

In this work, the input data used was already discretized to

be in regulatory modules with 3 symbols as{ , , }D N U which

refer to DownRegulated, NoChange, and UpRegulated

respectively.

Our definitions used throughout this work are defined as

follows:

Definition 1 (bicluster and trivial bicluster).

Bicluster (,)B I J is the submatrix ijM defined by ,I R

subset of rows, and ,J C subset of columns. Trival

bicluster is a bicluster with only 1 row and 1 column. Our

goal is to identify the biclusters which exhibit coherent

evolution.

Definition 2 (CC-Bicluster). CC-Bicluster ijM is the

bicluster which ij ljM M for all rows ,i l I in the same

column .j J Finding the optimal set of maximal biclusters

which satisfy this coherence property is known to be an

NP-hard problem [22].

Definition 3 (CCC-Bicluster). CCC-Bicluster ijM is

subset of rows ,I 1 2 2{ , , ,..., },kI i i i i | |,k R and contiguous

subset of columns ,J { , 1, 2,..., 2, 1, },J s s s f f f    

which 1,s  | |,f C ij ljM M for all rows ,i l I and

columns .j J In this work, we considered only the time

series expression data which have contiguous column trait;

therefore we can reduce the complexity of the problem to be

tractable problem with contiguous column result.

 C1 C2 C3 C4 C1 C2 C3 C4

 G1 N D U D G1 N D U D

 G2 U D N N G1*1 * N D U

 G1*2 * * N D

 G2 U D N N

 G2*1 * U D N

 G2*2 * * U D

 (a) (b)

Fig. 1. (a) Example of original input expression matrix. (b) The input

expression matrix with original expression data and shifted data which

window size equal to 3.

Definition 4 (Shifting window size and Shifting data).

Shifting window size, ,w is the number of columns from the

starting column (counting start column as 1) to the last

column that the data in this column will compare the data

with. Our algorithm will create the shifting data (if w is 2 or

more) and insert it as the input data, we denoted this shifting

window size as .w Fig. 1 illustrates the original expression

matrix (w equal to 1) and its transformed form after

including shifted data whose window size is equal to 3.

Definition 5 (SCCC-Bicluster). CCC-Bicluster ijM is

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 3, No. 3, May 2013

223

shifted CCC-Bicluster, SCCC-Bicluster, if the

CCC-Bicluster is the result from the biclustering algorithm

which considered all the shifting data within the specific

shifting window size of input into its biclustering process.

Definition 6 (row-maximal SCCC-Bicluster).

SCCC-Bicluster
ijM is row-maximal if we cannot add more

rows to the subset of rows I of the bicluster and still maintain

the coherence property of J in Definition 3.

Definition 7 (left-maximal and right-maximal

SCCC-Bicluster). SCCC-Bicluster is left-maximal/

right-maximal if we cannot add more symbols to the

beginning/end of its expression pattern (contiguous column)

without changing its set of rows .I

Definition 8 (maximal SCCC-Bicluster).

SCCC-Bicluster ijM is maximal if no other SCCC-Bicluster

exists that can be its superset, for all other

SCCC-Bicluster STM , if I S and J T then I S and

.J T Hence maximal SCCC-Biclusters are the

SCCC-Biclusters which are right, left, and row-maximal.

Definition 9 (suffix tree and generalized suffix tree). Suffix

tree is a kind of rooted tree which encodes every suffix of a

string to construct the tree. Suffix tree T for string S is a

tree whose has | |S edges and each edge is label with a part of

string .S These parts represented each position of each

symbol of S to the final symbols of | | .S The 3 main

properties of suffix tree are as follows:

1) Each internal node except root node has at least two

children.

2) Two edges which come out of the same node must not

label with the same symbol.

3) The path to any leaf i must be exactly labeled as the

symbol of string from position i to | | .S

Generalized suffix tree is suffix tree build from the set of

strings instead of a single string like suffix tree.

Definition 10 (string depth and string label). String depth

is the length of string to the specific position. String depth of

node v in suffix tree T is the length of the symbols from the

root node to node v in T we denote this as ()P v and denote

the path which contain all these symbols from the root to v as

string label.

Definition 11 (number of leaves). Number of leaves is the

number of leaves that come out of the internal node in the

suffix tree. For each node v in suffix tree T we denote the

number of leaves in the subtree with v as root node by ().L v

Definition 12 (suffix link). For the node v in T with

label ,x where x is a single character and  is a string

(possibly empty), if there is another node u with label then

there will be a link point from v to ,u we define this link as

suffix link. The special case is when is empty then x has

a suffix point from v to the root.

Definition 13 (MaxNode). MaxNode is an internal node v

of the suffix tree T which satisfies one of these following

conditions:

1) Node v does not have incoming suffix links.

Or

2) 2) Node v has only incoming suffix links from node u

such that for every node ,u
() ().L u L v

IV. ALGORITHMS

A. Preprocessing Step

Our algorithm assumed that the gene expression input data

has already been discretized. Therefore, first part of our work

is to apply the alphabet transformation technique which was

introduced by Madeira et al. [19] to our discrete input data.

In alphabet transformation process, for each string S in set

of strings 1 | |{ ,..., },o o
RS S we append each S by its position in

the column, let
'
iS be the symbol of the string S at column ,i

then
' .o
i iS S i

We then append terminator symbols to each string S. This

is required in order to follow the definition of suffix tree,

when one suffix of S matches the prefix of another suffix of

S we add a symbol to its end. This symbol must not appear

anywhere else (usually symbol $ was used). For each string
'S in set of strings ' '

1 | |{ ,..., },RS S we inserted the special

symbols $x to the end of the string where x is the row of that

string,
'' ' $.x xS S x Therefore, our last column now is

termination symbol and our columns size is increased by 1.

B. Shifting Data Process and Extend Input Data Matrix

To let our algorithm identify shifted pattern of the input

data we introduce the shifting data process which insert the

duplicated 1w rows shift the original column expression

data to be shifted input data of the suffix tree.

We start our shifting data process with checking if shifting

window size is greater than 1, 1.w  If it is then, for each

string S in set of strings '' ''
1 | |{ ,..., }RS S , we prepend the special

symbols * to the front of S and delete the last input

character out of the string and insert *y to terminator symbol

where y equal to time we do this process for this string S

which was 1w times for each .S We define *x yS to be the

duplicate of original string ''S of row x with y times duplicate

so '' '' ''
* 1 2 | | 1*^ ... $ * ,x y x x x c yS yS S S x y  where

''
xiS is the expression

of string
''
xS at position i and *^ y means „ * ‟ y times. Then

we insert these data to our original input data. Therefore after

this process, our rows of input data matrix will extend from

| |R to | | .wR We also define input data with original data

and shifted data as set of string 1 | |{ ,..., }.s s
wRS S

C. Suffix Trees and SCCC-Biclusters

In this part of work, we state how the maximal

SCCC-Biclusters of the input data matrix ijM corresponding

to the node in the generalized suffix tree T built from the set

of strings 1 | |{ ,..., }s s
wRS S which is taken from the input data

matrix considering its shifted data within shifting window

size.

1) Every internal node in suffix tree T corresponds to one

row-maximal, right-maximal SCCC-Bicluster in matrix

M with at least two rows. Since an internal node v in

T have the common substring length ()P v for each of it

leaf. Therefore, each internal node v defines a

SCCC-Bicluster that has ()P v columns and ()L v rows.

And every right-maximal, row-maximal SCCC-Bicluster

with at least two rows correspond to internal node in .T

2) An internal node corresponds to a maximal

SCCC-Bicluster if and only if there is no suffix link from

any node with the same value of ()L v pointing to it.

Since if there is an incoming suffix link from an internal

node u to node v with () ()L u L v then bicluster

corresponds to v is already included in bicluster

corresponds to ,u .v u So v is not maximal

SCCC-Bicluster.

3) An internal node in T corresponds to a left-maximal

SCCC-Bicluster if and only if it satisfies the Definition

13. Since an internal node v can be maximal

SCCC-Bicluster from the fact 2) or in the fact

that () ()L u L v which lead v and u to be separate

biclusters.

With all above facts considered, it leads us to the theorem

adapted from [19] which was defined as follows:

Theorem 1. Every maximal SCCC-Bicluster with at least

two rows corresponds to an internal node in the generalized

suffix tree T that satisfies Definition 11, and each of these

internal nodes defines a maximal SCCC-Bicluster with at

least two rows. We define these nodes as .N

D. Insignificant SCCC-Biclusters

With the shifted data included, the resulted generalized

suffix tree is more complicated. This tree leads the original

CCC-Biclustering algorithm to report insignificant biclusters

in its result. We point out the insignificant biclusters as

follows:

1) Biclusters starts with *. All the shifted data we

duplicated will include in these biclusters which have no

original data, therefore these biclusters is insignificant

for works.

2) Biclusters which start with data symbols but only

included shifted data. These biclusters are duplicate of

the original biclusters but small than the original one.

3) Biclusters that have only the data from the same row.

These bicluster only include the original input data and

its own shifted data, therefore this group of biclusters

also marked as insignificant. (cluster which contain only

data from 1 row of original data matrix)

4) The last group of insignificant biclusters are biclusters

which have internal nodes, M (other than N), and other

leaf nodes, L , from .N Where L is only from the shifted

data of the same string as the leaf node of original data in

.M These are the combination cases of second and third

cases in the same .N Since the internal nodes M already

defines the maximal SCCC-Bicluster, therefore these

nodes which define smaller biclusters and pattern are

already considered to be insignificant in second and third

cases, therefore these are also insignificant.

E. SCCC-Biclustering: A Linear Time Biclustering

Algorithm for Finding and Report All Maximal

SCCC-Biclusters

Theorem 1 implies that there is an algorithm which can

find and report all maximal SCCC-Biclusters of discretized

and transformed gene expression matrix M in time linear and

size of the input matrix (after inserted shifting data) since it

corresponds to a suffix tree which has all these properties.

Algorithm 1 performed the alphabet transformation to the

discrete input data as described in the part A then we do the

shifting data process to extend the input data described in part

B. After that our algorithm starts to build a generalized suffix

tree from the set of strings
1 | |{ ,..., }s s

wRS S which obtained from

the shifting input data process. We now check each internal

node whether the conditions in Theorem 1 are met. Nodes

that do not meet the required conditions are marked as

“invalid.” We marked the nodes started with * or only have

the shifted data or the nodes from only the same string in this

process. Then we marked biclusters which have internal node

and other leaf nodes which satisfy 4) as “Invalid.” Finally, we

report our SCCC-Biclusters which corresponded to the valid

internal nodes.

Algorithm1. SCCC-Biclustering

 input: Discretized gene expression matrix M

 1 Perform alphabet transformation and obtain

 '' ''
1 | |{ ,..., }RS S .

 2 Perform shifting data process and obtain

 1 | |{ ,..., }s s
wRS S .

 3 Build a generalized suffix tree T for 1 | |{ ,..., }s s
wRS S

 4 for each internal node v T do

 5 Mark node v as “Valid.”

 6 Compute the string depth ().P v

 7 for each internal node v T do

 8 Mark node v starts with * as “Invalid.”

 9 Compute the number of leaves ()L v in the subtree

 rooted at .v

 10 for each internal node v T do

 11 if there is a suffix link from v to a node u and

 () ()L u L v then

 12 Mark node u as “Invalid.”

 13 for each internal node v T do

 14 Mark node v with only shifted data or which

 leaf only come from the same string as “Invalid."

 15 for each internal node v T do

16 if node v have internal nodes and leaf nodes as its

 child then

 17 if leaf nodes are from shifted data and there is

 no leaf nodes in the internal node from other

 original data than the one of shifted data then

 18 Mark node v as “Invalid."

 19 for each internal node v T do

 20 if v marked as “Valid” then

 21 Report the SCCC-Bicluster corresponding to .v

F. Complexity Analysis of SCCC-Biclustering

In our algorithm, generalized suffix tree was used as our

base data structure. With the proper implementation,

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 3, No. 3, May 2013

224

generalized suffix tree was guaranteed to construct the suffix

tree in linear time on the size of input matrix.

Our SCCC-Biclustering algorithm is corresponding to this

suffix tree and performed by using the depth-first searches on

this suffix tree. Since every tree structure has more internal

nodes than leaf nodes, hence the running time of Algorithm1

is also linear time.

Since our algorithm extends the rows of input data in

shifting process by shifting window size, ,w times and with

the complexity of the suffix tree, result in the total complexity

of our algorithm to be in (| || |)O w R C time. Also our

algorithm uses size of input data matrix multiplied by .w

V. CONCLUSIONS

Our work opens a new path to find the biclusters which

may be hidden in the expression data matrix. These hidden

biclusters are due to some process in collection the gene

expression data which leads to late activation of some

expression in time. It may also be the type of genes which

only activate some expression after the other related

expression activated. This inspires the new idea within the

bioinformatics path as well as some related others.

REFERENCES

[1] G. J. McLachlan, K. Do, and C. Ambroise, “Analysing microarray gene

expression data,” Wiley Series in Probaility and Statistics, 2004.

[2] Y. Cheng and G. M. Church, “Biclustering of expression data,” in Proc.

Eighth Int’l Conf. Intelligent Systems for Molecular Biology, 2000, pp.

93-103.

[3] S. C. Madeira and A. L. Oliveira, “Biclustering algorithms for

biological data analsis: a survey,” IEEE/ACM Trans. Computational

Biology and Bioinformatics, vol. 1, no. 1, pp. 24-45, Jan. /Mar. 2004.

[4] I. V. Mechelen, H. H. Bock, and P. De Boeck, “Two-mode clustering

methods: a structured overview,” Statistical Methods in Medical

Research, vol. 13, no. 5, pp. 979-981, 2004.

[5] A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini, “Discovering local

structure in gene expression data: the order-preserving submatrix

problem,” in Proc. Sixth Int’l Conf. Computational Biology, 2002, pp.

49-57.

[6] L. ji and K. Tan, “Identifying time-lagged gene clusters using gene

expression data,” Bioinformatics, vol. 21, no. 4, pp. 509-516, 2005.

[7] M. Koyuturk, W. Szpankowski, and A. Grama, “Biclustering

gene-feature matrices for statistically significant dense patterns,” in

Proc. Eighth Int’l Conf. Research in Computational Molecular Biology,

2004, pp. 480-484.

[8] J. Liu, W. Wang, and J. Yang, “Biclustering in gene expression data by

tendency,” in Proc. Third Int’l IEEE CS Computational Systems

Bioinformatics Conf., 2004, pp. 182-193.

[9] J. Liu, W. Wang, and J. Yang, “A framework for ontology-driven

subspace clustering,” in Proc. ACM SIGKDD ’04, 2004, pp. 623-628.

[10] J. Liu, W. Wang, and , J. Yang, “Gene ontology friendly biclustering of

expression profiles,” in Proc. Third IEEE CS Computational Systems

Bioinformatics Conf., 2004, pp. 436-447.

[11] J. Liu, W. Wang, and J. Yang, “Mining sequential patterns from large

data sets,” Advances in Database Systems, vol. 18, Kluwer Academic

Publishers, 2005.

[12] S. Lonardi, W. Szpankowski, and Q. Yang, “Finding biclusters by

random projections,” in Proc. 15th Ann. Symp. Combinatorial Pattern

Matching, 2004, pp. 102-116.

[13] S. C. Madeira and A. L. Oliveira, “A linear time algorithm for

biclustering time series expression data,” in Proc. Fifth Workshop

Algorithms in Bioinformatics, 2005, pp. 39-52.

[14] T. M. Murali and S. Kasif, “Extracting conserved gene expression

motifs from gene expression data,” in Proc. Eighth Pacific Symp.

Biocomputing, 2003, vol. 8, pp. 77-88.

[15] A. Prelic, S. Bleuler, P. Zimmermann, A. Wille, P. Bühlmann, W.

Gruissem, L. Hennig, L. Thiele, and E. Zitzler, “A systematic

comparison and evaluation of biclustering methods for gene expression

data,” Bioinformatics, vol. 22, no. 10, pp. 1282-1283, 2006.

[16] Q. Sheng, Y. Moreau, and B. De Moor, “Biclustering microarray data

by gibbs sampling,” Bioinformatics, vol. 19, no. 2, pp. 196-205, 2003.

[17] A. Tanay, R. Sharan, and R. Shamir, “Discovering statiscally

significant biclusters in gene expression data,” Bioinformatics, vol. 18,

no. 1, pp. 136-144, 2002.

[18] C. Wu, Y. Fu, T. M. Murali, and S. Kasif, “Gene expression module

discovery using gibbs sampling,” Genome Informatics, vol. 15, no. 1,

pp. 239-248, 2004.

[19] S. C. Madeira, M. C. Teixeira, L. Sá-Correia, and A. L. Oliveira,

“Identification of regulatory modules in time series gene expression

data using a linear time biclustering algorithm,” Computational

Biology and Bioinformatics, IEEE/ACM Transaction, vol. 7, no. 1, pp.

153-165, 2010.

[20] G. Getz, E. Levine, and E. Domany, “Coupled two-way clustering

analysis of gene microarray data,” in Proc. Natural Academy of

Sciences Us, 2000, pp. 12079-12084.

[21] S. C. Madeira, J. P. Gonçalves, A. L. Oliveira, “Efficient biclustering

algorithms for identifying transacriptional regulation relationships

using time series gene expression data,” INESC_ID Tec. Rep., vol. 22,

2007.

[22] R. Peeters, “The maximum edge biclique problem is np-complete,”

Discrete Applied Math., vol. 131, no. 3, pp. 651-654, 2003.

Tustanah Phukhachee received the B.Eng. degree in

computer engineering from King Mongut‟s University

of Technology North Bangkok in 2011. He is currently

a graduate student at at King Mongkut's University of

Technology Thonburi, Thailand. His research interests

include computer algorithm, bioinformatics, data

mining, and clustering.

Songrit Maneewongvatana received his Ph.D. in

Computer Science from University of Maryland,

College Park in 2001. He is currently an associate

professor at King Mongkut's University of Technology

Thonburi, Thailand. His research interests include

clustering, data mining and learning technologies.

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 3, No. 3, May 2013

225

