
 

  
Abstract—Benefiting from recent advancements of the next 

generation sequencing technology, it becomes more and more 
feasible to directly sequence candidate genetic regions and even 
the whole genome to get the information about rare genetic 
variants. Although several statistical methods have been 
developed to identify potential associations between multiple 
rare variants and a given disease of interest, these methods are 
quite sensitive to the inclusion of non-functional variants in 
their statistical analysis. In order to enhance the performance of 
these statistical methods for uncovering disease-associated rare 
variants, it is suggested that bioinformatics tools or filters 
should be adopted to make functional predictions of the 
variants before statistical analysis. In this paper, we propose to 
prioritize candidate genetic variants according to the 
guilt-by-association principle, which depends on the assumption 
that genetic variants associated with the same disease share 
some common physiochemical properties. Focusing on a 
specific type of genetic variants called single amino acid 
polymorphisms (SAAPs), we take advantages of 8 similarity 
measures based on physiochemical features of amino acids, 
sequence information of proteins, and multiple sequence 
alignment of protein families to illustrate the power of 
prioritizing candidate SAAPs for specific diseases. Systematic 
validation experiments demonstrate that our proposed 
approach is competent for effectively detecting associations 
between SAAPs and query diseases, while using the Canberra 
distance to measure the similarity between SAAPs can achieve 
the highest performance among all the methods compared. 
 

Index Terms—Guilt-by-Association,Similarity, Single Amino 
Acid Polymorphisms (SAAPs), Prioritization. 
 

I. INTRODUCTION 
Genome-wide association (GWA) studies have achieved 

remarkable successes in uncovering the relationship between 
common genetic variants and human inherited diseases in the 
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last decade [1]. Typically, a GWA study focuses on detecting 
associations between genetic variants and some observable 
clinical traits of a specific type of disease by comparing the 
frequencies of occurrence of genetic variants between a case 
population and a control population. However, with the 
advancing next generation sequencing technology, the basic 
hypothesis of a GWA study, which assumes that the etiology 
of common diseases is intervened by commonly occurring 
genetic variants with small to modest effects [2], has been 
challenge by the fact that both common variants and rare 
mutations may be involved in the pathogenesis of common 
diseases. Some studies also point out that multiple rare 
variants with moderate to high penetrance may work in 
concert with each other to have stronger phenotypic effects 
[3]. According to these researches, a common disease-rare 
variant (CD-VR) hypothesis that indicates that multiple rare 
variants can also serve as the main factor to influence some 
common diseases has been proposed. 

Even though many existing experimental methods and 
computational approaches have been proposed for GWA 
studies and have shown reasonably powerful performances, 
they may be not competent in uncovering the relationship 
between multiple rare variants and diseases due to the 
specific properties of rare variants, such as the low marginal 
population attributable risk and the wide range of penetrance 
[4].With the accelerating advancement of the next generation 
sequencing technology, it becomes more and more feasible to 
directly sequence candidate genetic regions or the whole 
genome to obtain a huge number of rare variants. 
Accordingly, several statistical methods, such as the 
combined multivariate and collapsing method [2], the cohort 
allelic sums test method [5], and the weighted-sum statistic 
method [3] have been developed to deal with such a huge 
number of rare variants, as well as simultaneously identify 
multiple rare variants. Even so, it has been suggested that one 
should first quantify which variants are potentially functional 
or neutral before statistical analysis of the sequence data [2]. 
On this scenario, bioinformatics tools or filters are expected 
to make functional predictions of the variants in study and 
then choose the functional variants in the successive 
statistical analysis. 

As a typical type of genetic variants, single nucleotide 
polymorphisms (SNPs) may lead to single amino acid 
polymorphisms (SAAPs) in proteins, potentially affect 
structures and functions of proteins, and further cause human 
diseases [6]. Many existing popular methods, such as 
PolyPhen [7], SIFT [8], KBAC [9], and MSRV [13], 
formulate the identification of SAAPs that are associated 
with diseases as a binary classification problem and give no 
information about what specific diseases the SAAP is 
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associated with. Therefore, limited contribution for practical 
or clinical applications is provided with the only 
classification results of these methods [10]. 

In this paper, we formulate the detection of SAAPs that are 
associated with a specific type of disease as a one-class 
novelty learning problem. Specifically, we prioritize 
candidate SAAPs for a query disease using the 
guilt-by-association principle, which takes advantages of an 
association score to quantify the strength of association 
between a candidate SAAP and the query disease and then 
rank all candidates according to their scores. The association 
score between a candidate SAAP and a query disease is 
quantified as the total similarities between the SAAP and all 
the seeds known as associated with the query disease. We 
also take advantage of 8 similarity scores to measure the 
similarity between two SAAPs under the feature space, 
which is composed of 44 features extracted from 
physiochemical properties of amino acids and sequence 
information of proteins. Systematic validation demonstrates 
that the proposed model is effective in deciphering the 
relationship between SAAPs and diseases, with the Canberra 
distance achieving the most precise prediction results. 

 

II. MATERIALS AND METHODS 

A. Data Sources 
We mainly use two databases to collect the related 

information of SAAPs and the protein sequence data where 
the SAAPs occur. The Swiss-Prot database [11] is used to 
provide the information of SAAPs and corresponding single 
amino acid polymorphisms. Specifically, version 2010_10 
(released on Oct. 5th, 2010) of this data database collects 
62,430 single amino acid polymorphisms that occur in 
12,401 human proteins, with each substitution annotated as 
“Disease,” “Polymorphism,” or “Unclassified.” The single 
amino acid polymorphisms annotated with “Disease” are 
considered as disease SAAPs and those annotated with 
“Polymorphism” are treated as neutral SAAPs. 

The Pfam database is adopted to extract the multiple 
sequence alignments (MSA) of human proteins. In version 
24.0 of Pfam database, (released in Oct. 2009) [12], there are 
curated alignments and models for 11,912 protein families. In 
our study, we focus on SAAPs that have corresponding 
OMIM accession number in the Swiss-Prot database and 
appear in multiple sequence alignment of the Pfam database. 
Finally, we collect 13,735 neutral SAAPs and 14,511 disease 
SAAPs that are associated with 1,575 human diseases. 

B. Physiochemical Features 
We take advantage of a set of 44 numeric features 

extracted only from the sequential information of proteins 
following the literature [13]. The features are derived based 
on three physicochemical properties (molecular weight, pI 
value, and hydrophobicity scale) of amino acids, three 
relative frequencies of occurrences of amino acids in the 
secondary structures of proteins, and two evolutionary 
conservation scores obtained from multiple sequence 
alignment of proteins. 

Given an amino acid polymorphism pair in a certain query 

protein, all above six properties can be calculated in seven 
conditions, therefore, we can get 42 physicochemical 
features. The 7 conditions are the six properties for the 
original amino acids; the six properties for the substitute 
amino acids; the six properties in a window-sized situation; 
the six properties in a column-weighted situation; Relative 
changes from the six properties for the original amino acid to 
the six properties for the substituted amino acid; Relative 
changes from the six properties for the window-sized 
situation to the six properties for the substituted amino acid; 
Relative changes from the six properties for the 
column-weighted circumstance to the six properties for the 
substituted amino acid. In the window-sized situation, these 
six properties of the original amino acid and of its neighbors 
in the query protein sequence are averaged. The 
column-weighted properties are the average of the 
corresponding properties of all the amino acids in the same 
column of the Pfam multiple sequence alignment that the 
substation occurs.  Furthermore, we use the conservation 
scores of the original and the substituted amino acids as 
features to facilitate the prioritization of candidate SAAPs. 
These two conservation scores are defined as the frequencies 
of occurrences of the amino acids (original or substituted) in 
the corresponding column of the alignment [14]. 
Consequently, we can get the 42 physiochemical features (6 
properties under 7 situations) and two conservation 
properties. 

C. Guilt-by-association Model 
We propose to prioritize candidate SAAPs using the 

guilt-by-association model based on two assumptions that a 
disease is associated with a set of SAAPs with similar 
physiochemical features and conservation properties, and a 
SAAP is likely to be associated with the query disease if the 
SAAP shares similar common physiochemical properties and 
conservation properties with the set of seed SAAPs that are 
known to be associated with the disease. To mathematically 
construct the guilt-by-association model, we let ωij be a type 
of similarity measure between SAAPs i and j under the 
feature space, and let Sd be the set of seed SAAPs that are 
known to be associated with the query disease d. The 
association score A(i↔d) between a candidate SAAP i and 
the disease d is then defined as 

( )
d

i
j

jA i d ω
∈

↔ = ∑
S

 

In other words, the strength of association between an 
SAAP and a disease is quantified as the total similarities 
between the SAAP and all the seeds known as associated 
with the query disease. 

We adopt 8 distance measures to quantify the similarity 
between two SAAPs in the feature space. Each SAAP can be 
treated as a point in the high dimensional feature space; 
therefore, we use some popular distance measures between 
the two points in the feature space to scale the similarity 
between two SAAPs. 

Firstly, we propose to calculate the reciprocal of the 
traditional Euclidean distance between two points as the 
similarity measure between the two corresponding SAAPs x 
and y. We have 
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Figure 1.  Distributions of mean rank ratios. A: using the Canberra distance measure. B: using the Chebyshev distance measure. C: using the Pearson’s 
correlation coefficient measure. D: using the cosine measure. E: using the Euclidean distance measure. F: using the χ2 distance measure. G: using the 

Manhattan distance measure. H: using the Minkowski distance measure. 

1
2

2
Euclidean 2

1

( )
n

i i
i

x yω
=

⎡ ⎤= − = −⎢ ⎥⎣ ⎦
∑x y , 

where ||x||2 is the L2 norm of a vector and n is the feature 
dimension of the SAAPs. 

Secondly, we propose to use the reciprocal of the 
Manhattan distance as the similarity measure [15]. We have 

Manhattan 1
1

n

i i
i

x yω
=

= − = −∑x y , 

where ||x||1 the L1 norm. 
Thirdly, we propose to use the cosine value of the angle 

between the two vectors pointing from the origin to the points 
as the similarity measure of the corresponding SAAPs. We 
have 

2
Cosine

2

1ω ⋅= − x y
x y

. 

Fourthly, we propose to adopt the abstract value of the 
Pearson’s correlation coefficient value as the similarity 
measure. We have 

Correlati
2

on
2

( ) ( )1ω − ⋅ −= −
− −

x x y y
x x y y

. 

Fifthly, we propose to adopt Canberra distance [16-18], 
which is a metric function often used for data scattered 
around an origin. The Canberra distance is similar to the 
Manhattan distance and the distinction is that the absolute 
difference between the variables of the two objects is divided 
by the sum of the absolute variable values prior to summing. 
We have 

Canberra
1

| |
| | | |

n
i i

i i i

x y
x y

ω
=

−=
+∑ . 

Sixthly, we propose to use Chebyshev distance [19] as the 
similarity measure. Chebyshev distance is a metric defined 

on a vector space where the distance between two vectors is 
the greatest of their differences along any coordinate 
dimension. We have 

Chebyshev max( )i ii
x yω = − . 

Seventhly, we propose to compute the Minkowski distance 
[20], a metric on Euclidean space which can be considered 
as a generalization of both the Euclidean distance and 
the Manhattan distance. We have 

1

Minkowski
1

( )
n m

m
i i

i

x yω
=

⎡ ⎤= −⎢ ⎥⎣ ⎦
∑ . 

In our research, we arbitrarily define the m=3. 
Finally, we propose to compute the χ2 distance [21], which 

is weighted Euclidean distance measure between profiles, 
where each squared difference between profile elements is 
divided by the corresponding element of the average profile. 
We have 

2

2

1

( )n
i i

i i i

x y
x yχω

=

−=
+∑ . 

D. Validation and Evaluation Methods 
We adopt a large-scale leave-one-out cross-validation 

experiment to validate the performance of our approach in 
recovering known association between SAAPs and diseases. 
In each run of the validation, we select an association 
between a seed SAAP and a disease, assume that the 
association is unknown, and prioritize the SAAP against a set 
of control SAAPs. Performing such validation run for every 
seed SAAP and every disease, we obtain a number of ranking 
lists. With these lists, we calculate two criteria to measure the 
performance of the prioritization method. The first criterion 
is the mean rank ratio of seed SAAPs, which is the average 
rank ratio of all seed SAAPs for a specific disease. The 
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second criterion is the area under the receiver operating 
characteristic (ROC) curve (AUC). At a certain rank 
threshold, we define the sensitivity as the fraction of seed 
SAAPs ranked above the threshold, and specificity the 
fraction of control SAAPs ranked below the threshold. 
Varying the threshold, we are able to obtain a ROC curve. 
The area under this curve is then defined as the AUC score. 

We choose all 13735 polymorphism SAAPs as the control 
group. As the seeds of the same disease should be more 
similar than the polymorphism SAAPs, it is expected that all 
the seeds should rank at the top, and thus we could expect 
low mean rank ratios and high AUC scores. 

 

III. RESULTS 

A. Validation of the Model 
We focus on diseases that have at least 4 seed SAAPs and 

obtain a total of 723 diseases. For each of these diseases, we 
perform a leave-one-out cross-validation experiment based 
on each of the eight similarity measures, and we present the 

resulting mean rank ratios in Fig. 1 and AUC scores in Fig. 2, 
from which we can see the effectiveness of the proposed 
method. In order to quantitatively demonstrate the 
performance of our methods under the eight similarity 
measures, we compute the percentage of the distribution of 
their mean rank ratios (shown in Table 1).  For example, 
when using the Canberra distance measure, we can see that 
most of seeds can be ranked at top 50% among the control 
groups. In other words, we can recover the relationship 
between a large number of seeds and the corresponding 
diseases. Moreover, we calculate that for 86.31% (624) 
diseases, the mean rank ratios are less than 50%; for 70.68% 
(511) diseases, the mean rank ratios are less than 40%; for 
48.13% (348) diseases, the mean rank ratios are less than 
30%; for 30.29% (219) diseases, the mean rank ratios are less 
than 20%; for 15.08% (109) diseases, the mean rank ratios 
are less than 10%. We further run a Wilcoxon signed rank 
test against the alternative hypothesis that the median of the 
mean rank ratios is less than 50% (random situation), and we 
find that the p-value is less than 2.2×10-16. In other words, it 
is statistically significant that our method can effectively 
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Figure 2.  Distributions of AUC scores. A: using the Canberra distance measure. B: using the Chebyshev distance measure. C: using the Pearson’s correlation 
coefficient measure. D: using the cosine measure. E: using the Euclidean distance measure. F: using the χ2 distance measure. G: using the Manhattan distance

measure. H: using the Minkowski distance measure. 

TABLE 1.  MEAN RANK RATIOS OF THE VALIDATION EXPERIMENT. 

Cutoff Canberra 
(%) 

Chebyshev 
(%) 

Correlation 
(%) 

Cosine 
(%) 

Euclidean
(%) 

Kai 
(%) 

Manhattan 
(%) 

Minkowski 
(%) 

10% 15.08 4.56 7.19 3.87 3.18 3.60 3.60 3.60 

20% 30.29 9.54 20.61 7.33 6.22 6.92 7.19 7.05 

30% 48.13 20.61 35.68 14.94 12.03 13.55 14.94 14.94 

40% 70.68 35.82 55.05 28.22 24.34 26.14 28.63 27.80 

50% 86.31 56.85 74.83 46.75 42.32 44.12 47.58 46.75 
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prioritize seed SAAPs among the top of candidate SAAPs. 

B. Comparison of the Similarity Measures 
The above results (Fig. 1, Fig. 2 and Table 1) of the 

leave-one-out cross-validation experiments also allow us to 
compare the performance of the eight similarity measures. 
From Table 1, we see that our model with the Canberra 
distance measure can give us the most accurate prediction 
result, the model with the Pearson correlation coefficient 
measure may also provides the distinguishing power for 
uncovering the relationships between the candidate SAAPs 
and query disease; while the model with the Chebyshev 
distance measure, the cosine measure, the Euclid distance 
measure, the χ2 distance measure, the Manhattan distance 
measure, and the Minkowski distance measure seem not 
competent in this prioritization problem. To further elucidate 
this observation, we run seven Wilcoxon rank sum tests 
against the alternative hypothesis that mean rank ratios 
obtained using the Canberra distance measure have a 
negative location shift over those using the other measures. 
The results show that all the p-value are smaller than 
2.2×10-16. It is therefore clear that the Canberra distance 
measure is more suitable in measuring the similarity between 
two SAAPs. 

C. Relative Importance of Individual Features 
We try to understand the contributions of each individual 

feature in the model and find the most discriminative 
properties for the disease SAAPs. We adopt a permutation 
method to measure the importance of each feature [6]. 
Specifically, by shuffling the values of a feature in the 
samples, the information contained in the feature is broken. 
When the permuted feature is used with the remaining 
un-permuted features, the performance of the prioritization 
model may be impaired accordingly. Then, we compute the 
change in mean rank ratios for all SAAPs (the mean rank 
ratio calculated by pool all SAAPs) in validation before and 
after the permutation procedure. Consequently, we can use 
the change in mean rank ratios for all SAAPs to give a 
reasonable measure for the relative importance of a feature.  

The results of the change in mean rank ratios for all SAAPs 
based on four most frequently used similarity measures (the 
Pearson correlation coefficient measure, the cosine measure, 
the Euclid distance measure, and the Manhattan distance 
measure) are presented in Fig. 3. Although the model with 
different similarity measure exhibit different contributions 
for the first 42 features, the model using the effective 
Pearson’s correlation coefficient measures gives positive 
approval towards the discriminant power of the two 
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Figure 3.  Relative importance of individual features. A: using the Euclidean distance measure. B: using the Manhattan distance measure. C: 
using the cosine measure. D: using the Pearson’s correlation coefficient measure. 
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Figure 4.  Seed effect. A-D: using the Canberra distance measure. E-H: using the Pearson’s correlation coefficient measure. 
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conservation scores. We also run two Wilcoxon rank sum 
tests against the alternative hypothesis that mean rank ratios 
obtained using permuted feature 43 (or permuted feature 44) 
with other un-permuted features have a positive location shift 
over those using the original dataset, and we obtain small 
p-value (less than 2.2×10-16) for both features. This result is 
consistent with the analysis of relative importance of the 
features in the literature [6], which points out the 
conservation scores have the most powerful discriminative 
ability to identify the disease-associated SAAPs against the 
neutral ones. 

D. Effect of the Number of Seed SAAPs 
We try to learn the influence of the number of seed SAAPs 

for our proposed model and see whether the model will give 
unstable results according to the change of the number of 
seeds. The amount of seed SAAPs extracted from Swiss-Prot 
database for each disease is quite different, ranging from 4 to 
260. We thus divide our test dataset into four groups 
according to the amount of seed SAAPs: the first group has 
177 diseases, the number of seed SAAPs is ranging from 20 
to 260; the second group has 182 diseases, the number of 
seed SAAPs is ranging from 10 to 19; the third group has 168 
diseases, the number of seed SAAPs is ranging from 6 to 9; 
the fourth group has 196 diseases, the number of seed SAAPs 
is ranging from 4 to 5. Here, we use the two powerful 
measures (the Canberra distance measure and the Pearson 
correlation coefficient) as examples. The histograms result of 
each group using the Canberra distance measure is shown in 
Fig. 4(A-D), and histograms result of each group using the 
Pearson correlation coefficient measure is shown in Fig. 
4(E-H). Form the figure we can see that the number of seed 
SAAPs has little influence for the mean rank ratios. 
Therefore, the proposed method is stable to the number of 
seed SAAPs known to be associated with query diseases. 

 

IV. CONCLUSIONS AND DISCUSSION 
In this paper, we formulate the problem of identifying 

disease single amino acid polymorphisms against neutral 
ones for specific types of diseases as a one-class novelty 
learning problem. Comply with the guilt-by-association 
principle that a single amino acid polymorphism is 
considered as having association with a disease if the single 
amino acid polymorphism shares some common properties 
(such as physiochemical features, conservative level, and etc.) 
with a set of known seed SAAPs of the disease, we solve this 
problem using a guilt-by-association model. We implement 
our method using eight similarity measures with a set of 
physiochemical features and two conservation scores that are 
drawn only from protein sequence information. We 
demonstrate that the method is effective in ranking single 
amino acid polymorphisms that are responsible for specific 
diseases among the top of candidates. We also study the 
effects of different features and distance measures. 

We can further carry out our study from the following 
aspects. First, we focus on the single amino acid 
polymorphisms occurring in known protein domains and 
collect the conserved protein domains for the query protein 
sequence based on the Pfam database. This limitation can be 

improved by using some other multiple-sequence alignment 
methods, such as PSI-BLAST [22], PANTHER [23] and so 
on. Second, we currently use a feature set including 42 
physiochemical features and two conservation properties to 
construct our prediction model. From the analysis of feature 
importance, we can see that some features have negative 
contribution to our prediction result, and some features may 
be high correlated. In our future studies, we will combine our 
prioritization method with some feature selection mechanism 
to find out more effective features for our model. Finally, our 
approach is currently limited to single amino acid 
polymorphisms occurring in protein coding regions. 
However, mutations in other genome regions such as the 
transcriptional-factor binding sites and promoter regions may 
also be associated with human diseases. Further studies are 
needed for these mutations. 
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