
  

 

Abstract—Novel drug target identification and drug 

discovery are potential fields of systems biology which is 

recently being implemented against various pathogens based on 

differential biological processes of host and pathogen. Due to 

closer extent of biological similarity of eukaryotic fungal 

pathogens with their hosts, it has been urgent to find out novel 

drug targets against fungal pathogens.  It is seen that mitogen 

activated protein kinase (MAPK) cascade transmits signals 

from outer cell surface to the nucleus and is involved in fungal 

survival   mechanisms against environmental stress conditions. 

MAPK cascade molecules can be good targets of antifungal 

drugs to avoid fungal survival against conventional drugs.  From 

these perspectives, systems biology approaches have been 

undertaken with an aim to assess the MAPK molecules as 

antifungal drug targets to find out the best one using Yeast 

(Saccharomyces cerevisiae) as model organism, Human as host 

and Candida albicans as pathogen. Comparative proteomic 

study, protein-protein interaction study, sequence and 

structural analysis   study,   molecular   docking   study   and   

mathematical modeling study have been conducted in this 

regard. A combined prioritizing scoring system has been used 

to identify the most optimal MAPK target based on weighted 

decision matrix and combined matrix position score (CMPS), 

stability of the matrix position score (SD) and total score (TS) 

have been introduced. MAPKs having TS less than the average 

TS (72.55) were screened out as better MAPK targets. The 

approach predicts SLT2/MPK1 among the 11 MAPK molecules 

the best target of antifungal drugs having the lowest TS 

(54.49).  

 
Index Terms—Antifungal drug, MAPK cascade, novel drug 

target, signal transduction pathway, systems biology. 

 

I. INTRODUCTION 

Deciphering the systemic properties of living entities has 

emerged as a central issue in recent years and systems biology 

is playing non-trivial role in the elucidation of form, function 

and behavior of life more effectively. Such systems biological 

approaches are necessary for us to make important 

breakthroughs  in development of experimental, analytical 

and computational methods for achieving the deeper insight 

of life [1], [2]. Novel drug target identification and 

exploration of new drugs against emerging pathogens are 
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important issues in recent medical science which are mainly 

based on differential biological processes of host and 

pathogens. Recent advancement in system biological 

approaches facilitated with bioinformatics, computational and 

mathematical biology has been a potential way in this regard 

[3]. Genomes of a large number of organisms have been 

sequenced over the last few years and the complete genome 

information allows analysis from different theoretical and 

practical perspectives. 

Computational   analysis of any particular gene provides a 

primary idea of its function and importance. Any gene 

necessary for the survival and viability of a pathogenic 

organism having little or no similarity to those of the host 

organism may be a possible potential drug target [4]. The 

differences in the proteins of the host and the pathogen can be 

effectively used for designing a drug specifically targeting the 

pathogen [5]. The computational approach based on 

comparative genomics and proteomics study has been used to 

investigate novel drug targets in some pathogenic organisms 

such as Pseudomonas aeruginosa, Helicobacter pylori, 

Aeromonas hydrophila, Neisseria meningitidis etc. [4]-[8]. 

Determination of the three dimensional structures of potential 

target proteins is a major task in drug discovery process which 

is a time consuming expensive process. Homology modeling 

is a useful tool to predict three dimensional structures of target 

proteins of unknown structures [9]. Molecular docking study 

is a tool to find out most effective drug ligands against target 

proteins based on three dimensional interactions between 

target protein and ligand [10]. Mathematical models can be a 

tool for global scale understanding of biological processes 

consequently unique drug target identification from dynamic 

point of view [11].  

Resistance to antibiotics in pathogenic fungi is a problem 

of special importance in recent time. Though bacterial drug 

resistance has been studied over for the last few decades, such 

studies for pathogenic fungi have got recent interest [12]. 

Treatment with antifungal drugs often results in the 

appearance of resistant strains of fungi. Different signal 

transduction mechanisms are important for fungi in 

environmental sensing and survival that directly or indirectly 

lead to drug resistance or reduction of stress exerted by 

antifungal drugs [13]. MAPK signaling cascade that transmits 

signals from outer cell surface to the nucleus has known to be 

one of the major players in such processes [14]. The role of 

MAPK cascade in fungi is very central which predicts the 

MAPK molecules potential drug targets [15], [16].  
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Candida albicans, adiploid fungus growing both as yeast 

and filamentous cells are causal agent of opportunistic oral 

and genital infections in humans [17]. Systemic fungal 

infections (fungemias) including those by C. albicans have 

emerged as important causes of morbidity and mortality in 

immunocompromised patients (e.g., AIDS, cancer 

chemotherapy, and organ or bone marrow transplantation) 

[18]. 

In this paper a drug target identification process has been 

described based on the previously described strategies. The 

major objective was to assess the MAPK cascade molecules 

of  yeast as drug  targets to predict similar type of target 

proteins of Candida albicans as best potential drug targets. 

 

II. MATERIALS AND METHODS 

The whole study was conducted using Saccharomyces 

cerevisiae (baker’s yeast) as model organism, targeting 

Candida albicans (pathogenic yeast/filamentous fungi) as 

pathogen in the context of Homo sapiens (human) as host. 

The methods were devised to find out best drug targets 

(MAPK molecules) in S. cerevisiae MAPK cascades.  A series 

of studies were undertaken and results from different studies 

have been combined to identify the best targets among the 

MAPK molecules in a relative scale. As S. cerevisiae is a 

model system to study different eukaryotes (from fungus to 

human) and other fungus show basic genomic, morphogenetic, 

biochemical and physiological similarity with S. cerevisiae 

the predictions come out from the   approach   were   

theoretically   consistent   with   the possibility to be implied to 

the pathogen C. albicans and other fungal pathogens as well. 

Protein Lounge Pathway Database, KEGG, NCBI and 

UniProtKB were used to search in detail signal transduction 

pathways related to environmental information processing of 

yeast and MAPK cascade molecules [19]-[22]. For 

comparative proteomic study of yeast with host (human) and 

pathogen (C. albicans), BLAST to Proteome (protein blast) 

programs were used [23], [24]. Best 10 proteins were taken 

for further analysis from each BLAST run based on bit score 

(total score) and e-value (expected value). Expected threshold 

was 10 for each BLAST run. Lower homology with human 

proteome denotes to higher feasibility and higher homology 

with pathogen proteome show higher feasibility (here the bit 

scores of the least matched and best matched  human or 

pathogen proteins were used to compare) Protein-Protein 

interaction study was done based on STRING program [25]. 

Best 20 proteins were taken for further analysis. To 

understand the extent of protein-protein   interaction   average   

interaction   score (AVPIP) was measured by dividing the 

summation of individual interactions with the number of 

interacting proteins (here 20). Required confidence (score) 

was medium confidence (0.400). Higher interaction extent 

denotes to the involvement of the MAPKs in higher number of 

biological processes making the relative importance of the 

MAPKs. Homology modeling study was conducted based on 

Swiss-Model program (automated homology modeling) [26] 

as currently the 3-D Structures of MAPK molecules (except 

FUS3) are not available in the public databases. The models 

were further analyzed and visualized using Discovery Studio 

Visualizer software package [27]. The model quality was 

assessed based on QMEANscore4 and QMEAN Z-Score 

(average quality=AVQ score was measured). The quality of 

homology models definitely influences the predictions. 

Molecular docking study was conducted based on the DOCK 

Blaster program (clean–fragments   database   of   354309   

molecules   was searched [28]. Best ligands for each MAPK 

molecule was further visualized and analyzed by chimera 

software package based on binding energy (ligand 

binding=LB score) [29]. The availability of ligands of lower 

binding energy denotes to the higher feasibility. 

Molecular pathway model were constructed for each 

MAPK cascade of the signal transduction pathways. The 

MAPK cascade for yeast assumed to be the same in various 

organisms (experimentally proved in different organisms and 

cell free systems as well) including one single 

phosphorylation stage and two dual phosphorylation stages. 

Literature survey was the key to construct such detailed 

structure of cascade [30], [31]. All the kinetic data were 

collected from literature [30]-[33]. 

 
Fig. 1. A generalized MAPK cascade (Here, X = MAPKKK= STE11, BCK; 

Y = MAPK = STE7, PBS2, MKK1, MKK2; Z = MAPK = KSS1, FUS3, 

HOG1, SLT2, SMK1) 

 

Finally a generalized MAPK cascade was built based on 

general notations (X= MAPKKK, Y= MAPKK, and Z= 

MAPK) (Fig. 1). The models by Huang and Ferrell [30] and 

Khodolenko [31] were downloaded from BioModels 

Database [32] in SBML and COPASI format. The models 

were simulated using copasi software package [34]. Time 

course simulation was done to analyze signal sensitivity. The 

models for mass action kinetics and enzymatic kinetics 

(Michaelis– Menton kinetics) for the yeast MAPK cascade 

were built and simulated using MATLAB environment [35]. 

Mathematical models for each reversible reaction were 

designed using ordinary differential equations “(1-6)”. The 

simulations were done to satisfy steady state. Simulation was 

done for the entry points (3 points) of the cascade assuming 

concentration a function of time.  
 

d/dt [X]= v2 –v1 = – K1 [X] + K2 [XP]            (1) 

d/dt [Y] = v6- v3 = – K3 [Y] + K6 [YP]          (2) 

d/dt [Z] = v10 – v7 = – K7 [Z] +  K10  [ZP]       (3) 
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c 

where:    Kn = Reaction rate constant 

              Vn = Reaction rate 

(Equations for Mass action kinetics) 

 

                 d/dt [Z] = k3cYPPZ/(K3+Z) – k3iZP/(ZP+K3i)      (4) 

d/dt [Y] = k2cXPY/(K2+Y) – k2iYP/(YP+K2i)     (5) 

                  d/dt [X] = -k1cSX/(K1+X) + k1iXP/(XP+K1i)    (6) 

where:      knc= Catalytic activation rate 

kni = Catalytic inactivation rate 

Kn = Binding affinity 

Kni = Binding affinity of inactivation                                          

(Equations for Enzymatic kinetics) 

The MAPK molecules have been assigned relative 

ascending values (1-11 ranks) according to the feasibility of 

MAPK molecules as drug targets from each study (for signal 

sensitivity study the ranks were 1, 2 and 3 for first, second and 

third stage phosphorylation respectively as the signal 

sensitivity increases towards according to the progression of 

the cascade).To identify best MAPK molecule as drug target, 

an 11 by 6 weighted decision matrix [30] was formed to 

calculate the combined score for the six parameters above for 

each MAPK molecule. The relative values from previous 

studies were used to form the matrix. MAPK molecules were 

considered according to row and the parameters were 

considered according to column.  The least scoring molecule 

was assumed to be the best target in comparison to others. A 

weighted matrix was formed assuming 3 for the comparative 

proteomic values, 2 for the protein-protein interaction values, 

1 for homology modeling values and molecular docking 

values, and 3 for signal sensitivity values (this was done to 

represent the relative importance of the parameters). 

Combined matrix position score (CMPS) was calculated 

based on the summation of individual scores of 6 positions of 

each MAPK in the matrix. The standard deviations (SD) of 

matrix positions of different MAPK molecules were 

calculated to understand their positional stability based on 

different parameters [37]. Finally total score (TS) has been 

calculated as the summation of CMPS and SD. 

 

III. RESULTS AND DISCUSSIONS 

The results from comparative proteomic study, 

protein-protein interaction study, structural analysis study, 

molecular docking study and mathematical modeling study 

are given below. Different proteins from different study show 

better effectiveness as drug targets. MKK2 shows least 

matching with human proteome, HOG1 shows best matching 

with pathogen proteome, SLT2 shows highest protein-protein 

interaction extent, FUS3 shows best model quality and STE11 

shows best ligand binding (Fig. 2 (a-c). and Fig. 3(a-b)). 

The above studies give us only static feature of the MAPK 

cascade system. But we should also consider the dynamic 

features of the cascade. The simple time course simulation 

shows the expected temporal sequence of kinase activation, 

from MAPKKK to the final effector MAPK. It shows that the 

activity of MAPK reaches its maximal level before MAPKKK 

and also hints at the increase in sensitivity along the levels of 

the cascade. The dose-response plot (Fig. 4) directly shows 

the strong increase in sensitivity along the levels of the 

cascade with the MAPK curve predicted to be the steepest. 

 

a                                                          b 

  
Fig. 2. Comparison of yeast MAPKs based on the human proteome 

dissimilarity (a), based on the pathogen proteome similarity (b), based on the 

average interaction score (AVPIP) (c).  

 

 
Fig. 3. Quality comparison yeast MAPKs based on the homology models (a), 

based on the ligand binding score (LB) (b). 

 

 
Fig. 4. Simulation results of the mass action (5s) (a), and the enzyme kinetics 

b a 

a 

b 
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Fig. 5. Time course simulation curves for Huang and Ferrell Model (a) and 

Khodolenko model (b). 

 

So, it can be inferred that MAPK stage is a comparatively 

important signaling point in the MAPK cascade. 

 
TABLE I: A WEIGHTED DECISION MATRIX (11 BY 6 MATRIX) TABLE FOR 

ALL THE RELATIVE PARAMETERS (MAPK MOLECULES ARE ASSUMED TO BE 

ACCORDING TO THE COLUMN AND RELATIVE PARAMETER VALUES FOR 

EACH MAPK FROM THE STUDIES). 

15 18 4 5 1 9 

12 33 18 6 5 6 

27 15 10 4 6 3 

30 12 6 1 3 3 

18 9 12 3 9 6 

33 3 8 2 8 3 

9 30 14 7 7 9 

6 27 16 9 7 6 

3 24 22 10 6 6 

24 6 2 8 4 3 

21 21 20 11 2 3 

 

As the lower total score (TS) which is the summation of 

Combined Matrix Position Score (CMPS) and Standard 

Deviation (SD) of matrix position scores, denotes to lower 

host similarity, higher pathogen similarity, higher 

protein-protein interaction, higher homology model quality, 

higher best ligand availability and higher signal sensitivity, 

MAPKs having lower TS can be predicted as the better drug 

targets. 

 
Fig. 6. Combined comparison of MAPKs based on their weighted   scores   

from   different   studies. (HC=   host comparison, PC= pathogen comparison, 

PPI= protein-protein interaction, MQC= model quality comparison, LAC= 

ligand availability comparison, SSC= signal sensitivity comparison, 

CMPS=combined matrix position score, SD=standard deviation, TS=total 

score). 

 

TABLE II: CMPS, SD AND TS FOR DIFFERENT MAPKS (CMPS= COMBINED 

MATRIX POSITION SCORE, SD= STANDARD DEVIATION, TS= TOTAL SCORE). 

MAPKs CMPS SD TS 

STE11 52 6.07 58.07 

STE7 80 9.89 89.89 

KSS1 65 8.27 73.27 

FUS3 55 9.96 64.96 

PBS2 57 4.5 61.5 

HOG1 57 10.78 67.78 

BCK1 76 8.1 84.1 

MKK1 71 7.6 78.6 

MKK2 71 8.17 79.17 

SLT2 47 7.49 54.49 

SMK1 78 8.18 86.18 

 

 
Fig. 7. Comparison of MAPKs based on CMPS, SD and TS. 

 

MAPKs having TS less than the average TS (72.55) can 

be predicted as better MAPK targets. Thus SLT2 (54.49), 

STE11 (58.07), PBS2 (61.5), FUS3 (64.96) and HOG1 

b 

a 
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(67.78) have better potential as antifungal drug targets.  Here 

SLT2/MPK1 shows least score (54.49) and can be predicted 

as the best target among the 11 MAPK molecules (Table I and 

Table II, Fig. 6 and 7] 

 

IV. CONCLUSION AND RECOMMENDATION 

The study was conducted for the preliminary evaluation of 

the MAPK molecules as drug targets against fungal pathogens. 

The result comprises the understanding of a number of 

parameters in an integrated fashion. The predicted targets can 

be further analyzed and experimented for clear confirmation 

about their possibility as drug targets. Further analysis can be 

done based on more accurate structural analysis of the 

proteins to search out more accurate drugs. It can also be 

suggested that the MAPK molecules with lower TS values can 

also be used as targets for synergistic antifungal drugs in 

addition with conventional ones to avoid the evolution of 

resistance.   Here Candida albicans was taken as target 

genome. Other fungal pathogens also can be assessed in this 

process to find out better drug target against them. Such in 

silico study will definitely help us to discover drugs with 

reduced cost, time and enhanced efficiency and accuracy. 
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