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Abstract—This paper presents a new algorithm for searching 

short fragments of sequences in long DNA sequences. A short 

sequence (pattern) is searched in both DNA strands with a given 

maximal value of errors. Each DNA sequence (T) is 

preprocessed by compressing it using Burrows-Wheeler 

transform and wavelet tree. First, the pattern is divided into 

short words which overlap themselves, and then their positions 

in T are determined using FM-index. Connections between the 

words are searched under the assumption of an acceptable 

maximal error allowed. Experimental results indicate that the 

algorithm is highly effective and it outperforms a popular Basic 

Local Alignment Search Tool (BLAST) in case of searching for 

short sequences. 

 
Index Terms—Approximate string matching, compressed 

index, wavelet tree  

 

I. INTRODUCTION 

Existing DNA sequencing methods are becoming faster 

and cheaper, hence the number of known sequences is 

rapidly increasing. Acquired DNA sequences are stored in a 

number of gene banks, such as the well-known GenBank [1], 

which contains billions of base pairs (i.e. nucleotides) from 

human DNA sequences. Acquisition of DNA information is 

no longer a bottleneck in genetics, and there is a need for 

more effective algorithms for DNA sequence processing, 

such as searching for selected parts of a sequence, analysis of 

similarities, differences, or repetitive fragments. Therefore, 

sequence alignment methods are of a great relevance for the 

research in biology and medicine. In many cases, the 

sequences are expected to be matched despite some small 

differences between them, as they may be caused by the 

acquisition errors, hence the searching procedure should 

accept a controlled number of mismatches. 

One of the first methods for comparing whole DNA 

sequences, based on analysis of dot-matrix plots, was 

introduced in 1969, and it was later used in a popular Dotter 

program [2]. However, the Needleman-Wunsch algorithm 

[3], which uses dynamic programming, was found to be more 

effective and currently it is the preferred approach for 

sequence alignment. Searching sequence fragments in large 

databases can be handled using heuristic methods, 

implemented in Basic Local Alignment Search Tool 

(BLAST), which is available at http://blast.ncbi.nlm.nih.gov 

website. This program is commonly used for sequence 
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alignment, however its efficacy in case of approximate search 

drops for sequences shorter than 40 base pairs, which is a 

serious disadvantage. Text compressing by indexing is 

widely used in pattern matching algorithms, both for the 

exact and approximate search. Concerning the latter, 

Välimäki et al. are searching from a set of DNA sequences 

for groups whose suffixes or prefixes are matched to each 

other with a fixed maximum distance and have a 

predetermined length [4]. Also, to search for a pattern in the 

text, error models can be used that define how the sought 

sequence should be divided taking into account the maximal 

number of errors allowed [5]. 

This paper introduces an algorithm for searching DNA 

patterns in long sequences with no restrictions imposed on 

the minimal length of the query sequence. Although 

searching for short sequences has many applications, 

including designing primers in polymerase chain reaction 

(PCR), the existing methods do not perform well here. In the 

proposed algorithm a query sequence is first divided into 

overlapping words which are searched in a DNA database 

using FM-index. The overlapping increases the chances of 

matching the sequences even if the mismatches are located 

close to each other. This preprocessing step is described in 

Section II-A. After that, the connections between the words 

are matched which makes it possible to find the pattern 

locations with maximal error allowed. The connection 

procedure is the main contribution of this paper and it is 

outlined in Section II-B. Section III presents the results of 

experimental validation, and Section IV concludes the paper. 

 

II. PROPOSED METHOD 

A. Preliminary Sequence Preparation 

The process of searching a specified pattern in a sequence 

T can be accelerated by appropriate indexing. In the research 

reported here, FM-index [6], [7] was used for this purpose. 

This method processes a sequence subject to the 

Burrows-Wheeler transform (TBW) [8] and its aim is to 

provide information on the number of occurrences 

(OCC(c,q)) of a given character c in the prefix TBW[0, q]. The 

TBW sequence is compressed using a binary wavelet tree [9], 

[10], which makes it possible to retrieve OCC(c,q) without 

the decompression. Prior to the search process, the long DNA 

sequence is processed and FM-index is generated. 

B. Searching for a Pattern 

The aim of the conducted study was to locate a DNA 

fragment (termed pattern P) of length m in a long sequence T, 

allowing for three types of possible changes, namely:  

1) Mismatch – a nucleotide replaced with another one; 
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2) Deletion – a  nucleotide missing; 

3) Insertion – a nucleotide is added.  

The pattern is divided into r shorter overlapping fragments, 

i.e. words, whose lengths are s and shifts between them equal 

ν. The number of words (r) is given by the following 

equation: 

                      ( ) / 1r m s v              (1) 

An example of dividing a sequence P (m = 14) into words 

{Si} of length s=5, with a shift ν=2 is presented in Fig. 1. In 

this case, the pattern was split into five short words, which 

have the same, fixed length. Usually a certain number of 

characters mr=(m-s) mod ν at the end of the sequence P is left 

unassigned to any word (in the figure it is the last character 

'C'). These characters will be analyzed at a later stage of 

processing. 

 

Fig. 1. Words extracted from a pattern (s = 5, ν = 2). 

 

The proposed algorithm searches for fragments with the 

defined maximal Levenshtein distance (number of changes), 

and it consists of the following steps: 

1) Create a sorted list of occurrences in sequence T for each 

word Si using FM-index. 

2) Search for connections (i.e. a pair of subsequent 

occurrences) between the exact positions of these words 

in the examined sequence and generate a set of 

candidates. 

3) Analyze the obtained candidates – restore the unknown 

parts and verify the restored candidate. 

C. Extraction of Candidate 

The candidates, i.e. single or multiple connections which 

meet the maximal allowed difference (M) criterium, are 

extracted using the algorithm presented in Alg. 1. The added 

function for searching connections between words is 

presented in Alg. 2. It is assumed that at a given position in 

the sequence only a single deletion or insertion may occur 

and every kind of change is treated with the same weight. The 

algorithm uses a number of r position lists (ℓ[i], i ={0,  ..., 

r-1}), which have previously been sorted in descending 

order. Every new candidate is represented as a vector of 

connections, i.e. occurrence pairs (Np, Nt), where Np is the 

word position in the pattern P, and Nt in the position in the 

reference sequence T. The new candidate has a form of: 

[ζ[0], ..., ζ[k]], where ζ[i]=(Np, Nt), and it is further taken into 

account only when there are at least two pairs (Alg. 1, line 6). 

After creating a new candidate, the remaining elements of ℓ 

which belong to the new connection ζ are removed (Alg. 1, 

line 8). 

The searching for connections is performed for every 

subsequent word, starting from the first one (Alg. 1, line 3). 

The position lists for every given word Si are analyzed 

beginning from the lowest (i.e. final) value from the position 

list (ℓ[i][end]) (Alg. 1, line 4). 

Alg. 1. Algorithm for the candidates extraction. 

Require:  ℓ   

1: δ = s/ν; 

2: Q = ∅; 

3: for i = 0 to r-1 do  

4:      while ℓ[i] ≠ ∅ do 

5:              ζ  = FUN_CONN(i);  

6:               if ζ contains at least 2 pairs then 

7:                   add ζ to Q; 

//position list 

 

// set of candidates 

//for each word Si 

 

//Alg.  2 

8:                   ℓ =  the relative complement of ζ  in ℓ; 

9:               end if 

10:             remove  ℓ[i][end]; 

11:     end while 

12: end for 

13: return Q; 

 

Alg. 2. Function for searching connections. 

1:  function  FUN_CONN(i); 

2:    ζ  = ∅;  

3:    Np = iν; 

4:   Nt  =  ℓ[i][end];  

5:    k = 0; 

6:    ζ [k] = (Np, Nt);  

7:    j = i + δ; 

8:   while j < r do 

9:        Np  = jν; 

10:      Nt  =  Nt  +  ν; 

11:        if  Nt  ℓ[j] then 

12:             FUN_INC(); 

13:        else if  Nt  + 1  ℓ [j] then 

14:              Nt  =  Nt  + 1; 

15:              FUN_INC(); 

16:        else if  Nt  - 1  ℓ[j] then 

17:               Nt  =  Nt  - 1; 

18:               FUN_INC(); 

19:        else 

20:              Nt  =  Nt  +  ν; 

21:              j = j + 1; 

22:        end if 

23:  end while 

24:  return  ζ; 

25: end function 

 

26: function FUN_INC(); 

27:      k = k + 1; 

28:      ζ [k] = (Nt, Nt); 

29:       j = j + δ; 

30: end function 

 

//a candidate 

//the word position in P 

// the word position in T 

 

// add a new pair 

 

 

 

 

 

 

// function in line 26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The sequence P was divided into overlapping words, 

therefore it is sufficient to check a new connection with a 

δ=s/ν step (Alg. 2, lines 7 and 29). If this connection is not 

found, the next word is analyzed, i.e. δ+1. For a pair 

ζ[k]=(Np, Nt ) of word Sj, it is checked whether there exists 

X=Nt+νδ in the list of positions for the word Sj+δ. If it does

 not exist, positions X+1 and X-1 are checked as well (Alg. 

2, lines 11, 13 and 16). If a connection is found, a new pair 

is added to the vector – ζ[k+1]=Np_new, Nt_new), where 

Np_new=(j+δ)ν, Nt_new=X. When no occurrences of the 

searched position are found, the list for the next word is 

checked. If the connection is found with an insertion or 

deletion, or if there is no connection, or if the connection 

search is not started from the first word, then the number of 

known changes ( ɛ ) is updated. The actual number of 

differences between the fragments is greater or equal ɛ . If 

ɛ >M at any point of building the connections, the algorithm 

begins a new search. 
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Fig. 2. An example of a candidate. 

 

D. Verification of Candidates 

As it was described earlier in the paper, those candidates 

are determined, which could satisfy the condition of 

acceptable maximal number of errors in the sought fragment. 

During the search process, a number of known differences ɛ  

between the fragments is computed. However, in many cases 

this number may be larger. An example of such a situation is 

shown in Fig. 2, where s=5, ν=2 and the connection vector is 

ζ=[(0, 70), (4, 74), (12, 82), (17, 88)]. Here, the actual 

distance between T’ and P may vary between 2 to 5 (i.e. ɛ

=2). In order to verify the candidate, the missing space in the 

checked fragment of sequence T should be read and 

compared with pattern. Unknown parts of the sequence are 

reproduced on the basis of information about TBW. In the 

illustrated example, it is sufficient to compare four 

nucleotides to determine the number of errors. However, for 

some cases it may be difficult because of the shifts that must 

be taken into account. Therefore, P and T' are compared 

using a modified Needleman-Wunsch algorithm, which does 

not determine the entire similarity matrix, but only the 

diagonal and those fields that are within a distance M from it. 

It is worth noting that the verification provides an exact 

solution, and there is no risk of observing false positives.  

 

III. EXPERIMENTS 

Following the presented algorithm, a pattern, whose length 

equals m, is divided into words consisting of s nucleotides 

which overlap themselves at ν positions. The connections 

between the words are further analyzed only if they consist of 

at least two pairs and the difference between the words' 

indices is greater than δ=s/ν. Therefore, the algorithm 

parameters should be chosen in such a way that for a given 

length of the pattern such a split is possible. However, this 

assumption is insufficient when the maximal allowed number 

of changes is taken into account. In order to locate the 

sequence fragment in case there is a maximal difference M 

defined, the parameters must be chosen so that  

   Mvsr  /)2(          (2) 

where r (1) is the number of words S extracted from P. 

Initial tests were conducted for a sequence>gi|74273667| 

gb|CM000266.1|Homo sapiens chromosome 15 of length 

78891134 base pairs, taken from the NCBI website 

(http://www.ncbi.nlm.nih.gov). It was investigated how the 

choice of parameters affects the number of found matches 

and the search time. The obtained results are shown in Fig 3. 

It is presented how the pattern length (m), length of word (s), 

shift (ν), and maximum error allowed (M) affect the search 

time and the number of patterns found in the reference 

sequence. By reducing the word length, more words are 

found in T, therefore, the computation time grows as well. 

However, using shorter words makes the solution more 

resistant to a greater number of closely spaced changes, 

hence more correct connections are found. Also, reducing the 

ν value allows for finding a larger number of patterns in the 

reference sequence, but these changes are less resistant to 

closely located differences between the two sequences. 

 
TABLE I: RESULTS OBTAINED FOR THE PROPOSED ALGORITHM AND BLAST 

(BOLD VALUES INDICATE THE BEST SCORE) 

m 

parameters proposed algorithm BLAST 

M s v t[s] 
no. found 

pattern P 
t[s] 

no.found 

pattern P 

35 
2 6 2 1.1 1 2.8 1 

2 7 2 0.9 1 2.4 1 

30 

4 6 2 1.2 1 

2.7 0 3 6 6 0.3 0 

3 6 4 0.2 2 

27 
2 6 2 0.8 1 2.7 1 

2 7 2 0.6 1 2.4 1 

25 

2 6 2 0.3 4 2.7 4 

2 7 2 0.1 4 2.5 3 

2 8 2 0.02 3 2.4 3 

23 2 6 2 1.2 1 2.7 0 

20 

2 6 2 0.6 7 2.7 7 

2 7 2 0.2 3 2.4 6 

2 8 2 0.03 1 2.3 6 

19 
2 7 2 0.8 1 

2.4 1 
2 7 7 0.2 1 

18 
2 6 2 0.4 66 2.7 14 

2 7 2 0.2 40 2.5 14 

15 
1 6 2 0.2 9 2.7 8 

1 7 2 0.05 6 2.5 6 

In this study, a few comparisons with BLAST were 

conducted. The results for 9 random patterns of different 

length are presented in Table I. The tests were carried out 

using different parameter settings presented in the table. 

BLAST was always used with the same word size (s) as in the 

proposed algorithm, while the parameters: 1) the nucleotide 

mismatch score, 2) the gap initiation, and 3) the gap 

extension were set to -1. The presented results were obtained 

using the bl2seq program from a standalone blastn 

application. During the validation, also blastn-short was used, 

which is optimized for sequences shorter than 50 bases, 

however the obtained results were worse than for the 

standard version with the parameters tuned for short 

sequences. It can be noted that in most cases it is the proposed 

algorithm which finds more patterns. There are no false 

positives among them, as it was explained in Section II-D, 

hence it can be concluded that the proposed approach is 

competitive. 
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Fig. 3.  Dependence of searching time (points) and number of found patterns (bars) on the word length (a) and shift size (b). 

 

 

IV. CONCLUSION 

This paper presents a new algorithm for searching DNA 

fragments in a reference sequence. By splitting the pattern 

into short, overlapping words, searching with the maximal 

error allowed can be achieved. The parameters of the 

algorithm must be selected taking into account the pattern 

length and maximum error allowed. The longer a pattern is, 

the longer words can be used. However, for larger numbers 

of allowed changes the words should be shorter. 

The ongoing research is aimed at investigating the 

algorithm's performance using various text compression 

algorithms (instead of the wavelet tree). Furthermore, the 

experimental validation is planned to be extended in the 

nearest future, and the algorithm will be compared with 

alternative approximate pattern matching methods [4], [5]. 
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