



Abstract—This paper presents a new algorithm for searching

short fragments of sequences in long DNA sequences. A short

sequence (pattern) is searched in both DNA strands with a given

maximal value of errors. Each DNA sequence (T) is

preprocessed by compressing it using Burrows-Wheeler

transform and wavelet tree. First, the pattern is divided into

short words which overlap themselves, and then their positions

in T are determined using FM-index. Connections between the

words are searched under the assumption of an acceptable

maximal error allowed. Experimental results indicate that the

algorithm is highly effective and it outperforms a popular Basic

Local Alignment Search Tool (BLAST) in case of searching for

short sequences.

Index Terms—Approximate string matching, compressed

index, wavelet tree

I. INTRODUCTION

Existing DNA sequencing methods are becoming faster

and cheaper, hence the number of known sequences is

rapidly increasing. Acquired DNA sequences are stored in a

number of gene banks, such as the well-known GenBank [1],

which contains billions of base pairs (i.e. nucleotides) from

human DNA sequences. Acquisition of DNA information is

no longer a bottleneck in genetics, and there is a need for

more effective algorithms for DNA sequence processing,

such as searching for selected parts of a sequence, analysis of

similarities, differences, or repetitive fragments. Therefore,

sequence alignment methods are of a great relevance for the

research in biology and medicine. In many cases, the

sequences are expected to be matched despite some small

differences between them, as they may be caused by the

acquisition errors, hence the searching procedure should

accept a controlled number of mismatches.

One of the first methods for comparing whole DNA

sequences, based on analysis of dot-matrix plots, was

introduced in 1969, and it was later used in a popular Dotter

program [2]. However, the Needleman-Wunsch algorithm

[3], which uses dynamic programming, was found to be more

effective and currently it is the preferred approach for

sequence alignment. Searching sequence fragments in large

databases can be handled using heuristic methods,

implemented in Basic Local Alignment Search Tool

(BLAST), which is available at http://blast.ncbi.nlm.nih.gov

website. This program is commonly used for sequence

Manuscript received December 15, 2012; revised January 26, 2013. This

work is supported by the European Union from the European Social Fund

(grant agreement number: UDA-POKL.04.01.01-00-106/09).

J. Kawulok is with the Institute of Informatics, Silesian University of

Technology, Gliwice, Poland (e-mail: jolanta.kawulok@polsl.pl).

alignment, however its efficacy in case of approximate search

drops for sequences shorter than 40 base pairs, which is a

serious disadvantage. Text compressing by indexing is

widely used in pattern matching algorithms, both for the

exact and approximate search. Concerning the latter,

Välimäki et al. are searching from a set of DNA sequences

for groups whose suffixes or prefixes are matched to each

other with a fixed maximum distance and have a

predetermined length [4]. Also, to search for a pattern in the

text, error models can be used that define how the sought

sequence should be divided taking into account the maximal

number of errors allowed [5].

This paper introduces an algorithm for searching DNA

patterns in long sequences with no restrictions imposed on

the minimal length of the query sequence. Although

searching for short sequences has many applications,

including designing primers in polymerase chain reaction

(PCR), the existing methods do not perform well here. In the

proposed algorithm a query sequence is first divided into

overlapping words which are searched in a DNA database

using FM-index. The overlapping increases the chances of

matching the sequences even if the mismatches are located

close to each other. This preprocessing step is described in

Section II-A. After that, the connections between the words

are matched which makes it possible to find the pattern

locations with maximal error allowed. The connection

procedure is the main contribution of this paper and it is

outlined in Section II-B. Section III presents the results of

experimental validation, and Section IV concludes the paper.

II. PROPOSED METHOD

A. Preliminary Sequence Preparation

The process of searching a specified pattern in a sequence

T can be accelerated by appropriate indexing. In the research

reported here, FM-index [6], [7] was used for this purpose.

This method processes a sequence subject to the

Burrows-Wheeler transform (TBW) [8] and its aim is to

provide information on the number of occurrences

(OCC(c,q)) of a given character c in the prefix TBW[0, q]. The

TBW sequence is compressed using a binary wavelet tree [9],

[10], which makes it possible to retrieve OCC(c,q) without

the decompression. Prior to the search process, the long DNA

sequence is processed and FM-index is generated.

B. Searching for a Pattern

The aim of the conducted study was to locate a DNA

fragment (termed pattern P) of length m in a long sequence T,

allowing for three types of possible changes, namely:

1) Mismatch – a nucleotide replaced with another one;

Approximate String Matching for Searching DNA

Sequences

Jolanta Kawulok

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 3, No. 2, March 2013

145

2) Deletion – a nucleotide missing;

3) Insertion – a nucleotide is added.

The pattern is divided into r shorter overlapping fragments,

i.e. words, whose lengths are s and shifts between them equal

ν. The number of words (r) is given by the following

equation:

 () / 1r m s v     (1)

An example of dividing a sequence P (m = 14) into words

{Si} of length s=5, with a shift ν=2 is presented in Fig. 1. In

this case, the pattern was split into five short words, which

have the same, fixed length. Usually a certain number of

characters mr=(m-s) mod ν at the end of the sequence P is left

unassigned to any word (in the figure it is the last character

'C'). These characters will be analyzed at a later stage of

processing.

Fig. 1. Words extracted from a pattern (s = 5, ν = 2).

The proposed algorithm searches for fragments with the

defined maximal Levenshtein distance (number of changes),

and it consists of the following steps:

1) Create a sorted list of occurrences in sequence T for each

word Si using FM-index.

2) Search for connections (i.e. a pair of subsequent

occurrences) between the exact positions of these words

in the examined sequence and generate a set of

candidates.

3) Analyze the obtained candidates – restore the unknown

parts and verify the restored candidate.

C. Extraction of Candidate

The candidates, i.e. single or multiple connections which

meet the maximal allowed difference (M) criterium, are

extracted using the algorithm presented in Alg. 1. The added

function for searching connections between words is

presented in Alg. 2. It is assumed that at a given position in

the sequence only a single deletion or insertion may occur

and every kind of change is treated with the same weight. The

algorithm uses a number of r position lists (ℓ[i], i ={0, ...,

r-1}), which have previously been sorted in descending

order. Every new candidate is represented as a vector of

connections, i.e. occurrence pairs (Np, Nt), where Np is the

word position in the pattern P, and Nt in the position in the

reference sequence T. The new candidate has a form of:

[ζ[0], ..., ζ[k]], where ζ[i]=(Np, Nt), and it is further taken into

account only when there are at least two pairs (Alg. 1, line 6).

After creating a new candidate, the remaining elements of ℓ

which belong to the new connection ζ are removed (Alg. 1,

line 8).

The searching for connections is performed for every

subsequent word, starting from the first one (Alg. 1, line 3).

The position lists for every given word Si are analyzed

beginning from the lowest (i.e. final) value from the position

list (ℓ[i][end]) (Alg. 1, line 4).

Alg. 1. Algorithm for the candidates extraction.

Require: ℓ

1: δ = s/ν;

2: Q = ∅;

3: for i = 0 to r-1 do

4: while ℓ[i] ≠ ∅ do

5: ζ = FUN_CONN(i);

6: if ζ contains at least 2 pairs then

7: add ζ to Q;

//position list

// set of candidates

//for each word Si

//Alg. 2

8: ℓ = the relative complement of ζ in ℓ;

9: end if

10: remove ℓ[i][end];

11: end while

12: end for

13: return Q;

Alg. 2. Function for searching connections.

1: function FUN_CONN(i);

2: ζ = ∅;

3: Np = iν;

4: Nt = ℓ[i][end];

5: k = 0;

6: ζ [k] = (Np, Nt);

7: j = i + δ;

8: while j < r do

9: Np = jν;

10: Nt = Nt + ν;

11: if Nt  ℓ[j] then

12: FUN_INC();

13: else if Nt + 1  ℓ [j] then

14: Nt = Nt + 1;

15: FUN_INC();

16: else if Nt - 1  ℓ[j] then

17: Nt = Nt - 1;

18: FUN_INC();

19: else

20: Nt = Nt + ν;

21: j = j + 1;

22: end if

23: end while

24: return ζ;

25: end function

26: function FUN_INC();

27: k = k + 1;

28: ζ [k] = (Nt, Nt);

29: j = j + δ;

30: end function

//a candidate

//the word position in P

// the word position in T

// add a new pair

// function in line 26

The sequence P was divided into overlapping words,

therefore it is sufficient to check a new connection with a

δ=s/ν step (Alg. 2, lines 7 and 29). If this connection is not

found, the next word is analyzed, i.e. δ+1. For a pair

ζ[k]=(Np, Nt) of word Sj, it is checked whether there exists

X=Nt+νδ in the list of positions for the word Sj+δ. If it does

 not exist, positions X+1 and X-1 are checked as well (Alg.

2, lines 11, 13 and 16). If a connection is found, a new pair

is added to the vector – ζ[k+1]=Np_new, Nt_new), where

Np_new=(j+δ)ν, Nt_new=X. When no occurrences of the

searched position are found, the list for the next word is

checked. If the connection is found with an insertion or

deletion, or if there is no connection, or if the connection

search is not started from the first word, then the number of

known changes (ɛ) is updated. The actual number of

differences between the fragments is greater or equal ɛ . If

ɛ >M at any point of building the connections, the algorithm

begins a new search.

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 3, No. 2, March 2013

146

Fig. 2. An example of a candidate.

D. Verification of Candidates

As it was described earlier in the paper, those candidates

are determined, which could satisfy the condition of

acceptable maximal number of errors in the sought fragment.

During the search process, a number of known differences ɛ

between the fragments is computed. However, in many cases

this number may be larger. An example of such a situation is

shown in Fig. 2, where s=5, ν=2 and the connection vector is

ζ=[(0, 70), (4, 74), (12, 82), (17, 88)]. Here, the actual

distance between T’ and P may vary between 2 to 5 (i.e. ɛ

=2). In order to verify the candidate, the missing space in the

checked fragment of sequence T should be read and

compared with pattern. Unknown parts of the sequence are

reproduced on the basis of information about TBW. In the

illustrated example, it is sufficient to compare four

nucleotides to determine the number of errors. However, for

some cases it may be difficult because of the shifts that must

be taken into account. Therefore, P and T' are compared

using a modified Needleman-Wunsch algorithm, which does

not determine the entire similarity matrix, but only the

diagonal and those fields that are within a distance M from it.

It is worth noting that the verification provides an exact

solution, and there is no risk of observing false positives.

III. EXPERIMENTS

Following the presented algorithm, a pattern, whose length

equals m, is divided into words consisting of s nucleotides

which overlap themselves at ν positions. The connections

between the words are further analyzed only if they consist of

at least two pairs and the difference between the words'

indices is greater than δ=s/ν. Therefore, the algorithm

parameters should be chosen in such a way that for a given

length of the pattern such a split is possible. However, this

assumption is insufficient when the maximal allowed number

of changes is taken into account. In order to locate the

sequence fragment in case there is a maximal difference M

defined, the parameters must be chosen so that

   Mvsr  /)2((2)

where r (1) is the number of words S extracted from P.

Initial tests were conducted for a sequence>gi|74273667|

gb|CM000266.1|Homo sapiens chromosome 15 of length

78891134 base pairs, taken from the NCBI website

(http://www.ncbi.nlm.nih.gov). It was investigated how the

choice of parameters affects the number of found matches

and the search time. The obtained results are shown in Fig 3.

It is presented how the pattern length (m), length of word (s),

shift (ν), and maximum error allowed (M) affect the search

time and the number of patterns found in the reference

sequence. By reducing the word length, more words are

found in T, therefore, the computation time grows as well.

However, using shorter words makes the solution more

resistant to a greater number of closely spaced changes,

hence more correct connections are found. Also, reducing the

ν value allows for finding a larger number of patterns in the

reference sequence, but these changes are less resistant to

closely located differences between the two sequences.

TABLE I: RESULTS OBTAINED FOR THE PROPOSED ALGORITHM AND BLAST

(BOLD VALUES INDICATE THE BEST SCORE)

m

parameters proposed algorithm BLAST

M s v t[s]
no. found

pattern P
t[s]

no.found

pattern P

35
2 6 2 1.1 1 2.8 1

2 7 2 0.9 1 2.4 1

30

4 6 2 1.2 1

2.7 0 3 6 6 0.3 0

3 6 4 0.2 2

27
2 6 2 0.8 1 2.7 1

2 7 2 0.6 1 2.4 1

25

2 6 2 0.3 4 2.7 4

2 7 2 0.1 4 2.5 3

2 8 2 0.02 3 2.4 3

23 2 6 2 1.2 1 2.7 0

20

2 6 2 0.6 7 2.7 7

2 7 2 0.2 3 2.4 6

2 8 2 0.03 1 2.3 6

19
2 7 2 0.8 1

2.4 1
2 7 7 0.2 1

18
2 6 2 0.4 66 2.7 14

2 7 2 0.2 40 2.5 14

15
1 6 2 0.2 9 2.7 8

1 7 2 0.05 6 2.5 6

In this study, a few comparisons with BLAST were

conducted. The results for 9 random patterns of different

length are presented in Table I. The tests were carried out

using different parameter settings presented in the table.

BLAST was always used with the same word size (s) as in the

proposed algorithm, while the parameters: 1) the nucleotide

mismatch score, 2) the gap initiation, and 3) the gap

extension were set to -1. The presented results were obtained

using the bl2seq program from a standalone blastn

application. During the validation, also blastn-short was used,

which is optimized for sequences shorter than 50 bases,

however the obtained results were worse than for the

standard version with the parameters tuned for short

sequences. It can be noted that in most cases it is the proposed

algorithm which finds more patterns. There are no false

positives among them, as it was explained in Section II-D,

hence it can be concluded that the proposed approach is

competitive.

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 3, No. 2, March 2013

147

Fig. 3. Dependence of searching time (points) and number of found patterns (bars) on the word length (a) and shift size (b).

IV. CONCLUSION

This paper presents a new algorithm for searching DNA

fragments in a reference sequence. By splitting the pattern

into short, overlapping words, searching with the maximal

error allowed can be achieved. The parameters of the

algorithm must be selected taking into account the pattern

length and maximum error allowed. The longer a pattern is,

the longer words can be used. However, for larger numbers

of allowed changes the words should be shorter.

The ongoing research is aimed at investigating the

algorithm's performance using various text compression

algorithms (instead of the wavelet tree). Furthermore, the

experimental validation is planned to be extended in the

nearest future, and the algorithm will be compared with

alternative approximate pattern matching methods [4], [5].

REFERENCES

[1] D. A. Benson, I. K. Mizrachi, D. J. Lipman, J. Ostell, and E. W. Sayers.

“Genbank,” Nucleic Acids Res., vol. 39, pp. D37-D39, 2011.

[2] E. L. Sonnhammer and R. Durbin, “A dot-matrix program with

dynamic threshold control suited for genomic DNA and protein

sequence analysis,” Gene, vol. 167, pp. GC1-GC10, 1995.

[3] S. B. Needleman and C. D. Wunsch, “A general method applicable to

the search for similarities in the amino acid sequence of two proteins,”

J Mol Biol, vol. 48, pp. 443-453, 1970.

[4] N. Välimäki, S. Ladra, and V. Mäkinen, “Approximate all-pairs

suffix/prefix overlaps,” in Proc. of the 21st Annual Conference on

Combinatorial Pattern Matching, pp. 76-87, 2010.

[5] L. M. S. Russo, G. Navarro, A. L. Oliveira, and P. Morales,

“Approximate string matching with compressed indexes,” Algorithms,

vol. 2, no. 3, pp. 1105-1136, 2009.

[6] P. Ferragina and G. Manzini, “Indexing compressed text,” J. ACM, vol.

52, pp. 552-581, 2005.

[7] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro, “Compressed

representations of sequences and full-text indexes,” ACM Transactions

on Algorithms, vol. 3, no. 2, May 2007.

[8] M. Burrows and D. J. Wheeler, “A block-sorting lossless data

compression algorithm,” Digital Equipment Corporation, Palo Alto,

Technical Report, vol. 124, CA, May 1994.

[9] R. Grossi, A. Gupta, and J. S. Vitter, “High-order entropy-compressed

text indexes,” Proc. of the Fourteenth Annual ACM-SIAM Symposium

on Discrete Algorithms, pp. 841-850, 2003.

[10] V. Mäkinen and G. Navarro, “New search algorithms and time/space

tradeoffs for succinct suffix arrays,” Technical report, Department of

Computer Science, University of Helsinki, 2004.

Jolanta Kawulok was graduated and received the

Eng. and M.Sc. degrees in 2009 and 2010,

respectively, from the Institute of Automatic Control,

Silesian University of Technology, Gliwice, Poland.

Currently she is a Ph.D. student in Data Mining in the

Institute of Informatics at Silesian University of

Technology. Her main research interests include

applications of data mining algorithms to genome

sequences, biomedical data and image.

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 3, No. 2, March 2013

148

