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Abstract—Traditional methodologies use 

electrocardiographic (ECG) signals to develop automatic 

methods for onset and peak detection on the arterial pulse 

wave. An alternative method using pattern recognition is 

implemented to detect onset and peak fiducial points, using 

Self Organizing Maps (SOM). In the present work SOM neural 

networks were trained with a dataset of signals with 

information about localization of onset and peak points. Later 

on, the trained network was used to make the detection on a 

validation dataset. This was developed using a shifting 

temporal windowing, which is presented to the network to 

decide whether the window corresponds to an onset or peak in 

the pulse wave. Results of the classification reach 97.93% over 

the validation dataset. Sensitivity and positive predictivity 

measures were used to assess the proposed method, reaching 

100% for sensitivity and 99.84% for the positive predictivity 

detecting peaks in the signals. This proposal takes advantages 

from SOM neural networks for pattern classification and 

detection. Additionally, ECG signal is not necessary in the 

presented methodology. 

 
Index Terms—Electrocardiography, fiducial points 

photoplethysmography, self-organizing maps.  

 

I. INTRODUCTION 

The photoplethysmography (PPG) has been employed as 

a simple and low-cost optical technique. It is employed for 

measuring the blood volume changes through the detection 

of light emission and reception on the skin surface of 

peripheral body sites (finger, ears, toes and forehead) [1], [2]. 

Blood volume and perfusion changes, due to the 

dissemination or absorption of the incident light, provide the 

dynamical part of the signal. 

Applications of PPG signal treatment can be found in 

commercial medical equipment, where measures of oxygen 

saturation, blood pressure or heart rate monitoring assess 

autonomic functions and contribute to peripheral vascular 

diagnosis. In this way, onset and peak pulse detection on 

PPG signals is used to obtain relevant information such as 

pulse transit time (PTT) and pulse wave velocity (PWV), 

which evaluate vascular effects of aging, hypertension, 
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stiffness and atherosclerosis [3], [4]. 

PPG signal typically has small amplitude, its incident and 

reflected waveform can be affected by conditions as sensor 

positioning, skin features, breathing, baseline drift, 

perfusion phenomena, viscoelastic and viscosity property of 

arteries, arterial stiffness, and reflected waves from 

peripheral sites. This makes the onset and peak points 

detection a difficult task [5]. 

Several methods have been developed for this detection 

task varying its complexity. These can include adaptive 

threshold, computer-based filtering, feature extraction, and 

derivative calculation [6]-[10]. Most of them are assisted by 

the electrocardiographic (ECG) signal, which provides a 

cost increment of medical equipment and makes difficult its 

clinical applications in the Primary Health System.  

In [7], morphological similarity of adjacent pulses is used 

to enhance signal quality and increase the accuracy of the 

onset pulse detection. A disadvantage of the method is the 

inclusion of measures from time interval between R to R 

peak of ECG signals. Additionally, principal components 

analysis (PCA) is applied over adjacent peaks to enhance the 

onset detection. PCA information, second derivative and 

tangent intersection in PPG signal show an enhanced 

accuracy and precision in this approach [8]. Recently, in [9] 

a new method was presented, based on collected 

photoplethysmograms. This method does not use ECG 

signal and works through PPG signal filtering in different 

ways, but digital filters introduce delays in the temporal 

signal, which can give wrong information about onset 

localization in the signal. In [10], a delineator is 

implemented, using combinatorial amplitude and interval 

criteria for finding onset and systolic peaks. 

Neural networks have been applied for detection of 

cardiovascular problems, such as QRS detection [11], [12], 

clustering [13], [14] and applications with PPG signals [15], 

[16]. These studies show the advantages of this kind of 

models for pattern recognition. Despite of benefits in 

different fields, there are not reported works about onset and 

systolic peak detection on PPG signals, employing these 

models.  

In this paper, it is presented a proposal based on pattern 

recognition, which uses a self organized map (SOM) to learn 

the temporal information around onset and systolic peak 

location on PPG signals during supervised training. 

Validation is developed using temporal windows, where the 

network identifies whether an onset or peak is present in the 

window and its location. 

 Next section shows materials and methods used in the 

present study. Details about database and the employed 

methodology for detection are explained. Section III 
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contains results and a brief discussion about these results. 

Finally, in Section IV some relevant conclusions are 

extracted about the exploited methodology in this work. 

 

II. MATERIALS AND METHODS 

Fig. 1 shows the methodology employed for fiducial 

points detection. The available database was divided to train 

SOM network and to validate the proposal. The detector 

works based on this trained SOM, which finds pattern from 

onset or peaks over a sliding window of signal. Each 

segment is presented to the detector and the network decides 

which window corresponds to an onset or a peak from PPG 

signal. A decision criterion stage locates the point in the 

signal. 

A. Experimental Protocol and Data Collection 

The database is composed by signals from seven 

volunteers, who participated in the experimental protocol 

and provide informed consent in accordance with 

institutional policy. Each subject remains in rest during five 

minutes in the supine position. Previously, personal and 

clinical data were collected of each volunteer to the test. 

Table I shows the age and vital signs of the subjects. 

Acquisition was performed by an experimental station, 

which collected physiological signals of each person. This 

station simultaneously acquires electrocardiography and 

photoplethysmographic signals through an ECG channel 

with bandwidth between 0.15 to 150 Hz and two PPG 

channels with bandwidth from 0.5 to 16 Hz. PPG sensors 

have an infrared diode (wavelength of 780 nm) and 

photodiode for capture by reflection mode the blood volume 

changes on skin surface. All channels were sampled to 1000 

samples/s and the experimental station was approved by 

ethical committee. Simultaneous ECG and PPG signals were 

manually marked by trained observers. This task was 

developed with support of software tools, which provide 

additional capabilities such as, add, move and remove the 

fiducial points of ECG and PPG signals. These points 

correspond to peaks values of QRS complex and, onset and 

peaks of PPG signal. 

Information about marked onset and peak points by expert 

observers is useful for testing the proposed method. 

B. SOM Training Process 

SOM neural networks are capable of arranging the input 

data into a discretized two-dimensional space known as map, 

which attempts to preserve the topological properties of the 

input space. This approximation can be considered as a 

nonlinear generalization of principal component analysis 

[17]. 

In this case, segments of PPG signal are used to extract 

onset and peak patterns. The dataset is divided into training 

and validation sets, signals from five subjects compose the 

training set and last two the validation set. Each signal in the 

training set is segmented in windows and labeled according 

to fiducial points located in the middle of the window. 

Based on the annotations of the expert observers, a 

segment with the marked point (onset or peak) is taken. 

These fiducial points are located in the middle of segment 

(Fig. 2). Sets of segments or windows compose the training 

dataset, which is presented as input to the SOM neural 

network. The window size is found by experimentation, 

values of 21, 41, 61, 81 and 101 milliseconds were used. 

Smaller sizes were not considered because are shorter 

windows to pattern representation and can be confused with 

noise segments. In PPG signals, distance between onset and 

peak is less than 100 milliseconds, due to its nature [18], 

[19]. For this reason, an upper period of time was not 

considered. Windows with the same size of the onset and 

peak pattern were extracted to create a third class called 

noise, these segments were taken from samples before and 

after of the onset and peak windows. This makes that the 

noise windows do not belong to any signal segment 

employed in other classes. 

 

 

Fig. 1. Detection methodology. 

 

TABLE I: CHARACTERISTICS OF VOLUNTEERS 

Subject Sex 
Age 

(years) 

HR 

(bpm) 

SBP 

(mmHg) 

DBP 

(mmHg) 

Breath

/min 

1 M 19 72 102 68 20 

2 M 20 60 98 60 16 

3 M 22 80 125 80 17 

4 M 20 84 112 72 18 

5 F 18 80 110 64 16 

6 F 18 88 108 58 22 

8 F 18 72 108 68 19 

Mean + SD 
19.3+1

.50 

76.57+9.

36 

109+8.5

9 

67.14+7.

47 

18.28+

2.21 

HR: Heart Rate 

SBP: Systolic blood pressure 

DBP: Diastolic blood pressure 

SD: Standard deviation  

 

SOM uses onset, peak and noise classes to do a 

representation across a nonlinear mapping in an output space 

with reduced dimensionality. This new space is taken to 

analyze the original dataset in a graphical way, where 

different areas of the map preserve characteristics of the 

classes employed in the training process. This is motivated 

by the behavior of visual, aural and sensory areas of human 

cerebral cortex [20]. 

The learning process consists of three stages: competitive, 

cooperative and adaptive. In competitive learning, Euclidian 

distance (weights) from each input to all units or neurons is 

computed. The unit with more similar weight to the input is 

defined as the best matching unit (BMU). Then a 

cooperative process is given around BMU, and units close to 

it are updated based on a neighborhood function. Finally, 

adaptive process changes BMU weights according to the 

input [17]. This is reached through the expression:  

 
))()()(()()()1( twtxthttwtw iijii        (1) 

where wi(t) are weights of the map, η(t) is a learning 

coefficient, hij(t) is a neighborhood function and x(t) is the 

input vector. 
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For training SOM network is necessary to proportionate: 

number of units, size, type of lattice map and neighborhood 

function parameters. Number of units and size define the 

map resolution, type of lattice defines units arrangement 

from regular or irregular forms, and the base size of the 

neighborhood function controls cooperative process [17], 

[20].  

 

 

Fig. 2. Input patterns presentation to the SOM neural network. 

 

There are heuristical rules to compute the number of units 

and the dimension map, one of them is based on principal 

component analysis (PCA). The ratio of first and second 

principal components from the training dataset can be an 

initial value for obtaining the length and width relation of the 

map [20]. In addition to that, it is attempted what all units 

have been activated by the data. These rules were followed 

to determine the number of units and size. Hexagonal 

topology for lattice was implemented because the distance 

between adjacent units at the beginning of the training is the 

same. 

Finally, neighborhood function establishes how strong the 

link between units is. In the present work, it is based on 

Gaussian distribution, given by: 

))(2/exp()( 22 tdth ijij                 (2) 

where dij is the Euclidian distance between the j unit and 

BMU, and σ(t) is the basis of the function in the iteration t. 

This parameter changes during the training, beginning with a 

basis of four units and ending with just a one unit. 

The map size and area where the neighborhood function 

has significant values determine accuracy and generalization 

of classification.  

As the classes of each window are known, the training of 

the SOM is developed in a supervised way. This assists the 

detection in a manner that when a new window is presented, 

the network can classify the signal segment into the 

predefined classes. It is important that all units of the map 

have been activated by any input pattern because units 

without activation can confuse the classification. 

C. Fiducial Points Detection 

SOM trained is used over the validation set and accuracy 

is measured using fiducial points information as performed 

in the training set. This provides information about 

generalization, so that new inputs are presented to map and 

classification should not have relevant changes. 

For onset and peak detection, a sliding windowing in time 

is developed, where each temporal segment is presented to 

the trained SOM. From the training information stored by 

the map, each window is classified as onset, peak or noise 

segment. 

From training, segments with fiducial points as central 

points were employed (Fig. 2). Adjacent windows to these 

marked segments also presented activation of the map, 

yielding false detections. This happens when the window 

was slid a sample of the real onset or peak windows and the 

map classifies that segment as onset or peaks. For this reason, 

it is necessary to implement a decision criterion to reduce 

this problem.  

Adjacent windows of onset or peak segments are 

classified as onset or peak, too. This happens because the 

map considers that have the same pattern.  Hence, it is 

necessary to study how to deal with for avoiding activations 

where the fiducial point is not the centre of window.  

It was found that when a segment is presented to the map, 

output from SOM is the same after sliding the segment a 

continuous number of samples. Experimentally, time 

interval for this continuity was measured as 60% from 

window size around fiducial point location. In this range, 

output from map belongs to the same fiducial point. Then, it 

is necessary to represent all these segments (60% around 

point) as just one fiducial point.  

Location of onset or peak point was placed in the last 

moment of continuity explained before. This information 

was used as detected point and later on compared with 

fiducial points marked by expert observers. 

Measures of sensitivity (SE), positive predictivity (P) and 

failed detection rate (FDR) are used to evaluate the method 

and compare with other approaches. SE indicates the 

proportion of detected true points in the PPG signal,   

expression (3) shows its computation. Positive predictivity 

is based on the percentage of detected true points in relation 

to all marked points, this can be compute as in (4). Finally, 

failed detection rate was calculated by (5) and shows how 

much of the detection is failed. 

       

TruePositive
Sensitivity = 100

TruePositive + FalseNegative
   (3) 

TruePositive
Positive_predictivity = 100

TruePositive + FalsePositive


 (4) 

            

FailedDetection
FailedDetectionRate = 100

NumberofPoints
   (5) 

 

III. RESULTS AND DISCUSSION 

As mentioned, windows with 21, 41, 61, 81 and 101 ms 
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were used to detect fiducial points. Best results were found 

with the largest window, where accuracy measured using the 

validation set reaches 97.93% of classification. This happens 

because smaller onset windows are confused with noise 

segments. Larger segments for pattern representation are 

easily learned by SOM, making a better classification. Table 

2 shows the confusion matrix for results with the largest 

window. The results are obtained using SOM segments 

classification from validation dataset. In this case, from 702 

onset points, map classifies 673 as onset points and 29 as 

noise points (total error of 2.06%). All peak points have a 

correct classification. 

 
TABLE II: CONFUSION MATRIX FOR CLASSIFICATION USING 101 

MILLISECONDS 

 Onset Peak Noise 

Onset 673 0 29 

Peak 0 702 0 

 

Fig. 3 shows the trained map for a 101 ms window. Areas 

in the map are labeled with O for onset, P for peak and N for 

noise in the detection. U-matrix shows the distance between 

units, dark tones mean short distances and light tones mean 

large distances. It is possible to observe three areas in the 

U-matrix, which correspond to each class pattern. Map size 

was defined as explained before and this depends on the set 

used in the training, because the ratio between first and 

second principal components changes, modifying the 

dimension of the map. In this case a map of 36 x 10 units was 

used to the detection. 

Table III and IV show the results of the three described 

measures for onset and peak detection. Two signals were 

used for validation of the method. It is possible to appreciate 

how the modification of the window size improves the 

sensitivity for onset detection. The best results for onset 

detection in PPG signal is reached with a window of 101 

milliseconds, where this value is 100% in both signals 

(Table III).  

Positive predictivity in the onset detection case is 83.60% 

average. This means that the used method presents a 

considerable proportion of false positive detections. For 

peak detection (see Table IV), sensitivity reaches 100% for 

windows of 21, 61 and 81 ms, which indicates that the 

window size is not relevant for detection. This can be 

explained by the peak waveform, which can be represented 

with a period of time shorter that contain the characteristic 

curve of this pattern. Positive predictivity for this sensitivity 

value reaches 84.81% in mean, when window size 

corresponds to 61 ms. 

It is important to note that the best positive predictivity 

(99.84% on average) is given for 101 ms window in the peak 

detection case, but sensitivity is not the best, reaching 

88.19% as an average. 

The failed detection measure analysis can be extracted by 

the sensitivity analysis. These results compared with used 

methods in [7]-[9] are quite close in terms of sensitivity 

measures. There, sensitivity values reach 99.58% and 

99.17% when frequency analysis is used. For positive 

predictivity, the results drop around 10% compared with 

cited works [4], [7]-[9]. It is important to say that the present 

study does not use the ECG signal for detection.  

IV. CONCLUSSIONS 

A proposal for onset and peak detection has been 

presented, based on SOM network trained in a supervised 

way. It is possible to see that this kind of neural networks 

learn from a training dataset and generalize this knowledge 

in a validation set. Patterns from onset and peak segments of 

the PPG signal are captured by the map and then are used in 

a temporal analysis of the signal. 

A study of the appropriate segment size was implemented.  

It was observed that a map with a 100 ms window as input 

has a better sensitivity for onset points detection. 

 

Fig. 3. Trained SOM and U-matrix. 

 

TABLE III: RESULTS FOR ONSET DETECTION 

Window Size (ms) SE(%) +P(%) FDR(%) 

21 76.8072 18.9169 23.1928 

21 38.9189 11.8227 61.0811 

41 95.1807 42.7605 4.8193 

41 48.9189 23.8158 51.0811 

61 100.0000 48.7518 0 

61 97.2973 46.9974 2.7027 

81 100.0000 85.3470 0 

81 99.7297 86.8235 0.2703 

101 100.0000 67.4797 0 

101 100.0000 99.7305 0 

 
TABLE III: RESULTS FOR PEAK DETECTION 

Window Size (ms) SE(%) +P(%) FDR(%) 

21 100.0000 52.6149 0 

21 100.0000 97.6253 0 

41 85.2410 84.9850 14.7590 

41 5.1315 5.1213 94.8649 

61 100.0000 69.8947 0 

61 100.0000 99.7305 0 

81 100.0000 62.2889 0 

81 100.0000 99.7305 0 

101 99.0964 99.6970 0.9036 

101 77.2973 100.0000 22.7027 

 

For detection of peak fiducial points, a segment with 61 

ms obtains the best performance. For onset fiducial points 

detection, 101 ms is the period of time of the window 

appropriated in this system.  

The results show that the method reaches good sensitivity 

values without ECG signal assistance. This is taken as 

advantage when the resources to develop the detection are 

restricted. 

Additional studies with other datasets can improve the 
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method and obtain better results. In this way, comparison 

with different pattern recognition techniques is one of the 

future works in this kind of approaches. 
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