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Abstract—Identifying gene signatures that are associated 

with the estrogen receptor based breast cancer samples is a 

challenging problem that has significant implications in breast 

cancer diagnosis and treatment. Various existing approaches for 

identifying gene signatures have been developed but are not able 

to achieve the satisfactory results because of their several 

limitations. Subnetwork-based approaches have shown to be a 

robust classification method that uses interaction datasets such 

as protein-protein interaction datasets. It has been reported that 

these interaction datasets contain many irrelevant interactions 

that have no biological meaning associated with them, and thus 

it is essential to filter out those interactions which can improve 

the classification results. In this paper, we therefore, proposed a 

hub-based reliable gene expression algorithm (HRGE) that 

effectively extracts the significant biologically-relevant 

interactions and uses hub-gene topology to generate the 

subnetwork based gene signatures for ER+ and ER- breast 

cancer subtypes. The proposed approach shows the superior 

classification accuracy amongst the other existing classifiers, in 

the validation dataset. 

 
Index Terms—Breast cancer diagnosis, estrogen-receptor, 

gene signature, hub-gene.  

 

I. INTRODUCTION 

With the rapid accumulation of high-throughput 

technologies, researchers have generated a large amount of 

data at different levels such as gene expression profiles using 

microarrays [1], protein-protein interactions (PPI) [2], [3], 

and many more. These biological data plays a significant role 

in performing various biological analyses such as to prognose 

or diagnose the specific cancers.  

It has been believed that the breast cancer is the most 

common types of cancer among the females that has high 

mortality rate. The subtypes of breast cancer subtypes 

behaved heterogeneously to different treatment approach and 

have different survival or death rate. The existing gene 

signature for the breast cancer classification does not provide 

the significant results and consistently varies across the 

datasets [4]. This heterogeneity nature of these gene 

signatures can classify the patients into irrelevant subtypes, 

and as a result irrelevant therapy or drug combinations can be 

given, which has adverse consequences such as early death of 

a patient. In the last several years, various classification 

methods for breast cancer have been proposed, such as [5] 

developed the 70-gene signature (Mammaprint) that classifies 

the breast cancer patients into good or poor prognosis groups. 

[6] developed a 76-gene signature that consists of 60 genes 
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for ER+ (Estrogen Receptor Positive) group and remaining 16 

genes for ER- (Estrogen Receptor negative) group, in order to 

classify and to predict the distant metastasis of breast cancer. 

The gene signatures generated from these existing studies are 

not stable and heavily depended on the datasets chosen for 

study [7].  However, to validate the gene signature that can 

effectively classify the cancer classes, their classification 

accuracy, robustness and biological meaning is highly 

essential [4].        

It has been believed that the cancers originate from the 

driver genes that alter the expressions of greater amplitude for 

the genes that interacts with the driver genes [8]. Since, the 

gene interactions in the subnetworks provides the models of 

the molecular mechanisms underlying breast cancer [8], it is 

therefore essential to incorporate the subnetwork based 

approach to effectively draws out the biological conclusion, 

such as to classify the breast cancer subtypes. Many 

subnetwork-based approaches for breast cancer classification 

have been developed, such as, [9] is based on the 

condition-dependent networks from differential expression 

and no prior interaction information are used, [10] is based on 

SVM framework that directly incorporates the interaction 

data in an algorithm for the microarray classification, [4] uses 

protein interaction data that incorporates with the gene 

expression data to detect the subnetworks and validates them 

by randomly shuffling the interactions with their gene 

expressions.                       

 The existing subnetwork-based gene signatures have 

various issues associated with them, such as the classification 

performance is largely correlated with the datasets. Also, the 

existing protein-protein interaction datasets (PPI) contains 

several irrelevant (false-positive) interactions that are not real 

in biological processes, and is believed that only 30-50% of 

the interactions are biological validated [11]. Therefore, the 

identification of the reliable interactions from the original PPI 

datasets is one of the challenging tasks, when using the PPI 

data for several biological analyses.           

In this study, we propose a subnetwork-based approach to 

classify the estrogen-receptor based breast cancer subtypes 

that overcomes the above issues associated with the existing 

approaches. The proposed HRGE approach incorporates the 

three reliability metrics to extract the biologically-relevant 

interactions  and the hub-gene topology to extract the 

significant genes associated with the two estrogen-receptor 

based breast cancer subtypes (ER+ and ER-), by using larger 

compendium of six training datasets. The gene signature of 

HRGE algorithm is then compared with other existing 

algorithms   [4]-[6], [12]. The experimental results 

demonstrated that the HRGE significantly improves the 

classification performance, as compared with the above 
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existing classifiers. The HRGE algorithm and their statistical 

validation results are defined in Section III and Section IV, 

respectively. 

 

II. DATASETS AND DATA PREPROCESSING STEPS 

                

Four microarray gene expression datasets and Six PPI 

datasets are downloaded, and transform the proteins to the 

genes in the gene expression dataset, in order to construct the 

gene interaction network. Six training datasets are then 

generated for the extraction of subnetwork-based gene 

signatures, and are explained below. 

A. Microarray Gene Expression Dataset 

We incorporated four publicly available breast cancer gene 

expression datasets, by considering the factors such as 

estrogen-receptor status (ER+ and ER-), histologic grade 

(Grade 1, Grade 2, Grade 3), overall survival (OS), distant 

metastasis free survival (DMFS). In our study, 703 ER+ 

samples and 255 ER- samples is used for experimental 

analysis, which makes the total of 958 samples. The detailed 

information of the sample sizes is shown in Table I. The raw 

microarray gene expression datasets for breast cancer were 

downloaded from the National Center for Biotechnology 

Information (NCBI) Gene Expression Omnibus (GEO) [13], 

on April 1
st
, 2012. After downloaded, each dataset is 

normalized by using Equation 1.      
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where i
ng  defines the ith feature in the sample n, p is an 

sample that shows the minimum gene expression for the ith 

feature, and q is an sample that shows the maximum gene 

expression for the ith feature. In this way, all the genes in a 

dataset can be normalized across the samples.  

B. Protein-Protein Interaction Dataset 

The protein interactions play an essential part in number of 

biological processes where the physiological interactions of 

several proteins are indulged in the construction of biological 

pathways, such as signal transduction pathways or metabolic 

pathways. In this study, We incorporated six protein-protein 

interaction (PPI) datasets, namely, Biological General 

Repository for Interaction Datasets (BIOGRID) [14], 

INTACT [15], The Molecular Interaction Database (MINT) 

[16], Database of Interacting Proteins (DIP) [17], The 

Biomolecular Interaction Network Database (BIND) [18], 

and Human Protein Reference Database (HPRD) [19]. The 

gene interaction network is then constructed from these PPI 

datasets, by Universal Protein Resource database (UniProt) 

[20] that transforms the proteins to the genes in the microarray 

dataset. The self-interactions and the duplicate edges within 

the constructed gene interaction network are removed, as they 

did not have any significant meaning in terms of interaction 

with the other genes. The resulting gene interaction network 

from the above mentioned six PPI datasets contains 13,012 

unique genes and having 69,914 unique interactions among 

them.   

C. Training and Validation Dataset 

We have used four microarray gene expression datasets 

across three distinct platforms, in order to increase the sample 

size and to balance the other factors, as mentioned in Table I. 

The integrated dataset is constructed by merging four datasets 

namely GSE7390, GSE6532, GSE21653, and GSE11121 that 

contains 958 samples, and the detailed information of each 

dataset is defined in Table I. Six training datasets is then 

constructed from the integrated dataset, in order to balance 

estrogen receptor and the histologic grade status. 

TABLE I: MICROARRAY DATASETS 

 
Microarray gene expression datasets used in this study. Patients with missing 

histologic grade and estrogen receptor status based information, are 

excluded from the training datasets. Here, # denotes „number‟, * and  

represents the training datasets and validation dataset, respectively. 

 

Each of the six training datasets is used in our algorithm to 

construct the effective gene signatures for two 

estrogen-receptor based samples, which is presented in 

Section III. The subnetwork-based gene signatures generated 

from the training datasets is then tested on a validation dataset, 

and the result is presented in Section IV. 

 

III. ALGORITHM 

Our main focus is on to extract the subnetwork based gene 

signature that shows highly correlated gene expressions with 

the estrogen receptor status.               

 For the construction of reliable gene interaction maps, the 

reliability metrics (WR) and gene expression metrics (MGE) 

are incorporated which detects the reliable gene interactions 

that are real in biological processes. The generated reliable 

gene expressions (RGE) of interactions are then used by the 

hub-gene based approach and presented later. Six analyses 

were then performed (three for ER+ and three for ER- (i.e., 

Grade 1, Grade 2 and Grade 3, respectively)) on the training 

datasets in order to extract the optimal size of subnetwork 

based gene signature, and the classification analysis was done 

on a validation dataset to evaluate the gene signature accuracy 

and its stability. In the below sub-sections, the proposed 

algorithm is defined. 

A. Reliability Metrics 

The PPI datasets contain large amount of protein 

interaction data  and is considered as a rich information 
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source from which biological knowledge of interest and facts 

can be discovered, such as classifying the breast cancer 

classes or to classify the patients according to their survival 

rate. However, the analyses of high-throughput protein 

interaction data signify that the protein interactions identified 

by the experiments usually contains several irrelevant 

interactions that never takes place in the real biological 

processes.  As a   matter of fact, the discovered biological 

knowledge or inferred facts from the protein interaction 

database may be distorted or biased. Therefore, the 

identification of the reliable protein interactions from the 

original protein interaction  datasets is considered as  one  of 

the essential and challenging issues, which can significantly 

improves the quality of protein interaction datasets and as a 

result increase the reliability of the discovered biological 

knowledge and facts. 

TABLE II: THREE PROPOSED RELIABILITY MEASURE: (1). RW1, (2). RW2, (3). RW3 

 Data Sources 

(RW1) 

Experimental Methods 

(RW2) 

Level-based Interaction Partners 

(RW3) 

 

Definition: It evaluates the reliability of an interaction 

on the basis of data sources. 

It evaluates the reliability of an interaction 

on the basis of the experimental methods. 

It evaluates the reliability in respect of the 

interacting neighbours of a gene. 

 

Evaluation: 

 

RW1 is calculated as counting the number of 

data sources n that contains an interaction (a, 

b), i.e, 
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RW2 is defined as the reliability measure 

which evaluates the reliability of any 

interaction (a, b) by counting the number 

of experimental methods n  that identified 

(a, b), i.e, 
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 and, N defines the total number of 

experimental methods. 

 

RW3 is defined as the reliability measure 

that evaluates the reliability of any 

interaction (a, b) by counting the number of 

level- p neighbours, where  2  p  i.e, 
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n, m defines the highest level neighbours of 

gene a, b respectively, and pN  defines the 

number of level-p neighbours of a gene. 

 

Conclusion: Higher the RW1 of an interaction, more 

strong the interaction strength is, and thus 

more reliable the interaction is. 

Higher the RW2 more will be the 

reliability of a gene interaction. 

From our experimental analysis, higher the 

value of RW3 more will be the reliability of a 

gene interaction.  

 

For the interaction between any two genes, we incorporated 

three reliability measures to assess the reliability on the basis 

of three distinct factors, i.e, Data Sources (e.g., HPRD, DIP, 

MINT), Experimental Methods (e.g., two hybrid, affinity 

chromatography), and Level-based Interaction Partners (e.g., 

level-1, level-2 interaction partners). Each of the three 

reliability measures is assigned a reliability weight to an 

interaction and called as RW1, RW2 and RW3. These 

proposed reliability measures are defined above in Table II. 

Once evaluated the reliability measures from data sources 

(RW1), experimental methods (RW2), and level-based 

interaction partners (RW3), we performed two major steps. 

First, each of the reliability measure is normalized (by using 

Equation 1) across the gene interactions. The essentiality of 

normalization is to propose a global scale of reliability that 

defines the reliability strength of each reliability measure 

within that scale. Once, it is done, the second step is to 

integrate the three reliability measure to form Weighted 

Reliability Measure (WR), using Equation 5, i.e,      

    

                                       (5) 

                       

where ),( baRWi  (i=1, 2, 3) defines ),(1 baRW , ),(2 baRW  and 
),(3 baRW  respectively for any interaction (a, b), and iw  

defines the weight that is assigned to each reliability measure. 

From our experimental observations, we assigned a weight of 

0.40 to RW1, 0.35 to RW2, and 0.25 to RW3. The possible 

range of WR for any interaction ranges between 0 and 1, i.e, 

WR   [0, 1].           

Therefore, using Equation 5, the WR measure evaluates the 

reliability of all gene interactions in the gene interaction 

dataset, in terms of three essential criterions i.e., data 

information sources, experimental evidences, and level-based 

interaction partners of an interaction.      

B. Gene Expression Metrics 

For gene expression metrics, we used our six training 

datasets, as defined in Section II. From a training dataset, each 

gene is summarized by evaluating the generalized mean (GE) 

across the samples by using Equation 6.         
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where n defines the total number of samples, and )(a
ig  defines 

the gene expression of gene a in the ith sample. Therefore, 

using Equation 6, each gene in the six training datasets can be 

summarized across the samples.  Each gene in our gene 

interaction network is assigned a value from each summarized 

gene (Equation 6), for each training dataset, leading to a total 

of 6 gene interaction networks (from 6 training datasets). In 

each gene interaction network, each interaction is then 

assigned a merged gene expression value (MGE) from the two 

interacting genes, as defined in Equation 7, i.e.,              
          

                    
 

  
 

                            (7) 
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Therefore, by using Equation 7, each gene interaction is 

assigned a MGE value, which is the harmonized gene 

expression mean value of two interactors. The possible range 

of MGE for any interaction in the training datasets ranges 

between 0 and 1, i.e, MGE  [0, 1].    

Every interaction in each gene interaction network, can be 

evaluated, where the value closer to 1 relates more chances of 

being a differentially expressed gene to identify the estrogen 

receptor status based breast cancers, and for 0, vice-versa. 

However, as mentioned above, these interactions are not 

reliable and contain many false-positive interactions that do 

not take place in real biological processes. Therefore in the 

gene interaction networks of each six training datasets, their 

MGE value is incorporated with the proposed reliability 

measure i.e., WR. 

C.  Reliable Gene Expression Metrics 

To construct the gene network that signifies the reliability 

of each gene interactions with their associated gene 

expressions, we integrate the proposed reliability measure 

(WR) with the merged gene expression value (MGE) of gene 

interactions. As the WR measure assesses the reliability of 

each gene interaction on the basis of three vital criterions, 

MGE measure assesses the integrated gene expression of each 

gene interaction. Therefore, in order to get the significance of 

the gene expression of an interaction in terms of the reliability, 

we combine WR and MGE, and we called it as the Reliable 

Gene Expression (RGE). 

However, before performing the RGE metrics, correlation 

between WR and MGE is evaluated. To get the influence, if 

both WR and MGE of any interaction (a, b) is positively 

correlated or not, we evaluate the correlation coefficient ( ), 

using Equation 8, i.e,    
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where W R  and MGE  represents the mean of WR and MGE 

in a training dataset, respectively.                                                                     

We are interested in extracting for the positively correlated 

terms, as it is more strongly related to the patterns that can 

extract the gene signatures to accurately classify the subtypes 

of breast cancer classes. In other words higher the strength of 

the relationship between WR and MGE, more chances of a 

gene interaction to be related to the phenotype.      

 Once the positively correlated terms are extracted for each 

of the six training datasets, then the RGE can be evaluated. 

RGE of any interaction y between two genes (a, b) can be 

evaluated as:      

  

 

  
            (9) 

where  and  are the weights associated with WR and MGE, 

respectively. From our experiments, we define   and   to 

be 0.4 and 0.6, respectively. In nutshell, for any cancer 

classifier that uses gene interaction network information, both 

the measures (gene expression and reliability) are relatively 

essential for identifying the gene signatures that are highly 

associated to the phenotype of interest.        

 Using Equation 9, RGE of each positively correlated gene 

interactions in each training dataset can be evaluated. Once 

evaluated, the significant gene interactions (p < 0.05) is 

extracted for each training datasets, which is then used to 

construct the reliable gene signature to classify the estrogen 

receptor based samples, and is defined in the next section. 

D. Hub-Based Reliable Gene Expression Algorithm 

(HRGE) 

To detect the discriminative subnetworks for each training 

dataset, the significant positively correlated reliable gene 

expression of interactions was used. The significant reliable 

gene interactions for each training dataset (as evaluated from 

previous subsection) are taken for the hub- gene evaluation, 

where the hub-gene is the gene in the interaction network that 

contains maximal interactions amongst the other genes. For 

each training dataset, it may be possible that several 

subnetworks exist, and each subnetwork is used to detect the 

hub-gene. Fig. 1 illustrates this concept.         

  

 
Fig. 1. Shows the two subnetworks for any training dataset d. The dashed 

square box shows the hub-gene, which has highest number of interactions 

among the other genes in each subnetwork. In Subnetwork ,2S two hub-genes 

are identified since they both have the maximal and equal number of 

interactions, i.e, each gene has 3 interactions.   

   

For each of the six training datasets, once the subnetwork 

based hub-genes are identified, two major steps are performed. 

First, the subnetwork score (SS) is calculated for each 

subnetwork in a training dataset, by using Equation 10, i.e,              
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where nS  defines the nth subnetwork of a training dataset,  

)( yRGE  signifies the reliable gene expression (Equation 9) for 

any gene interaction y in subnetwork nS , and Y defines the 

total number of gene interactions in nS . Using Equation 10, 

the subnetwork score of each subnetwork in a given training 

dataset, can be evaluated. A subnetwork with the maximum 

subnetwork-score (SS) is chosen and retained for the further 

analysis. A maximum SS based subnetwork is chosen, 

because that subnetwork shows highly connected reliable 

gene interactions amongst the other subnetworks for a given 

training dataset, and believed to involve in the essential real 

biological processes. Using this step, only the subnetwork 

with maximum SS is chosen, and other subnetworks are 

ignored. However, the other subnetworks might contain 

essential genes that are highly associated in discriminating the 

two estrogen-receptor based breast cancer subtypes. 

Therefore, to identify those significant genes, step 2 is 

performed, which uses the hub-gene topology.    

 For each training dataset, a hub-gene with their associated 

gene interactions of each subnetworks are identified (as 
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shown in Fig. 1). Then, the hub-gene score (HS) is evaluated 

as:   
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where h defines the gene interaction of any gene that interacts 

to the hub gene, and H defines the total number of such 

interactions in subnetwork nS .  

The associated HS of the chosen subnetwork that has 

maximum SS (from step 1) is then used as a threshold for 

extracting the relevant gene interactions. The chosen HS 

works as a threshold that can filter out the irrelevant gene 

interactions in regards to the real biological processes 

associated with breast cancer. This can be done by comparing 

the HS of the chosen subnetwork with all the other HS of the 

subnetworks, in a given training dataset. If any other 

subnetwork/s that has HS greater than the HS of the chosen 

subnetwork, then their hub-gene with their interactions is 

chosen, and ignored for other subnetworks. The reason to 

select the hub-gene as the benchmark is that a hub-gene has 

the maximum number of interactions in a given subnetwork 

and they have higher chances to be as a reliable gene signature, 

because hubs are highly connected nodes which have high 

probabilities to act as driver genes for cancers and may 

indulge in several essential biological functions and processes 

[21], [22]. Therefore, the hub-gene topology is used to extract 

the significant gene interactions from the subnetworks other 

than the chosen subnetwork (Step1) of a given training dataset, 

which has high probability to be as the reliable and stable 

gene marker for classifying ER+ and ER- subtypes.  

Finally, our subnetwork based gene signature contains the 

subnetwork chosen from step 1, and the hub genes with their 

interactors chosen from step 2. 

E. Classification of ER+ and ER- Subtypes Using HRGE 

Gene Signature with Expression-Mean Methodology 

The six training dataset that contains three ER+ sample 

datasets and three ER- sample datasets, generates six 

subnetwork lists, from previous subsection. For each training 

dataset, a subnetwork list (that contains number of 

subnetworks) was used to construct the gene signatures to 

distinguish ER+ and ER- breast cancer samples, effectively. 

 Next, the three subnetwork lists of three ER+ training 

datasets were combined and removed the duplicates, similar 

for the three ER- training datasets. Therefore, after combining 

the subnetwork lists, and removing the duplicates in ER+ and 

ER- datasets respectively, the final gene signature set consists 

of 300 genes i.e., 159 distinct genes for ER+ subtypes and 141 

distinct genes for ER- subtypes. 

For any sample s, in the validation dataset, we considered 

Leave-one out Cross-Validation technique (LOOCV) that 

assumes a given labeled sample s to be unlabeled and all the 

other samples are labeled in a dataset.  Next, we apply our 

ER+ and ER- gene signatures to s, and evaluate the 

corresponding expression-mean of the genes in ER+ gene 

signature and similarly for ER- gene signature. Once 

evaluated, the expression-means of ER+ and ER- gene 

signatures are compared and assigned an estrogen-receptor 

based class label to s, whose expression-mean dominates the 

other. Therefore, all the samples in a validation dataset can be 

classified by applying our HRGE gene signature, with 

expression- mean methodology.  

IV. RESULTS 

In the validation dataset, we first performed the 

experiments to compare the results of other classifiers with 

HRGE. Then we performed the heat-map analysis.  

We generated two sets of subnetwork based gene 

signatures for ER+ and ER- breast cancer subtypes, i.e., 159 

genes for ER+ and 141 genes for ER-, respectively. To test the 

classification accuracy of the gene signatures, we applied 

them on the Desmedt dataset [23] (validation dataset). We 

then compared the HRGE gene signature with four other 

previously existing gene signatures i.e., the 70-gene signature 

[5], the 76-gene signature [6], the Genomic Grade Index (GGI) 

[12], and the Interactome-Transcriptome Integration (ITI) [4]. 

The evaluation of our approach and the experimental 

comparisons with other existing approaches (as mentioned 

above) signifies that HRGE significantly increased the 

classification performance, as compared with others. The 

result shows that our HRGE approach achieves the 

classification accuracy of 89% and 59% for ER+ and ER- 

samples respectively, in the validation dataset of Desmedt 

[23]. Table III shows the detailed classification result of our 

gene signature and other existing gene signatures.  

From Table III, HRGE gave better classification accuracy 

(in ER+ and ER-) as compared to, ITI that gives 74% and 

54% (in ER+ and ER- samples, respectively), GGI that gives 

65% and 48% (in ER+ and ER- samples, respectively), 76g 

that gives 61% and 38% (in ER+ and ER- samples, 

respectively), and 70g that gives 41% and 44% (in ER+ and 

ER- samples, respectively). We believe that the classification 

accuracy can be further strengthened, by increasing the 

training compendia with increased multiple platforms across 

multiple datasets.  

 
Fig. 2. The Heatmap of the HRGE gene signature by using the expression 

values of the genes from the Desmedt dataset, and is drawn by using R 

statistical package [24], which is freely available to download. Here, each 

row corresponds to the genes and each column corresponds to the samples 

arranged from ER+ to ER-. The Expression levels of each gene are 

normalized across the samples with zero mean and standard deviation equals 

one, where blue and yellow represents high and low expression levels than 

the mean, respectively. The heatmap shows the genes highly expressed in 

ER+ samples i.e., by applying our ER+ gene signature (159 genes) on the 

Desmedt dataset visualizes two groups, one is highly expressed (ER+) and 

other, vice-versa. Similar visualization pattern can be observed from ER- 

gene signature (data not shown). 
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In order to illustrate the behavioral pattern of HRGE gene 

signature on the Desmedt dataset, heat maps are drawn that 

shows the differential expression of genes in ER+ samples 

(and ER- samples). Heat maps are the rectangular grids with 

colours that represent the corresponding expression value of 

the genes, with high expression value than the mean, represent 

blue and low represent yellow. The rows of Heatmap 

correspond to the HRGE gene signature (ER+/ER- gene 

signature) and the columns correspond to the samples in the 

Desmedt data (arranged from ER+ to ER-). Fig. 2 shows the 

heatmap of ER+ gene signature (similar patterns can be 

observed for ER- gene signature, data not shown).  

From Fig. 2, although the genes in a gene signature group 

seem correlated with ER+ subtypes, no single gene can be 

seen that shows uniformity of expressions across the samples. 

This illustrates the significance of the gene signatures as a 

multigene classification method. From Fig. 2, it is true to say 

that the HRGE gene signature is significant in distinguishing        

ER+ and ER- subtypes. 

TABLE III: CLASSIFICATION RESULTS OF HRGE AND OTHER EXISTING GENE SIGNATURES 

 
The left-part of the figure shows the table that represents the statistics of classification results and the right-part of the figure shows the bar-graph of the 

classification accuracy and error of HRGE gene signature, and four other existing gene signatures. Here, Number defines the total number of ER+/ER- 

Samples in Desmedt dataset, Positives defines the total number of samples accurately classified, and Negatives defines the total number of samples classified 

inaccurately. The subnetwork based HRGE gene signature give superior performance for both, (A) ER+ and (B) ER- samples in Desmedt dataset.  For 

simplicity, we represents Genomic Grade Index as GGI, 70 gene signature as 70g, 76 gene signature as 76g, and Interactome-Transcriptome Integration as ITI. 

 

V. CONCLUSIONS 

As the genes perform its function by interacting with other 

genes, therefore subnetwork based approach is highly 

relevant to extract the specific genes whose processes or 

functions seems to be disrupted in cancers. In this paper, we 

therefore proposed a subnetwork-based HRGE algorithm that 

effectively extracts the significant biologically-relevant 

interactions, and is based on the hub-gene topology that 

construct the two estrogen receptor based gene signatures to 

distinguish ER+ and ER- breast cancer subtypes, as defined in 

Section III.        

To make the HRGE algorithm independent towards the 

particular dataset, we incorporated multiple datasets with 

distinct platforms, in order to improve the classification 

performance in terms of accuracy. Six training datasets is 

constructed on the basis of estrogen-receptor status and 

histologic grade, and by applying our algorithm, six 

subnetwork lists can be generated which gives the robust and 

effective gene signature of 300 genes that constitutes of 159 

genes for ER+ subtypes and 141 genes for ER- subtypes. The 

classification results of HRGE gene signature shows its 

superiority amongst other previously published gene 

signatures, as shown in Table III. This illustrates the 

effectiveness of HRGE gene signature. 
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